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Abstract

The research in the field of the so called Fuzzy Mathematics can be condi-
tionally devided into two mainstreams: the first one emphasizes on the study
of different fuzzy structures (topological, algebraic, analytical, etc.) on an
ordinary set X, while L-valued sets X (that are sets equipped with some L-
valued equalities E : X ×X → L, or, more generally, with L-valued relations
R : X ×X → L) are the starting point for the second one. (L being a lattice
usually with an additionally algebraic structure). The aim of this work is
to discuss the problem how an L-valued relation given on a set X can be
extended to the L-valued relation R on the L-powerset LX . This problem,
is important, among other for the theory of L-fuzzy topological spaces in the
sense of [15], [16].
Keywords: L-relations, L-valued equalities, L-valued sets.

Introduction

In our previous works [17], [18], we have introduced the concept of an L-valued
L-topological space, which can be considered as a synthesis of the concept of an
L-topological space in the sense of Chang-Goguen [2], [6] and the concept of a
many-valued set in the sense of Höhle [8], see also [9]. Our next aim is to introduce
the concept of an L-valued L-fuzzy topological space, which would be an analogous
synthesis of the concept of an L-fuzzy topological space in the sense of [15], [16],
see also [10], that is a pair (X, T ) where X is a set and T : LX → L is an L-fuzzy
topology on X, and the concept of a many-valued set, that is a pair (X,E) where
X is a set and E : X × X → L is an L-valued equality on it and to develop
the corresponding theory. However, for realizing this plan we have an additional
problem. Namely, since L-fuzzy topology on a set X is a mapping T : LX → L
(and not a family τ ⊆ LX as in case of Chang-Goguen L-topology), and since X
is equiped with an L-valued equality E : X ×X → L, it is natural to request some
kind of extensionality for a mapping T : LX → L. Therefore the problem appears
how to ”lift” the L-valued equality E : X×X → L from X to an L-valued equality
on the L-powerset LX , that is to get an L-valued equality E : LX × LX → L.
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However, since an L-valued equality E : X ×X → L is a special type of an L-
valued relation R : X ×X → L, we decided first to study the problem of extension
of an L-valued preoder type relations

R : X ×X → L

to analogous L-valued preoder type structures

R : LX × LX → L.

Further, having an L-valued equality E : X × X → L we can extend it to an
L-valued relation R on LX and, then by ”symmetrizing” it we get an L-valued
equality E on LX .

1 Prerequisities

Let (L,≤,∧,∨) be a complete lattice, i.e. (L,≤) is a partially ordered set such that
for every subset A ⊂ L the join

∨
A and the meet

∧
A are defined. In particular,∨

L =: 1 and
∧
L =: 0 are respectively the universal upper and the universal lower

bounds in L. We assume that 1 6= 0, i.e. L has at least two elements.
Further, let ∗ : L× L→ L be a binary operation on L such that

1. α ∗ β = β ∗ α for all α, β ∈ L;

2. α ∗ (β ∗ γ) = (α ∗ β) ∗ γ for all α, β, γ ∈ L;

3. α ∗ 1 = α and α ∗ 0 = 0 for all α ∈ L;

4. α ∗

( ∨
j∈J

βj

)
=
∨
j∈J

(α ∗ βj) ∀α ∈ L and ∀{βj : j ∈ J} ⊂ L.

In what follows the 5-tuple (L,≤,∧,∨, ∗) satisfying the above conditions will be
referred to as a commutative cl-monoid (cf. e.g. [8]).

It is well known that a further binary operation 7→: L × L → L (residuation)
is defined on a commutative cl-monoid L which is connected with ∗ by Galois
correspondence, that is

α ∗ β ≤ γ ⇐⇒ α ≤ β 7→ γ for all α, β, γ ∈ L.

Explicitely residuation 7→ is given by

α 7→ β =
∨
{λ ∈ L | α ∗ λ ≤ β}.

It is known that the following properties hold in a commutative cl-monoid (L,≤
,∧,∨) (cf e.g. [8]).

Proposition 1.1 Let α, β, γ, αi, βi be arbitrary elements from a commutative
cl-monoid L. Then:
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1.
( ∨
i∈I

αi

)
7→ β =

∧
i∈I

(αi 7→ β);

2. α 7→
( ∧
i∈I

βi

)
=
∧
i∈I

(α 7→ βi);

3. if α ≤ β then α 7→ β = 1;

4. α ∗ β ≤ α ∧ β;

5. (α 7→ β) ∗ (β 7→ γ) ≤ α 7→ γ;

6. (α ∗ β) 7→ (γ 7→ δ) ≥ (α 7→ γ) ∗ (β 7→ δ);

7. (α 7→ β) ∧ (β 7→ α) = 1⇒ α = β;

8. (α ∗ β) 7→ γ = α 7→ (β 7→ γ).

In what follows L = (L,≤,∧,∨, ∗) always denotes a commutative cl-
monoid.

2 L-valued preodered sets,
category PROSET(L)
and some related categories

Definition 2.1 An L-valued relation (or a fuzzy relation) on a set X is a map
R : X ×X → L.

An L-valued relation R is called

1. reflexive if R(x, x) = 1 for all x ∈ X;

2. transitive, if R(x, y) ∗R(y, z) ≤ R(x, z) for all x, y, z ∈ X;

3. symmetric, if R(x, y) = R(y, x) for all x, y ∈ X;

4. separated, if R(x, y) = R(y, x) = 1 implies that x = y for all x, y ∈ X.

Different authors have used different terminology to describe fuzzy relations with
special properties. We shall use the following names:

A transitive L-valued relation is called an L-valued quasipreoder. A reflexive
transitive L-valued relation is called an L-valued preoder. A separated L-valued
preoder is called an L-valued partial order. A symmetric L-valued preorder is called
an L-valued equality. The corresponding pair (X,R) will be refereed to as an L-
valued quasipreodered set, L-valued preodered set, an L-valued partially ordered set,
and an L-valued set resp.

If R is an L-valued preoder on a set, then given x, y ∈ X the value R(x, y) is
interpreted as the degree to which x is greater than or equal to y. In case R is an
L-valued equality on X, the intuitive meaning of the value R(x, y) is the degree to
which x and y are equal.
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Remark 2.2 L-valued relations, usually in case when L = [0, 1] and when ∗ is a
left-semicontinuous t-norm (see e.g. [12]) were considered by many authors and
they used different terminology. In particular, a fuzzy relation R : X ×X → [0, 1]
satisfying (1), (2) and (3) is called a fuzzy equality in [8], [9] a fuzzy equivalence
in [11], [13], or an indistinguishability operator [19]. In [3], [4], [5] a fuzzy relation
R : X ×X → L is called a fuzzy equality if it satisfies all conditions (1) – (4).

Examples 2.3

1. Let X = L. Then by setting R(x, y) = x 7→ y we define a canonical L-valued
partial oder on X and by setting E(x, y) = R(x, y) ∧ R(y, x) we define a
canonical L-valued separated equality on X (cf. e.g. [19]).

2. Let (X, ρ) be a pseudo-quasimetric space such that ρ(x, y) ≤ 1 for all x, y ∈
X. Then by setting R(x, y) = 1−ρ(x, y) we define an L-valued preoder on X
where L is the unit interval [0,1] endowed with the  Lukasiewicz conjunction
∗. Moreover, if ρ is a pseudometric, then R is an L-valued equality, and in
case ρ is a metric, the L-valued equality R is separated (cf e.g. [8]).

3. Let A ⊆ LX be a family of L-subsets of X. Then, by setting

R(A)(x, y) =
∧
A∈A

(A(x) 7→ A(y))

we obtain an L-valued preoder on X.

Definition 2.4 Given L-valued (quasi)preodered sets (X,RX) and (Y,RY ) a map-
ping f : X → Y is called extensional if

RX(x1, x2) ≤ RY (f(x1), f(x2)) for all x1, x2 ∈ X.

L-valued quasi-preodered sets and extensional mappings between them form a
category which will be denoted QPROSET(L). Its full subcategories consisting of
L-valued preodered sets and L-valued sets will be denoted resp. by PROSET(L)
and SET(L). To denote the subcategories of these categories determined by sep-
arated L-valued relation we use notations SQPROSET(L), SPROSET(L) and
SSET(L) resp. However for the category of separated L-valued partial ordered
sets SPROSET(L) which are separated by definition and which play a special
role in our work an alternative notation PAOSET(L) will be also used. In the se-
quel our main interest here will be in categories PROSET(L) and PAOSET(L).
Categories SET(L) and SSET(L) will be discussed in Section 6.

Proposition 2.5 Let X be a set and R(X,L) be the family of L-valued preoders
on X. Then R(X,L) is a complete lattice. Its bottom inf R is the discrete (or
crisp) (L-valued) preoder

Rdis(x, y) =
{

1 if x = y;
0 if x 6= y.
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The top sup R of the lattice R(X,L) is the indiscrete (L-valued) preoder

Rind(x, y) = 1 for all x, y ∈ X.

3 L-valued preoder on the L-powerset of an L-
valued preodered set

Let (X,R) be an L-valued preodered set. Our first aim is to lift the L-valued
preoder R from X to the L-valued quasipreoder R on the L-powerset LX of X.
We do it as follows.

Given A,C ∈ LX we set

R(A,C) =
∧

x,z∈X
((R(x, z) ∗A(x)) 7→ C(z)) .

Thus we obtain an L-valued relation

R : LX × LX → L.

From the Proposition 1.1(7) it follows that equivalently R(A,C) can be defined by

R(A,C) =
∧

x,z∈X
(R(x, z) 7→

(
A(x) 7→ C(z))

)
.

Remark 3.1 The ”defuzzified” meaning of the formulae

(R(x, z) ∗A(x)) 7→ C(z) and R(x, z) 7→ (A(x) 7→ C(z))

can be explained as follows:
If x is grater than or equal to z and x belongs to A then z should belong to C.
In particular, in this case, taking x = z we get A(x) ≤ C(x) for every x ∈ X. By
verifying this condition for all x, z ∈ X we conclude whether A is greater than or
equal to C – this is the ”defuzzified” meaning of the value R(A,C).

In case A,C ⊆ X, that is A,C are crisp subsets of X

R(A,C) =
{

1 if x ∈ A and R(x, z) > 0 implies z ∈ C
0 otherwise .

In particular, in case R is a crisp preoder ≤ on X, then

R(A,C) = 1 iff x ∈ A and z ≤ x implies that z ∈ C

and R(A,C) = 0 otherwise.

Proposition 3.2 If R : X ×X → L is an L-valued reflexive relation on X, then

R(A,C) ≥ R(A,B) ∗ R(B,C) for all A,B,C ∈ LX ,

and hence R : LX × LX → L is an L-valued quasipreorder on LX .
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Proof
To prove the statement we define an auxiliary relation

Q : LX × LX → L

as follows: given A,C ∈ LX let

Q(A,C) =
∧

x,y,z∈X
((R(x, y) ∗R(y, z)) 7→ (A(x) 7→ C(z))) .

Obviously Q(A,C) ≤ R(A,C): just take y = z and apply reflexivity of R according
to which R(z, z) = 1.

On the other hand

Q(A,C) ≥ R(A,B) ∗ R(B,C) for any B ∈ LX .

Indeed, fix any x, y, z ∈ X. Then

(R(x, y) ∗R(y, z)) 7→ (A(x) 7→ C(z)) ≥

≥ (R(x, y) ∗R(y, z)) 7→ ((A(x) 7→ B(y)) ∗ (B(y) 7→ C(z))) ≥
≥ (R(x, y) 7→ (A(x) 7→ B(y))) ∗ (R(y, z) 7→ (B(y) 7→ C(z))) .

Now, taking infimum on the both sides of the obtained inequalities by x, y, z ∈ X
and taking into account that Q(A,C) ≤ R(A,C), we get the required inequality

R(A,C) ≥ R(A,B) ∗ R(B,C) ∀ A,B,C ∈ LX .

2

Corollary 3.3 If R : X × X → L is an L-valued preoder on X, thus R it is
reflexive and transitive, then R : LX × LX → L is an L-valued quasipreorder on
LX .

Remark 3.4 As a referee has noticed, in case R is an L-valued preoder, then
R = Q. Indeed, the equality Q ≤ R is proved above. Conversly, by transitivity of
R we have R(x, y) ∗R(y, z) ≤ R(x, z), and hence

(R(x, y) ∗R(y, z)) 7→ (A(x) 7→ C(z)) ≥ R(x, z) 7→ (A(x) 7→ C(z)).

By taking infimum on x, y, z ∈ X we get the inequality Q ≥ R. Hence R = Q.

Remark 3.5 In analogy with Q : LX × LX → L, we can define a relation Rn :
LX × LX → L by setting

Rn(A,C) =
∧

y0,...yn

((R(y0, y1) ∗ . . . ∗R(yn−1, yn)) 7→ (A(x) 7→ C(z))) ,

where y0 = x, . . . , yn = z. In these notations R = R1 and Q = R2.
Analogously, as above, one can show that for every n ≥ 2 and for every k, 1 < k < n
the inequality

Rk(A,C) ≥ Rn(A,C) ≥ Rk(A,B) ∗ Rn−k(B,C)

holds for all A,B,C ∈ LX and hence, in particular Rn = R for all n in case R is
an L-valued preoder.
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Remark 3.6 Let us call an L-set A R-extensional, if

R(x, z) ∗A(x) ≤ A(z) for all x, z ∈ X.

(A similar property, in case R is an L-valued equality was considered by U. Höhle
see e.g. [8] and other authors.)
The intuitive ”defuzzified” meaning of this condition is the requirement that z
should belong to A whenever x belongs to A and z is less than or equal to x.

Let R ve an L-valued quasipreoder on X and let LXR be the set of all R-
extensional L-sets. In case A,B,C ∈ LXR we have additionally that

R(A,C) = Q(A,C) ∀ A,C ∈ LX .

Indeed, in the obtained inequality

R(A,C) ≥ Q(A,C) ≥ R(A,B) ∗ R(B,C)

just take B = A.

In the proposition 3.2., we have proved that the relationR on LX is an L-valued
quasipreoder. Unfortunately, the reflexivity cannot be ensured by this relation if all
L-sets were considered (even if R itself was reflexive). Nevertheless, the reflexivity
can be proved if we restrict the domain of R to the set LXR of all R-extensional
L-sets.

Theorem 3.7 If
R : X ×X → L

is an L-valued preoder on X, then

R : LXR × LXR → L

is a separated L-valued preoder on LXR .
Moreover R = Q when restricted to LXR .

Proof From proposition 3.2 it follows thatR : LXR×LXR → L is transitive. Further,
by definitions and known properies, we conclude that under these assumptions for
evry A ∈ LXR

R(A,A) =
∧

x,z∈X
((R(x, z) ∗A(x)) 7→ A(z)) ≥

∧
x∈X

(A(x) 7→ A(x)) = 1,

and hence R is reflexive.
Finally, to prove that R : LXR × LXR → L is separated let A,C ∈ LX and assume
that R(A,C) = 1. Then

R(A,C) =
∧

x,z∈X
((R(x, z) ∗A(x)) 7→ C(z)) = 1.
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This means that

∀x, z ∈ X (R(x, z) ∗A(x)) 7→ C(z) = 1,

and in particular
∀x ∈ X (R(x, x) ∗A(x)) 7→ C(x) = 1,

however this means that A(x) ≤ C(x) for all x ∈ X, that is A ≤ C. In a similar
way from the assumption R(C,A) = 1 we conclude that C ≤ A. Thus if R(A,C) =
R(C,A) = 1, then A = C.
Now from the inequality

R(A,C) ≥ Q(A,C) ≥ R(A,B) ∗ R(B,C)

we get
R(A,C) = Q(A,C) :

just take B = A.
2

From Propositions 3.7 and 3.2 we get

Theorem 3.8 If
R : X ×X → L

is an L-valued preoder on X then

R : LX × LX → L

is an L-valued quasipreoder on the powerset LX and an L-valued partial oder on
the extensional powerset LXR .

Examples 3.9 In all these examples

R : LX × LX → L

is an L-valued quasipreoder on LX induced by an L-valued preoder

R : X ×X → L

unless specified. By αX we denote the constant function αX : X → L with value
α ∈ L.

1. Let A ∈ LXR . Then

R(A, 0X) =
( ∨
x∈X

A(x)
)
→ 0.

2. R(A, 1X) = 1 for any A ∈ LX .

3. R(1X , A) = 1→
∧
x∈X

A(x).
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4. Given a ∈ X let 1a stand for the characteristic function of the set {a}. Then

R(A, 1a) =

∨
x 6=a

A(x)

→ 0.

In particular, if a 6= b, a, b ∈ X, then R(1a, 1b) = 0.

5. For every a ∈ X we define an L-set

sa : X → L by sa(x) = R(a, x).

This is the so called singleton generated by a. Since

sa(x) ∗R(x, z) = R(a, x) ∗R(x, z) ≤ R(a, z) = sa(z),

singletons are extensional. Moreover, it is easy to notice that sa is the smallest
one of all extensional L-sets, which are greater than or equal to the L-set 1a.

Let a, b ∈ X. Then

R(sa, sb) =
∧

x,z∈X
((R(a, x) ∗R(x, z)) 7→ R(b, z)) =

∧
z∈X

(R(a, z) 7→ R(b, z)) ≤

≤ R(a, a) 7→ R(b, a) = R(b, a).

On the other hand, since

R(a, b) ∗R(b, z) ≤ R(a, z)

from the Galois connection we conclude that for all a, b ∈ X and every z ∈ X
it holds

R(b, z) 7→ R(a, z) ≥ R(a, b),

and, since this holds for any z ∈ X, by taking infimum on x we obtain:

R(sa, sb) ≥ R(b, a),

and hence
R(sa, sb) = R(b, a).

This equality can be interpreted as follows. Let Rc stand for the order on
LX obtained by reversing of R. That is

Rc(A,C) = R(C,A).

Now the obtained equality means that by assigning to each a ∈ X its singleton
sa ∈ LXE we may identify (X,R) with the L-valued partially odered subset
(S,RcS) of the L-valued partially ordered set (LXR ,R) where S = {sa : a ∈ X}
and RcS is the restriction of Rc to S.
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4 Powerset functor
Φ : PROSET(L)→ PAOSET(L)op

In this section we show that the construction assigning to an L-valued preodered
set (X,R) its extensional powerset (LXR ,R) can be considered as a contravariant
functor Φ from the category PROSET(L) into the category PAOSET(L) that is
as a functor

Φ : PROSET(L)→ PAOSET(L)op.

We shall discuss some properties of this functor. We start with the following

Proposition 4.1 Let (X,RX), (Y,RY ) be L-valued preodered sets and

f : X → Y

be an extensional mapping. Then for every C,D ∈ LY it holds

RX(f−1(C), f−1(D)) ≥ RY (C,D).

Recall that the preimage of an L-set C : Y → L under a function f : X → Y is
defined by the equality f−1(C)(x) = (f ◦ C)(x).

Proof follows from the next series of inequalities:

RX(f←(C), f←(D)) =

=
∧

x,x′∈X

(
RX(x, x′) 7→

(
f−1(C)(x) 7→ f−1(D)(x′)

))
=

=
∧

x,x′∈X
(RX(x, x′) 7→ (C(f(x)) 7→ D(f(x′)))) ≥

≥
∧

x,x′∈X
(RY (f(x), f(x′)) 7→ (C(f(x)) 7→ D(f(x′))) ≥

≥
∧

y,y′∈Y
(RY (y, y′) 7→ (C(y) 7→ D(y′))) = RY (C,D).

From Proposition 4.1 and Theorem 3.8 we get

Theorem 4.2 By assigning to each L-valued preodered set

(X,R) ∈ Ob(PROSET(L))

its extensional powerset (LXE ,R) and to each extensional mapping

f : (X,RX)→ (Y,RY )

the mapping
f← : (LYR ,RX)→ (LXR ,RY )

we define a functor

Φ : PROSET (L)→ PAOSET (L)op.

(Here f←(C) = f−1(C) for C ∈ LY , cf. e.g. [14].)
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Theorem 4.3 Functor

Φ : PROSET(L)→ PAOSET(L)op

is one-to-one on objects. The restriction Φ′ of the functor Φ to PAOSET(L), that
is the functor

Φ′ : PAOSET(L)→ PAOSET(L)op

is an embedding.

Proof Let R1 and R2 be L-valued relations on a set X and R1 6= R2. Then
there exist a, b ∈ X such that R1(a, b) 6= R2(a, b). However, as it was shown
above, R1(sa, sb) = R1(b, a) and R2(sa, sb) = R2(b, a) (where sa, sb are singletons
corresponding to the points a, b).
Hence R1 6= R2.
2

Remark 4.4 In a similar way as functor Φ one can consider a functor

Φ̃ : PROSET(L)→ QPROSET(L)op

assigning to each (X,R) the L-valued quasipreoder set (LX ,R). The image Φ̃(PROSET(L))
is a subcategory of the category QPROSET(L)op. We shall not go into details of
this construction here.

Remark 4.5 Functors Φ and Φ̃ are order reversing.
Indeed, assume that R1 and R2 are two L-valued preoders on X and R1 ≤ R2.

Then for any A,C ∈ LX

R1(A,C) =
∧

x,z∈X
((R1(x, z) ∗A(x)) 7→ C(z)) ≥

≥
∧

x,z∈X
((R2(x, z) ∗A(x)) 7→ C(z)) = R2(A,C)

and hence R1 ≥ R2.

It would be interesting to study the properties of these functors. In particular,
we have the following hypothesis:
Hypothesis 1. Let Z be a set, (Xi, Ri) be a family of sets endowed with some
order type relation, and

fi : Z → Xi, i ∈ I

be a family of mappings. Further, let R0 be an order-type relation on Z, initial for
this family of mappings. Then the corresponding L-valued relation on the powerset
LZ (or LZR) R0 is the final order type relation for the family of mappings

f←i : (LX ,Ri)→ LZ .
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Hypothesis 2 Let Z be a set, (Xi, Ri) be a family of sets endowed with some
order type relation, and

fi : Xi → Z, i ∈ I

be a family of mappings. Further, let R0 be an order-type relation on Z, final for
this family of mappings. Then the corresponding L-valued relation on the powerset
LZ (or LZR) R0 is the initial order type relation on LZ (or LZR) for the family of
mappings

f←i : LZ → (LX ,Ri).

A related problem, how do these functors behave on products and coproducts?

5 Lattices QPR(LX) and PR(LX)

Given a set X we denote by PR(LX) the family of all L-valued preoders R on LX

obtained from L-valued preoders R on X. In other words S ∈ PR(LX) if and only
if (LXE ,S) ∈ Ob(Φ(PROSET(L)). In a similar way S ∈ QPR(LX) if and only if
(LX ,S) ∈ Ob(Φ(QPROSET(L)).

From the previous results it follows, that QPR(LX) and PR(LXR ) are bounded
lattices where the greatest elementR> is induced by the discrete (L-valued) preoder
Rdis on X and the smallest element R⊥ is induced by indiscrete L-valued preoder
Rind on X. Explicitely, for the largest element R>: given A,C ∈ LXR

R>(A,C) =
∧
x∈X

(A(x) 7→ C(x)) .

Indeed,
R>(A,C) =

∧
x,z∈X

(Rdis(x, z) 7→ (A(x) 7→ C(z)))

and
Rdis(x, z) 7→ (A(x) 7→ C(z)) = 1 if x 6= z

while
Rdis(x, x) 7→ (A(x) 7→ C(z)) = A(x) 7→ C(z).

For the smallest element R⊥: given A,C ∈ LXR

R⊥(A,C) =
∨
x∈X

A(x) 7→
∧
z∈X

C(z).

Indeed
R(A,C) =

∧
x,z∈X

(Rind(x, z) 7→ (A(x) 7→ C(z))) =

=
∧

x,z∈X
(1 7→ (A(x) 7→ C(z))) =

∧
x,z∈X

(A(x) 7→ C(z)) =

=
∨
x∈X

A(x) 7→
∧
z∈X

C(z).
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Note that in case A is Rind-extensional, then

R⊥(A,A) =
∧
x∈X

(A(x) 7→ A(x)) = 1,

and hence R⊥ is an L-valued preoder, but generally R⊥ is only a quasi-preoder.

Examples 5.1

1. Let L = [0, 1] and ∗ = ∧ in (L,≤,∧,∨, ∗), that is

(L,≤,∧,∨)

is viewed as a Heyting algebra. Recall that the corresponding residium is
defined by

α 7→ β =
{

1 if α ≤ β and
0 otherwise

for α, β ∈ L.

(a) Let R = Rind be the indiscrete L-valued preoder on X and
A,C ∈ LX . Then

R(A,C) =
∨
x∈X

A(x) 7→
∧
z∈X

C(z).

Hence

R(A,C) =

 1 if sup
x∈X

A(x) ≤ inf
x]∈X

C(x) and

inf
x∈X

C(x) otherwise .

In particular, for A,C ⊆ X

R(A,C) =
{

1 if A = ∅ or C = X and
0 otherwise .

(Note that X and ∅ are the only extensional sets in this case.)
(b) Let R = Rdis be the discrete L-valued preoder on X and

A,C ∈ LX . Then

R(A,C) =
∧
x∈X

(A(x) 7→ C(x)).

Hence

R(A,C) =

{
1 if A(x) ≤ C(x) ∀x ∈ X and
inf
x
{C(x) | x ∈ X,A(x) ≥ C(x)} otherwise.

In particular, for A,C ⊆ X

R(A,C) =
{

1 if A ⊆ C and
0 if A 6⊆ C.
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2. Let L = [0, 1] and ∗ be the  Lukasiewicz conjunction that is

α ∗ β = max{α+ β − 1, 0} for α, β ∈ [0, 1]

and hence (L,≤,∧,∨, ∗) is an MV -algebra. Recall that the corresponding
residium is defined by

α 7→ β = min{1− α+ β, 1}.

(a) Let R = Rind be the indiscrete L-valued preoder on X and
A,C ∈ LX . Then

R(A,C) =
∧

x,z∈X
min{1−A(x) + C(z), 1}.

Hence

R(A,C) =


1 if sup

x∈X
A(x) ≤ inf

x∈X
C(x) and

1− sup
x∈X

A(x) + inf
x∈X

C(x) otherwise.

(b) Let R = Rdis be the discrete L-valued preoder on X and A,C ∈ LX .
Then

R(A,C) =
∧

x,z∈X
((R(x, z) ∗A(x)) 7→ C(z)) =

=
∧
x∈X

(A(x) 7→ C(x))

Hence

R(A,C) =

{
1 if A(x) ≤ C(x) ∀x ∈ X and
inf
x∈X
{1−A(x) + C(x)} otherwise.

3. Let L = [0, 1] and ∗ be the product on [0, 1] that is α∗β = α·β for α, β ∈ [0, 1].
Recall that the corresponding residium in this case is defined by

α 7→ β =
{

1 if α ≤ β and
β
α otherwise .

(a) Let R = Rind be the indiscrete L-valued preoder on X and A,C ∈ LX .
Then

R(A,C) =
∨
x∈X

A(x) 7→
∧
x∈X

C(x).

Hence

R(A,C) =


1 if sup

x∈X
A(x) ≤ inf

x∈X
C(x) and∧

x∈X

C(x)∨
x∈X

A(x) otherwise.
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(b) Let R = Rdis be the discrete L-valued preoder on X and A,C ∈ LX .
Then

R(A,C) =
∧
x∈X

(A(x) 7→ C(x))

Hence

R(A,C) =

{
1 if A(x) ≤ C(x) ∀x ∈ X and∧

x∈X:A(x)≥C(x) C(x)∧
x∈X:A(x)≥C(x) A(x) otherwise.

6 L-valued equality on the L-powerset of an L-
valued set

Let X be a set and E : X × X → L be an L-valued equality on X, that is a
symmetric preoder. Refering to Section 3 by setting

R(A,C) =
∧

x,z∈X
(E(x, z) 7→ (A(x) 7→ C(z)))

we obtain a separated L-valued preoder on LXE (where LXE is the family of all
extensional L-subsets of X) and an L-valued quasipreoder on LX . In the next
theorem we symmetrize this relation in order to get an L-valued equality on LXE .

Theorem 6.1 For A,C ∈ LX let

E(A,C) = R(A,C) ∧R(C,A).

Then E : LXE × LXE 7→ L is an L-valued equality on LXE .

Proof The reflexivity of E follows from the reflexivity of R.
The symmetry of E is obvious from the definition.
The transitivity follows from the next series of (in)equalities (see Proposition 1.1):

E(A,B) ∗ E(B,C) =

= (R(A,B) ∧R(B,A)) ∗ (R(B,C) ∧R(C,B)) ≤

≤ (R(A,B) ∗ R(B,C)) ∧ (R(C,B) ∗ R(B,A)) ≤

≤ R(A,C) ∧R(C,A) = E(A,C).

Hence the pair (LXE , E) is a separated L-valued set.
2

Thus, assigning to an L-valued set (X,E) the pair (LXE , E) we obtain a functor

Ψ : SET(L)→ SSET(L)op,

where SSET(L) is the category of all separated L-valued L-sets.
One can get results about L-valued equalities on the L-powerset and the funcor

Ψ analogous to the results about L-valued preoders on the L-powersets and the
functor Φ discussed in sections 3, 4 and 5.
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Remark 6.2 There are alternative ways how one can extend an L-valued equality
E : X ×X → L to the L-powerset LXE . In particular, let

E ′ : LXE × LXE → L

be defined by setting E ′(A,C) = R(A,C) ∗R(C,A). One can easily notice that E ′
is an L-valued equality on LXE and that E ′ ≤ E . However, the equality generally
does not hold.

The author acknowledges the support of the European Social Fund (ESF). The
author is grateful also to the referees for reading the manuscript carefully and
pointing out some defects and making some suggestions which allowed to improve
exposition of our work.
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[9] U. Höhle, Many Valued Topology and its Applications, Kluwer Acad. Publ.,
2001.
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Theory , U. Höhle, S.E. Rodabaugh eds. - Handbook Series, vol.3. Chapter 2,
pp. 91 - 116, Kluwer Academic Publisher, Dordrecht, Boston. - 1999.
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