
Mathware & Soft Computing 14 (2007) 247-259

Mixed Integer Programming, General Concept

Inclusions and Fuzzy Description Logics

U. Straccia1 and F. Bobillo2

1 ISTI - CNR, Pisa, Italy
2 Dpt. of Computer Science and AI

University of Granada, Spain
straccia@isti.cnr.it fbobillo@decsai.ugr.es

Abstract

Fuzzy Description Logics (fuzzy DLs) have been proposed as a language to
describe structured knowledge with vague concepts. In [19], a solution based
on Mixed Integer Linear Programming has been proposed to deal with fuzzy
DLs under Lukasiewicz semantics in which typical membership functions,
such as triangular and trapezoidal functions, can be explicitly represented in
the language.

A major theoretical and computational limitation so far is the inability to
deal with General Concept Inclusions (GCIs), which is an important feature
of classical DLs. In this paper, we address this issue and develop a calculus
for fuzzy DLs with GCIs under various semantics: classical logic, “Zadeh
semantics”, and Lukasiewicz logic.

1 Introduction

Description Logics (DLs) [1] are a logical reconstruction of the so-called frame-
based knowledge representation languages, with the aim of providing a simple well
established Tarski-style declarative semantics to capture the meaning of the most
popular features of structured representation of knowledge. Nowadays, DLs have
gained even more popularity due to their application in the context of the Semantic
Web, as the theoretical counterpart of OWL DL (the W3C standard for specifying
ontologies, see [10] for details).

Fuzzy DLs extend classical DLs by allowing to deal with fuzzy, vague and impre-
cise concepts for which a clear and precise definition is not possible. The problem to
deal with imprecise concepts has been addressed several decades ago by Zadeh [22],
which gave birth in the meanwhile to the so-called fuzzy set and fuzzy logic theory
and a huge number of real life applications exists. Despite the popularity of fuzzy
set theory, relative little work has been carried out in extending DLs towards the
representation of imprecise concepts, notwithstanding DLs can be considered as a
quite natural candidate for such an extension (see [12] for an overview).

247

248 U. Straccia & F. Bobillo

From a semantics point of view, most works rely on the Gödel conjunction
and disjunction (x ⊗ y = min(x, y), x ⊕ y = max(x, y)), but with Lukasiewicz
negation (x = 1 − x), essentially the semantics of fuzzy sets operators proposed
by Zadeh [22] (which we call here “Zadeh semantics”). Although Lukasiewcz full
fuzzy logics have been widely studied [4], very few work address fuzzy DLs under
 Lukasiewcz semantics. Indeed, Hajek [5, 6] proposes a reasoning solution based
on a reduction to Lukasiewicz propositional logic L, while Straccia [19] proposes
a reasoning solution, which is based on a mixture of tableau rules and Mixed
Integer Linear Programming (MILP). The latter solution has been proposed to
deal with fuzzy DLs with so-called fuzzy concrete domains, i.e. the possibility
to represent in fuzzy DLs concepts with explicit membership functions such as
triangular, trapezoidal, left-shoulder and right-shoulder functions.

A major theoretical, computational and practical limitation so far of fuzzy
DLs is the inability to deal with General Concept Inclusions (GCIs), which is an
important feature of classical DLs; e.g., GCIs are necessary to represent domain
and range constraints. We note that [11, 17] present a solution for fuzzy DLs
under “Zadeh semantics”, but which is hardly applicable in real world scenarios.
The major problem relies on the fact that, informally, the algorithm generates a
disjunction for each rational occurring in the knowledge base. This is clearly not
feasible in practice.

In this paper, we address this issue and develop a calculus for fuzzy ALCF(D)
with GCIs under various semantics, which have been considered in the running
system fuzzyDL, available from Straccia’s home page. In the remainder, we proceed
as follows. Section 2 describes the basics of fuzzy DLs, then Section 3 addresses
the inference algorithm and finally Section 4 sets out some conclusions.

2 Fuzzy DLs basics

We next define fuzzy ALCF(D). We recall here the semantics given in [5, 6, 20].

Syntax. In fuzzy ALCF(D), we allow to reason with concrete fuzzy data types,
using so-called concrete domains. We recall thatALCF(D) is the basic DLALC [15]
extended with functional roles (also called attributes or features) and concrete do-
mains [13] allowing to deal with data types such as strings and integers. In fuzzy
ALCF(D), however, concrete domains are fuzzy sets.

A fuzzy data type theory D = 〈∆D, ·D〉 is such that ·D assigns to every n-
ary data type predicate an n-ary fuzzy relation over ∆D. For instance, as for
ALCF(D), the predicate 618 may be a unary crisp predicate over the natural
numbers denoting the set of integers smaller or equal to 18. On the other hand,
concerning non-crisp fuzzy domain predicates, we recall that in fuzzy set theory
and practice, there are many functions for specifying fuzzy set membership degrees.
However, the triangular, the trapezoidal, the L-function (left-shoulder function),
and the R-function (right-shoulder function) are simple, but most frequently used
to specify membership degrees. The functions are defined over the set of non-
negative rationals Q+ ∪ {0} (see Fig. 1). Using these functions, we may then

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 249

(a) (b) (c) (d)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c) L-function;
(d) R-function

define, for instance, Young : Natural → [0, 1] to be a fuzzy concrete predicate over
the natural numbers denoting the degree of youngness of a person’s age. The
concrete fuzzy predicate Young may be defined as Young(x) = L(x; 10, 30).

We allow modifiers in fuzzyALCF(D). Fuzzy modifiers, like very , more or less
and slightly , apply to fuzzy sets to change their membership function. Formally, a
modifier is a function fm : [0, 1]→ [0, 1]. For instance, we may define very(x) = x2

and slightly(x) =
√
x. Modifiers have been considered, for instance, in [7, 21].

Now, let A, RA, RC , I, Ic and M be non-empty finite and pair-wise disjoint
sets of concepts names (denoted A), abstract roles names (denoted R), i.e. binary
predicates concrete roles names (denoted T), abstract individual names (denoted
a), concrete individual names (denoted c) and modifiers (denoted m). Concepts
may be seen as unary predicates, while roles may be seen as binary predicates.
RA also contains a non-empty subset Fa of abstract feature names (denoted r),
while RC contains a non-empty subset Fc of concrete feature names (denoted t).
Features are functional roles.

The syntax of fuzzy ALCF(D) concepts is as follows:

C := > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | m(C) | ∀R.C | ∃R.C | ∀T.D | ∃T.D .

Fuzzy axioms are defined as follows, similarly to [20]. An ALCF(D) fuzzy
knowledge base K = 〈T ,A〉 consists of a fuzzy TBox T , and a fuzzy ABox A.

Let n ∈ (0, 1]. A fuzzy TBox T is a finite set of fuzzy concept inclusion ax-
ioms 〈C v D,n〉, where C,D are concepts. Informally, 〈C v D,n〉 states that
all instances of concept C are instances of concept D to degree n. For exam-
ple, 〈Father v Person u ∀hasChild.Person, 1〉 (a father is a person and all his
children are also persons). We write C = D as a shorthand of the two axioms
〈C v D, 1〉 and 〈D v C, 1〉. For instance, Minor = Person u ∃age. 618 defines a
person whose age is less or equal to 18 (age is a concrete feature), i.e., it defines
a minor, YoungPerson = Person u ∃age.Young defines a young person, while we
may define the concept of sports car as SportsCar = Car u ∃speed .very(High),
where very is a concept modifier, e.g. a linear hedge, and High is a fuzzy concrete
predicate over the domain of speed expressed in kilometres per hour and may be
defined as High(x) = R(x; 80, 250) (speed is a concrete feature).

A fuzzy ABox A consists of a finite set of fuzzy concept and fuzzy role assertion
axioms of the form 〈a :C, n〉, 〈(a, b) :R,n〉 and 〈(a, c) :T , n〉, where a, b are abstract

250 U. Straccia & F. Bobillo

individual constants, c is a concrete individual, and C, R and T are a concept, an
abstract role and a concrete role, respectively.

Informally, from a semantical point of view, a fuzzy axiom 〈α, n〉 constrains
the membership degree of α to be at least n. Hence, 〈jim :YoungPerson, 0.2〉 says
that jim is a YoungPerson with degree at least 0.2, while 〈(jim, 180) :hasHeight , 1〉,
where hasHeight is a concrete feature, says that jim’s height is 180. On the other
hand, a fuzzy concept inclusion axiom of the form 〈C v D,n〉 says that the sub-
sumption degree between C and D is at least n.

Semantics. The semantics extends [18]. In ALCF(D) axioms, rather than being
“classical” evaluated (being either true or false), they are “many-valued” evaluated
taking a degree of truth in [0, 1]. In the following, we use ⊗,⊕,	 and ⇒ in infix
notation, in place of a t-norm, s-norm, negation function, and implication function,
respectively.

A fuzzy interpretation I = (∆I , ·I) relative to a fuzzy data type theory D = 〈∆D,
·D〉 consists of a nonempty set ∆I (called the domain), disjoint from ∆D, and of
a fuzzy interpretation function ·I that coincides with ·D on every data value, data
type, and fuzzy data type predicate, and it assigns (i) to each abstract concept C
a function CI : ∆I → [0, 1]; (ii) to each abstract role R a function RI : ∆I×∆I →
[0, 1]; (iii) to each abstract feature r a partial function rI : ∆I ×∆I → [0, 1] such
that for all u ∈ ∆I there is an unique w ∈ ∆I on which rI(u,w) is defined; (iv) to
each concrete role T a function RI : ∆I ×∆D → [0, 1]; (v) to each concrete feature
t a partial function tI : ∆I × ∆D → [0, 1] such that for all u ∈ ∆I there is an
unique o ∈ ∆D on which tI(u, o) is defined; (vi) to each modifier m the modifier
function fm : [0, 1] → [0, 1]; (vi) to each abstract individual a an element in ∆I ;
(vii) to each concrete individual c an element in ∆D.

The mapping ·I is extended to roles and complex concepts as specified in the
Table 1 (where x, y ∈ ∆I and v ∈ ∆D).

⊥I(x) = 0
>I(x) = 1

(C1 u C2)I(x) = C1
I(x)⊗ C2

I(x)

(C1 t C2)I(x) = C1
I(x)⊕ C2

I(x)

(¬C)I(x) = 	CI(x)

(m(C))I(x) = fm(CI(x))

(∀R.C)I(x) = infy∈∆I RI(x, y)⇒ CI(y)

(∃R.C)I(x) = supy∈∆I RI(x, y)⊗ CI(y)

(∀T.D)I(x) = infy∈∆D T I(x, y)⇒ DI(y)

(∃T.D)I(x) = supy∈∆D
T I(x, y)⊗DI(y) .

Table 1: Fuzzy DL semantics.

We comment briefly some points. The semantics of ∃R.C (∃R.C)I(d) = supy∈∆I

RI(x, y) ⊗ CI(y) is the result of viewing ∃R.C as the open first order formula
∃y.FR(x, y) ⊗FC(y) (where F is the obvious translation of roles and concepts into
first-order logic (FOL)). Similarly, (∀R.C)I(x) = infy∈∆I R

I(x, y) ⇒ CI(y) is

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 251

related to the open first order formula ∀y.FR(x, y) ⇒ FC(y). However, unlike the
classical case, in general, we do not have that (∀R.C)I = (¬∃R.¬C)I . For instance,
it holds in Lukasiewicz logic, but not in Gödel logic. Also interesting is that (see
[5]) the axiom > v ¬(∀R.A) u (¬∃R.¬A) has no classical model. However, in [5],
it is shown that in Gödel logic it has no finite model, but has an infinite model.

Finally, the mapping ·I is extended to non-fuzzy axioms as specified in the
following table (where a, b are individuals):

(C v D)I = infx∈∆I C
I(x)⇒ DI(x)

(a :C)I = CI(aI)
((a, b) :R)I = RI(aI , bI) .

Note here that e.g. the semantics of a concept inclusion axiom C v D is derived
directly from its FOL translation, which is of the form ∀x.FC(x) ⇒ FD(x). This
definition is clearly different from the approaches in which C v D is viewed as
∀x.C(x) 6 D(x). This latter approach has the effect that the subsumption rela-
tionship is a boolean relationship, while the in former approach subsumption is
determined up to a degree in [0, 1].

The notion of satisfaction of a fuzzy axiom E by a fuzzy interpretation I,
denoted I |= E, is defined as follows: I |= 〈α > n〉, where α is a concept inclusion
axiom, if and only if αI > n. Similarly, I |= 〈α > n〉, where α is a concept or a role
assertion axiom, if and only if αI > n. We say that a concept C is satisfiable if and
only if there is an interpretation I and an individual x ∈ ∆I such that CI(x) > 0.

For a set of fuzzy axioms E , we say that I satisfies E if and only if I satisfies
each element in E . We say that I is a model of E (resp. E) if and only if I |= E
(resp. I |= E). I satisfies (is a model of) a fuzzy knowledge base K = 〈T ,A〉,
denoted I |= K, iff I is a model of each component T ,R and A, respectively.

A fuzzy axiom E is a logical consequence of a knowledge base K (K |= E) if
and only if every model of K satisfies E. The interesting point is that according
to our semantics, e.g., a minor is a young person to a degree and this relation-
ship is obtained without explicitly mentioning it. For example, using the previ-
ous definitions of Minor and YoungPerson, under Lukasiewicz logic we have that
K |= 〈Minor v YoungPerson, 0.6〉 ([19]) and KB |= 〈YoungPerson v Minor , 0.4〉.

Finally, given K and an axiom α of the form C v D, a :C, (a, b) :R or (a, c) :T ,
it is of interest to compute α’s best lower degree value bound. The greatest lower
bound of α w.r.t. K (denoted glb(K, α)) is glb(K, α) = sup{n | K |= 〈α > n〉}, where
sup ∅ = 0. Determining the glb is called the Best Degree Bound (BDB) problem.
Another similar concept is the best satisfiability bound of a concept C and amounts
to determine glb(K, C) = supI supx∈∆I{CI(x) | I |= K}. Essentially, among all
models I of the knowledge base, we are determining the maximal degree of truth
that the concept C may have over all individuals x ∈ ∆I .

Example 2.1 Assume that a car seller sells an Audi TT for $31500, as from the
catalog price. A buyer is looking for a sports car, but wants to pay no more than
around $30000. In classical DLs no agreement can be found. The problem relies
on the crisp condition on the seller’s and the buyer’s price. A more fine grained

252 U. Straccia & F. Bobillo

Figure 2: The soft price constraints.

approach would be (and usually happens in negotiation) to consider prices as con-
crete fuzzy sets instead. For instance, the seller may consider optimal to sell above
$31500, but can go down to $30500. The buyer prefers to spend less than $30000,
but can go up to $32000. We may represent these statements by means of the
axioms (see Figure 2): AudiTT = SportsCar u ∃hasPrice.R(x; 30500, 31500) and
Query = SportsCar u ∃hasPrice.L(x; 30000, 32000), where hasPrice is a concrete
feature (a car has only one price, which is a number). Then we may find out
that the highest degree to which the concept C = AudiTT u Query is satisfiable
is 0.5 (the possibility that the Audi TT and the query matches is 0.5). That is,
glb(K, C) = 0.5 and corresponds to the point where both requests intersects (i.e.,
the car may be sold at $31000).

3 Reasoning algorithm

Our procedure is inspired on [19]. We present here the method for reasoning in
ALCF with GCI’s under Lukasiewicz semantics: α⊗β = max{α+β−1, 0}, α⊕β =
min{α+β, 1},	α = 1−α and α⇒ β = min{1, 1−α+β}. We leave out, for reasons
of space, how to deal with fuzzy concrete domains and modifiers. The interested
reader may consult [19]. We note however, that the procedure differs from the one
presented in [19] in such a way that it will be better suited to deal with GCIs.
Also note that (∀R.C)I = (¬∃R.¬C)I and (∃R.C)I = (¬∀R.¬C)I . This allows us
to transform concept expressions into a semantically equivalent Negation Normal
Form (NNF), which is obtained by pushing in the usual manner negation on front
of concept names, modifiers and concrete predicate names only. With nnf (C) we
denote the NNF of concept C.

The basic idea of our reasoning algorithm is as follows. Consider K = 〈T ,A〉.
In order to solve the BDB problem, we combine appropriate DL tableaux rules with
methods developed in the context of Many-Valued Logics (MVLs) [3]. In order to
determine e.g. glb(K, a :C), we consider an expression of the form 〈a :¬C, 1− x〉
(informally, 〈a :C 6 x〉), where x is a [0, 1]-valued variable. Then we construct a

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 253

tableaux for K = 〈T ,A ∪ {〈a :¬C,	x〉}〉 in which the application of satisfiability
preserving rules generates new fuzzy assertion axioms together with inequations
over [0, 1]-valued variables. These inequations have to hold in order to respect
the semantics of the DL constructors. Finally, to determine the greatest lower
bound, we minimize the original variable x such that all constraints are satisfied 1.
Similarly, for C v D, we can compute glb(K, C v D) as the minimal value of x
such that K = 〈T ,A∪ {〈a :C u ¬D, 1− x〉}〉 is satisfiable, where a is new abstract
individual. Therefore, the BDB problem can be reduced to minimal satisfiability
problem of a KB. Finally, concerning the satisfiability bound problem, glb(K, C) is
determined by the maximal value of x such that 〈T ,A ∪ {〈a :C, x〉}〉 is satisfiable.

In Lukasiewicz logic we end up with a bounded Mixed Integer Linear Pro-
gram (bMILP) optimization problem [14]. Interestingly, as for the MVL case, the
tableaux we are generating contains one branch only and, thus, just one bMILP
problem has to be solved.

Now, let V be a new alphabet of variables x ranging over [0, 1], W be a new
alphabet of 0-1 variables y. We extend fuzzy assertions to the form 〈α, l〉, where l
is a linear expression over variables in V,W and real values.

Similar to crisp DLs, our tableaux algorithm checks the satisfiability of a fuzzy
KB by trying to build a fuzzy tableau, from which it is immediate either to build a
model in case KB is satisfiable or to detect that the KB is unsatisfiable. The fuzzy
tableau we present here extends the tableau presented in [9], and is inspired by the
one presented in [16, 17].

Given K = 〈T ,A〉, let RK be the set of roles occurring in K and let sub(K) be
the set of named concepts appearing in K. A fuzzy tableau T for K is a quadruple
(S, L, E , V) such that: S is a set of elements, L : S × sub(K) → [0, 1] maps each
element and concept, to a membership degree (the degree of the element being an
instance of the concept), and E : RK × (S× S)→ [0, 1] maps each role of RK and
pair of elements to the membership degree of the pair being an instance of the role,
and V : IA → S maps individuals occurring in A to elements in S. For all s, t ∈ S,
C,D ∈ sub(K), and R ∈ RK, T has to satisfy:

1. L(s,⊥) = 0 and L(s,>) = 1 for all s ∈ S,

2. If L(s,¬A) > n, then L(s, A) 6 	n.

3. If L(s, C uD) > n, then L(s, C) > m1, L(s, D) > m2 and n = m1 ⊗m2, for some
m1 and m2.

4. If L(s, C tD) > n, then L(s, C) > m1, L(s, D) > m2 and n = m1 ⊕m2, for some
m1 and m2.

5. If L(s, ∀R.C) > n, then E(R, 〈s, t〉) 6 L(t, C) + 1− n for all t ∈ S.

6. If L(s, ∃R.C) > n, then there exists t ∈ S such that E(R, 〈s, t〉) > m1, L(t, C) > m2

and n = m1 ⊗m2, for some m1 and m2.

7. If 〈C v D, n〉 ∈ T , then L(s, C) 6 L(s, D) + 1− n, for all s ∈ S.

8. If 〈a :C, n〉 ∈ A, then L(V(a), C) > n.

1Informally, suppose the minimal value is n̄. We will know then that for any interpretation I
satisfying the knowledge base such that (a :C)I < n̄, the starting set is unsatisfiable and, thus,

(a :C)I > n̄ has to hold. Which means that glb(K, (a :C)) = n̄

254 U. Straccia & F. Bobillo

9. If 〈(a, b) :R, n〉 ∈ A, then E(R, 〈V(a),V(b)〉) > n.

10. If 〈(a, c) :T , n〉 ∈ A, then E(T, 〈V(a),V(c)〉) > n.

Proposition 3.1 K = 〈T ,A〉 is satisfiable if and only if there exists a fuzzy tableau
for K.

Proof: [Sketch] For the if direction if T = (S,L, E ,V) is a fuzzy tableau for K, we
can construct a fuzzy interpretation I = (∆I , ·I) that is a model of A and T as
follows:

∆I = S, aI = V(a), a occurs in A
>I(s) = L(s,>),⊥I(s) = L(s,⊥), for all s ∈ S
AI(s) = L(s, A), for all s ∈ S
RI(s, t) = E(R, 〈s, t〉) for all 〈s, t〉 ∈ S× S

To prove that I is a model of A and T , we can show by induction on the structure
of concepts that L(s, C) > n implies CI(s) > n for all s ∈ S. Together with
properties 7–10, this implies that I is a model of T , and that it satisfies each fuzzy
assertion in A.

For the converse, we know from [5, 6] that if K has a model then it has a
witnessed model. That is, I = (∆I , ·I) is a witnessed model of K, if for all x ∈ ∆I

there is y ∈ ∆I such that (∃R.C)I(x) = RI(x, y)⊗CI(y) and there is x ∈ ∆I such
that (C v D)I = CI(x) ⇒ DI(x). So, let I be a witnessed model of K. Then a
fuzzy tableau T = (S,L, E ,V) for K can be defined as follows:

S= ∆I , E(R, 〈s, t〉) = RI(s, t), L(s, C) = CI(s), V(a) = aI

It can be verified that T is a fuzzy tableau for K. 2

Now, in order to decide the satisfiability of K = 〈T ,A〉 a procedure that con-
structs a fuzzy tableau T for K has to be determined. Like the tableaux algorithm
presented in [17], our algorithm works on completion-forests since an ABox might
contain several individuals with arbitrary roles connecting them. Due to the pres-
ence of general or cyclic terminology T , the termination of the algorithm has to be
ensured. This is done by providing a blocking condition for rule applications.

Let K = 〈T ,A〉 be a fuzzy KB. A completion-forest F for K is a collection of
trees whose distinguished roots are arbitrarily connected by edges.

Each node v is labelled with a sequence L(v) of expressions of the form 〈C, l〉,
where C ∈ sub(K), and l is either a rational, a variable x, or a negated variable,
i.e. of the form 1 − x, where x is a variable (the intuition here is that v is an
instance of C to degree equal or greater than of the evaluation of l). Each edge
〈v, w〉 is labelled with a sequence L(〈v, w〉) of expressions of the form 〈R, l〉, where
R ∈ RK are roles occurring in K(the intuition here is that 〈v, w〉 is an instance of
R to degree equal or greater than of the evaluation of l). The forest has associated
a set CF of constraints of the form c 6 c′, c = c′, xi ∈ [0, 1], yi ∈ {0, 1}, on the
variables occurring the node labels and edge labels. c, c′ are linear expressions. If
nodes v and w are connected by an edge 〈v, w〉 with 〈R, l〉 occurring in L(〈v, w〉),
then w is called an Rl-successor of v and w is called an Rl-predecessor of w. A
node v is an R-successor (resp. R-predecessor) of w if it is an Rl-successor (resp.

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 255

Rl-predecessor) of w for some role R. As usual, ancestor is the transitive closure
of predecessor.

We say that two non-root nodes v and w are equivalent, denoted L(v) ≈ L(w), if
L(v) = [〈C1, l1〉, . . . , 〈Cn, lk〉], L(w) = [〈C1, l

′
1〉, . . . , 〈Cn, l

′
k〉], and for all 1 6 i 6 k,

either both li and l′i are variables, or both li and l′i are negated variables or both li
and l′i are the same rational in [0, 1] (the intuition here is that v and w share the
same properties).

A node v is directly blocked if and only if none of its ancestors are blocked, it is
not a root node, and it has an ancestor w such that L(v) ≈ L(w). In this case, we
say w directly blocks v. A node v is blocked if and only if it is directly blocked or
if one of its predecessor is blocked (the intuition here is that we need not further
to apply rules to node v, as an equivalent predecessor node w of v exists).

The algorithm initializes a forest F to contain (i) a root node vi
0, for each

individual ai occurring inA, labelled with L(vi
0) such that L(vi

0) contains 〈Ci, n〉 for
each fuzzy assertion 〈ai :Ci, n〉 ∈ A, and (ii) an edge 〈vi

0, v
j
0〉, for each fuzzy assertion

〈(ai, aj) :Ri, n〉 ∈ A, labelled with L(〈vi
0, v

j
0〉) such that L(〈vi

0, v
j
0〉) contains 〈Ri, n〉.

F is then expanded by repeatedly applying the completion rules described below.
The completion-forest is complete when none of the completion rules are applicable.
Then, the bMILP problem on the set of constraints CF is solved.

We also need a technical definition involving feature roles (see [13]). Let F be
forest, r an abstract feature such that we have two edges 〈v, w1〉 and 〈v, w1〉 such
that 〈r, l1〉 and 〈r, l2〉 occur in L(〈v, w1〉) and L(〈v, w2〉), respectively (informally,
F contains 〈(v, w1) :r, l1〉 and 〈(v, w2) :r, l2〉). Then we call such a pair a fork. As r
is a function, such a fork means that w1 and w2 have to be interpreted as the same
individual. Such a fork can be deleted by adding both L(〈v, w2〉) to L(〈v, w1〉)
and L(w2) to L(w1), and then deleting node w2. A similar argument applies to
concrete feature roles. At the beginning, we remove the forks from the initial
forest. We assume that forks are eliminated as soon as they appear (as part of a
rule application) with the proviso that newly generated nodes are replaced by older
ones and not vice-versa.

We also assume a fixed rule application strategy as e.g. the order of rules below,
such that the rule for (∃) is applied as last. Also, all expressions in node labels are
processed according to the order they are introduced into the F .

With xα we denote the variable associated to the atomic assertion α of the
form a :A or (a, b) :R. xα will take the truth value associated to α, while with xc

we denote the variable associated to the concrete individual c. The rules are the
following:

(A). If 〈A, l〉 ∈ L(v) then CF = CF ∪ {xv :A > l} ∪ {xv :A ∈ [0, 1]}.

(Ā). If 〈¬A, l〉 ∈ L(v) then CF = CF ∪ {xv :A 6 1− l} ∪ {xv :A ∈ [0, 1]}.

(R). If 〈R, l〉 ∈ L(〈v, w〉) then CF = CF ∪ {x(v, w) :R > l} ∪ {x(v, w) :R ∈ [0, 1]}.

(⊥). If 〈⊥, l〉 ∈ L(v) then CF = CF ∪ {l = 0}.

(u). If 〈C uD, l〉 ∈ L(v) then append 〈C, x1〉 and 〈D, x2〉 to L(v), and CF = CF ∪ {y 6
1 − l, xi 6 1 − y, x1 + x2 = l + 1 − y, xi ∈ [0, 1], y ∈ {0, 1}}, where xi, y are new
variables.

256 U. Straccia & F. Bobillo

(t). If 〈CtD, l〉 ∈ L(v) then append 〈C, x1〉 and 〈D, x2〉 to L(v), and CF = CF∪{x1+x2 =
l, xi ∈ [0, 1]}, where xi are new variables.

(∀). If 〈∀R.C, l1〉 ∈ L(v), 〈R, l2〉 ∈ L(〈v, w〉) and the rule has not been already applied
to this pair then append 〈C, x〉 to L(w) and CF = CF ∪ {x > l1 + l2 − 1, x 6
y, l1 + l2 − 1 6 y, l1 + l2 > y, x ∈ [0, 1], y ∈ {0, 1}}, where x, y are new variables.
The case for concrete roles is similar.

(v). If 〈C v D, n〉 ∈ T and v is a node to which this rule has not yet been applied then
append 〈nnf(¬C), 1− x1〉 and 〈D, x2〉 to L(v), and CF = CF ∪ {x1 6 x2 + 1− n}.

(∃). If 〈∃R.C, l〉 ∈ L(v) and v is not blocked then create a new node w and append 〈R, x1〉
to L(〈v, w〉) and 〈C, x2〉 to L(w), and CF = CF ∪ {y 6 1− l, xi 6 1− y, x1 + x2 =
l+1−y, xi ∈ [0, 1], y ∈ {0, 1}}, where xi, y are new variables. The case for concrete
roles is similar.

Let’s see an example.

Example 3.1 Consider K = 〈T ,A〉, where T = {〈∃R.C v D, 1〉} and A =
{〈(a, b) : R, 0.7〉, 〈b :C, 0.8〉}. Let us show that glb(K, a :D) = 0.5. To this end,
we have to determine the minimal value for x such that 〈T ,A∪{〈a :¬D, 1− x〉}〉 is
satisfiable. To start with, we construct a forest F with two root nodes a and b (one
for each individual in A). We process first 〈(a, b) :R, 0.7〉, then 〈b :C, 0.8〉 and finally
〈a :¬D, 1− x〉. Therefore, we set L(a) = [〈C, 0.8〉, 〈¬D, 1−x〉], L(〈a, b〉) = [〈R, 0.7〉]
and CF = {x ∈ [0, 1]}.

We first process 〈R, 0.7〉 ∈ L(〈a, b〉), apply rule (R) and, thus, add x(a, b) :R >

0.7 and x(a, b) :R ∈ [0, 1] to CF . Then we process 〈C, 0.8〉 ∈ L(a), apply rule (A)
and, thus, add xa :C > 0.8 and xa :C ∈ [0, 1] to CF . We next process 〈¬D, 1−x〉 ∈
L(a), apply rule (Ā) and, thus, add xa :D 6 x and xa :D ∈ [0, 1] to CF .

Now, we apply (v) to a and 〈∃R.C v D, 1〉, and, thus, we append 〈∀R.¬C, 1−
x1〉 and 〈D,x2〉 to L(a), and we add x1 6 x2 and x1, x2 ∈ [0, 1] to CF . Similarly,
we apply (v) to b: we append 〈∀R.¬C, 1 − x3〉 and 〈D,x4〉 to L(b), and we add
x3 6 x4 and x3, x4 ∈ [0, 1] to CF .

Next we process 〈∀R.¬C, 1 − x1〉 ∈ L(a), apply rule (∀) to it and 〈R, 0.7〉 ∈
L(〈a, b〉) and, thus, we append 〈¬C, x5〉 to L(b), and we add {x5 > 1− x1 + 0.7−
1, x5 6 y, 1− x1 − 0.3 6 y, 1− x1 + 0.7 > y, x5 ∈ [0, 1], y ∈ {0, 1}} to CF . We next
process 〈D,x2〉 ∈ L(a), apply rule (A) and, thus, add xa :D > x2 and xa :D ∈ [0, 1]
to CF . Next we process 〈∀R.¬C, 1 − x1〉 ∈ L(b), but no rule is applicable to it.
Finally, we process 〈D,x4〉 ∈ L(b), apply rule (A) and, thus, add xb :D > x4 and
xb :D ∈ [0, 1] to CF .

Now the forest F is complete as no more rule is applicable and we consider the
set of inequations CF . It remains to solve the bMILP problem on CF . Indeed, it
holds that glb(K, a :D) = minx.CF . It can be verified that this value is 0.5.

Example 3.2 illustrates the behaviour on cyclic terminologies and shows how a
potential infinite cyclic computation is blocked.

Example 3.2 Consider K = 〈T ,A〉, where T = {〈A v ∃R.A, 1〉} and A =
{〈a :A, 0.8〉}. Let’s show that K is satisfiable. The complete forest F in Figure 3
shows the computation.

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 257

a L(a) = [〈A, 0.8〉, 〈¬A, 1 − x1〉, 〈∃R.A, x2〉]

?
L(〈a, w1〉) = [〈R, x3〉]

w1 L(w1) = [〈A, x4〉, 〈¬A, 1 − x5〉, 〈∃R.A, x6〉]

?
L(〈w1, w2〉) = [〈R, x7〉]

w2 L(w2) = [〈A, x8〉, 〈¬A, 1 − x9〉, 〈∃R.A, x10〉]

w2 blocked by w1

CF = {xi ∈ [0, 1], yi ∈ {0, 1}, xa :A > 0.8, x1 6 x2,

xa :A > x1, y1 6 1 − x2, x3 6 1 − y1, x4 6 1 − y1,

x3 + x4 = x2 + 1 − y1, x(a, w1) :R > x3, xw1 :A > x4,

x5 6 x6, xw1 :A 6 x5, y2 6 1 − x6, x7 6 1 − y2,

x8 6 1 − y2, x7 + x8 = x6 + 1 − y2,

x(w1, w2) :R > x7, xw2 :A > x8, x9 6 x10, xw2 :A 6 x9}

Figure 3: Complete forest for Example 3.2.

As we can notice, node w2 is blocked by node w1, meaning that w1 and w2

share the same properties. In order to build a model, we replace all occurrences
of w2 in CF with w1 and then we find a solution to the inequalities. Our blocking
condition is based on the fact that, in case of cyclic definitions, as the calculus is
deterministic, the same sequence of expressions has to be generated within a cycle.

Proposition 3.2 (Termination) For each KB K, the tableau algorithm termi-
nates.

Proof: [Sketch] Termination is a result of the properties of the expansion rules, as
in the classical case [9]. More precisely we have the following observations. (i) The
expansion rules never remove nodes from the tree (except forks at the beginning)
or concepts from node labels or change the edge labels. (ii) Successors are only
generated by the rule ∃. For any node and for each concept these rules are applied
at-most once. (iii) Since nodes are labelled with nonempty sequences of sub(K),
obviously there is a finite number of possible labelling for a pair of nodes. Thus,
the blocking condition will be applied in any path of the tree and consequently any
path will have a finite length. 2

Proposition 3.3 (Soundness) If the expansion rules can be applied to a KB K
such that they yield a complete completion-forest F such that CF has a solution,
then K has a fuzzy tableau for K.

Proof: [Sketch] Let F be a complete completion-forest constructed by the tableaux
algorithm for K. By hypothesis, CF has a solution. If x is a variable occurring in
CF , with x̄ we denote the value of x in this solution. If the variable x does not
occur in CF then x̄ = 0 is assumed. A fuzzy tableau T = (S,L, E ,V) can be defined
as follows:

S = {v | v is a node in F , and v is not blocked},
L(v,⊥) = 0, if v ∈ S,
L(v,>) = 1, if v ∈ S,
L(v, A) = x̄v :A, if v in F not blocked,

E(R, 〈v, w〉) = x̄(v, w) :R, if v, w in F not blocked

E(R, 〈v, w〉) = x̄(v, w′) :R, if v in F not blocked, w blocks w′

V(ai) = vi
0, where vi

0 is a root node

258 U. Straccia & F. Bobillo

It can be shown that T is a fuzzy tableau for K. 2

Proposition 3.4 (Completeness) Consider a KB K. If K has a fuzzy tableau,
then the expansion rules can be applied in such a way that the tableaux algorithm
yields a complete completion-forest for K such that CF has a solution.

Proof: [Sketch] Let T = (S,L, E ,V) be a fuzzy tableau for K. Using T , we can
trigger the application of the expansion rules such that they yield a completion-
forest F that is complete. Using L and E we can find a solution to CF . 2

4 Conclusions

In this work we presented a reasoning algorithm for ALCF(D) with general concept
inclusions and explicit membership functions (ALCF is a guarded logic [2]), under
 Lukasiewicz semantics. Clearly, by using [19] the result applies also to the usually
used “Zadeh semantics” of fuzzy DLs, and of course also for the classical boolean
variant of ALCF .

The result can be extended to more expressive fuzzy DLs, such as SHIF(D) and
SHOIN (D), which are the DLs behind the web ontology description languages
OWL-DL and OWL-Lite, by adapting our blocking condition similarly as done
in [8]. The description of these blocking conditions will be the subject of an extend
paper. So far, an implementation for fuzzy SHIF(D) can be found from Straccia’s
home page.

Acknowledgment

F. Bobillo holds a FPU scholarship from the Spanish Ministerio de Educación y Ciencia.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[2] E. Grädel, C. Hirsch and M. Otto. Back and forth between guarded and modal logics.
ACM Transactions on Computational Logic, 3(3):418–463, 2002.

[3] R. Hähnle. Advanced many-valued logics. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 2. Kluwer, 2001.

[4] P. Hájek. Metamathematics of fuzzy logic. Kluwer, 1998.

[5] P. Hájek. Making fuzzy description logics more general. Fuzzy Sets and Systems,
154 (1), 1–15, 2005.

[6] P. Hájek. What does mathematical fuzzy logic offer to description logic? In Elie
Sanchez, editor, Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier,
2006.

Mixed Integer Programming, General Concept Inclusions and Fuzzy... 259

[7] S. Hölldobler, H.-P. Störr and T. D. Khang. The fuzzy description logic ALCFH with
hedge algebras as concept modifiers. Journal of Advanced Computational Intelligence,
7(3):294–305, 2003.

[8] I. Horrocks, U. Sattler and S. Tobies. Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[9] I. Horrocks, U. Sattler and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In D. MacAllester, editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), volume 1831 in Lecture Notes in
Artificial Intelligence, pages 482–496, 2000. Springer Verlag.

[10] I. Horrocks, P. F. Patel-Schneider and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26,
2003.

[11] Y. Li, B. Xu, J. Lu and D. Kang. Discrete tableau algorithms for SHI. In Proceeedings
of the International Workshop on Description Logics (DL-06). CEUR, 2006.

[12] T. Lukasiewicz, U. Straccia. An overview of uncertainty and vagueness in description
logics for the semantic web. Technical Report INFSYS RR-1843-06-07, Institut für
Informationssysteme, Technische Universität Wien (2006)

[13] C. Lutz. Description logics with concrete domains - A survey. In Advances in Modal
Logics Volume 4. King’s College Publications, 2003.

[14] H. Salkin and M. Kamlesh. Foundations of Integer Programming. North-Holland,
1988.

[15] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1–26, 1991.

[16] G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan and Ian Horrocks. A Fuzzy De-
scription Logic for Multimedia Knowledge Representation. In Proceedings of the
International Workshop on Multimedia and the Semantic Web, 2005.

[17] G. Stoilos, U. Straccia, G. Stamou and J. Z. Pan. General concept inclusions in
fuzzy description logics. In Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI-06), pages 457–461. IOS Press, 2006.

[18] U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelli-
gence Research, 14:137–166, 2001.

[19] U. Straccia. Description logics with fuzzy concrete domains. In F. Bachus and T.
Jaakkola, editors, Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI-05), pages 559–567, 2005. AUAI Press.

[20] U. Straccia. A fuzzy description logic for the semantic web. In E. Sanchez, editor,
Fuzzy Logic and the Semantic Web, Capturing Intelligence, chapter 4, pages 73–90.
Elsevier, 2006.

[21] C. Tresp and R. Molitor. A description logic for vague knowledge. In Proceedings of
the 13th European Conference on Artificial Intelligence (ECAI-98), 1998.

[22] L. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

