
Mathware & Soft Computing 14 (2007) 147-164

Existence of Extremal Solutions for Fuzzy

Polynomials and their Numerical Solutions

R. Ezzatia,∗and S. Abbasbandy b

aDept. Mathematics, Karaj Branch, Islamic Azad University,

Karaj, Iran.

reza ezati@yahoo.com
b Dept. Mathematics, Imam Khomeini International University,

Ghazvin, 34149-16818, Iran

Abstract

In this paper, we consider the existence of a solution for fuzzy polynomials

anx
n

+ an−1x
n−1

+ · · · + a1x + a0 = x,

where ai, i = 0, 1, 2, · · · , n and x are positive fuzzy numbers satisfying certain

conditions. To this purpose, we use fixed point theory, applying results such

as the well-known fixed point theorem of Tarski, presenting some results

regarding the existence of extremal solutions to the above equation.

Keywords: Fixed point, Fuzzy equation, Fuzzy real number

1 Introduction

Systems of simultaneous nonlinear equations play a major role in various areas such
as mathematics, statistics, engineering and social sciences. Since in many applica-
tions at least some of the system’s parameters and measurements are represented
by fuzzy rather than crisp numbers, it is immensely important to develop math-
ematical models and numerical procedures that would appropriately solve them.
The concept of fuzzy numbers and arithmetic operation with these numbers were
first introduced and investigated by [23]. One of the major applications of fuzzy
number arithmetic is linear systems [2, 3, 6] or nonlinear systems whose parame-
ters are all or partially represented by fuzzy numbers [14, 18, 20]. The numerical
solutions of fuzzy nonlinear equation(s) by Newton’s method were considered in
[1, 4, 5].

Standard analytical techniques like Buckley and Qu method [7, 8, 9, 10], can
not suitable for solving polynomials such as

anxn + an−1x
n−1 + · · · + a1x + a0 = x, (1)
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where x and ai, i = 0, 1, · · · , n, are positive fuzzy numbers. These polynomials
have many applications in decision theory, physics, economics, etc [11]. In [7],
the authors gave two examples for applications of quadratic equations in physics
and economics (see [7], examples 4.3 and 4.4). Therefore, for solving some eco-
nomics problems we must solve polynomials. This fact motivated us to develop the
numerical methods to find the roots of polynomials.

In [22], the authors studied the existence of extremal solutions for quadratic
fuzzy equation

Ex2 + Fx + G = x, (2)

where E, F, G and x were positive fuzzy numbers satisfying certain conditions, and
gave the interval which contains extremal solutions ([22], Theorem 12). In this
paper we consider the equation (1) and give the extremal solutions and numerical
solutions for this equation.

In Section 2, we give some basic results on fuzzy numbers and applied theorems
of [12]. In Section 3, we study the existence of solution to (1) by using some fixed
point theorems such as Tarski’s Fixed Point Theorem. In Section 4, we propose
Newton’s method for solving (1) and in Section 5, we illustrate some examples and
conclusions in the last section.

2 Preliminaries

Definition 1. A fuzzy number is a fuzzy set like x : R → I = [0, 1] which satisfies,
[17, 23, 24],

i. x is upper semi-continuous,

ii. x(t) = 0 outside some interval [c, d],

iii. There are real numbers a, b such that c ≤ a ≤ b ≤ d and

1. x(t) is monotonic increasing on [c, a],

2. x(t) is monotonic decreasing on [b, d],

3. x(t) = 1, a ≤ x ≤ b.

The set of all the fuzzy numbers (as given by Definition 1 ) is denoted by E1.

Definition 2. For a fuzzy number x ∈ E1, we denote the α-level set

[x]α = {t ∈ R : x(t) ≥ α}

by the interval [xαl, xαr ], for each α ∈ (0, 1], and

[x]0 =
⋃

α∈(0,1]

[x]α = [x0l, x0r].

We consider the partial ordering ≤ in E1 given by

x, y ∈ E1, x ≤ y ⇔ (xαl ≤ yαl and xαr ≤ yαr), for all α ∈ (0, 1],
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and the distance that provides E1 as a complete metric space is given by

d∞(x, y) = sup
α∈[0,1]

dH([x]α, [y]α) ∀x, y ∈ E1,

being dH the Hausdorff distance between nonempty compact convex subset of R

(that is, compact intervals). It can be proved that, if x ≤ y ≤ z for every x, y, z,∈
E1, then d∞(z, y) ≤ d∞(z, x), (see [12]).

For each fuzzy number x ∈ E1, we define the functions xL : [0, 1] → R,
xR : [0, 1] → R given by xL(α) = xαl and xR(α) = xαr , for each α ∈ [0, 1].

Definition 3 [21]. A fuzzy number x ∈ E1 in parametric form is a pair (xL, xR)
of functions xL(α), xR(α), 0 ≤ α ≤ 1, which satisfy the following requirements:

1. xL(α) is a bounded monotonic increasing left continuous function,

2. xR(α) is a bounded monotonic decreasing left continuous function,

3. xL(α) ≤ xR(α), 0 ≤ α ≤ 1.

An important class of fuzzy number is the triangular fuzzy number x = (a, c, b),
with the membership function

x(t) =















t − a

c − a
, a ≤ t ≤ c,

t − b

c − b
, c ≤ t ≤ b,

where c 6= a, c 6= b and hence

xL(α) = a + (c − a)α, xR(α) = b + (c − b)α.

If c = a+b
2 or xL(α)+xR(α) is independent of α, then the triangular fuzzy number

is called symmetric .
Let TF (R) be the set of all triangular fuzzy numbers. The addition and scalar

multiplication of fuzzy numbers are defined by the extension principle and can be
equivalently represented as follows.
For arbitrary x = (xL, xR), y = (yL, yR) and scalar k > 0 we define addition (x+y)
and multiplication as

(x + y)L(α) = xL(α) + yL(α), (x + y)R(α) = xR(α) + yR(α), (3)

(kx)L(α) = kxL(α), (kx)R(α) = kxR(α). (4)

Here, the product x · y of two fuzzy numbers x and y is given by the Zadeh’s
extension principle:

x · y : R −→ [0, 1]

(x · y)(t) = sup
s·s

′

=t

min{x(s), y(s
′

)}.
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Note that [x · y]α = [x]α · [y]α.

Theorem 1.([12], Theorem 2.3) Let u0, v0 ∈ E1 and u0 < v0. Let

B ⊂ [u0, v0] = {x ∈ E1 : u0 ≤ x ≤ v0}

be a closed set of E1 such that u0, v0 ∈ B. Suppose that A : B −→ B is an
increasing operator such that

u0 ≤ Au0, Av0 ≤ v0,

and A is condensing, that is, A is continuous, bounded and r(A(S)) < r(S) for
any bounded set S ⊂ B with r(S) > 0, where r(S) denotes the measure of non-
compactness of S. Then A has maximal fixed point x∗ and a minimal fixed point
x∗ in B, moreover

x∗ = lim
n→+∞

vn, x∗ = lim
n→+∞

un,

where vn = Avn−1 and un = Aun−1, n = 1, 2, · · · and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

Corollary 1. ( [12], Corollary 2.4) In the hypothesis of Theorem 1, if A has only
one fixed point x in B, then, for any x0 ∈ B, the successive iterates

xn = Axn−1, n = 1, 2, · · ·

converges to x, that is, d∞(xn, x) −→ 0 as n −→ ∞.

Definition 4. [22] Let κ1
C denotes the space of nonempty compact convex sub-

set of R furnished with the Hausdorff metric dH , we say that a fuzzy number
x : R −→ [0, 1] is continuous if the function

[x]· : [0, 1] −→ κ1
C

given by α −→ [x]α is continuous on (0, 1], that is, for every α ∈ (0, 1], and
ǫ > 0, there is a number δ(ǫ, α) > 0 such that dH([x]α, [x]β) < ǫ, for every
β ∈ (α − δ, α + δ)

⋂

[0, 1].

Theorem 2. ( [22], Theorem 6) Let x be a fuzzy number, then x is continu-
ous if and only if functions

xL : [0, 1] −→ R and xR : [0, 1] −→ R

are continuous.

Definition 5. [22] We say that x ∈ E1 is a Lipschitzian (or K-Lipschitzian)
fuzzy number if it is a Lipschitz function of its membership grade, in the sense that

dH([x]α, [y]β) ≤ K | α − β |,
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for every α, β ∈ [0, 1] and some fixed, finite constant K ≥ 0.

Theorem 3. ( [22], Theorem 7) Let x ∈ E1. Then x is a Lipschitzian fuzzy
number, with Lipschitz constant K ≥ 0, if and only if xL : [0, 1] −→ R and
xR : [0, 1] −→ R are K−Lipschitzian functions.

Theorem 4. ( [22], Theorem 8) Suppose that x and y are fuzzy numbers (in
the sence of Definition 3), then

d∞(x, y) = max{‖xL − yL‖∞ , ‖xR − yR‖∞}.

Lemma 1. ( [22], Lemma 2) Suppose that B ⊂ E1 consists of continuous fuzzy
numbers, hence BL = {xL : x ∈ B} and BR = {xR : x ∈ B} are subsets of
C[0, 1]. If BL and BR are relatively compact in (C[0, 1], ‖ . ‖∞), then B is a
relatively compact set in E1.

3 Existence results

Definition 6. For M ≥ 0 fixed, consider the set

BM = {x ∈ E1 : χ{0} ≤ x ≤ χ{1}},

where x is M-Lipschitzian, χ{0} and χ{1} are , respectively, the characteristic func-
tions of 0 and 1.

Theorem 5. Let M > 0 be a real number, I = {0, 1, 2, . . . , n}, J = {1, 2, . . . , n}
and ai, i ∈ I are fuzzy numbers such that

1. ai ≥ χ{0}, d∞(a0, χ{0}) ≤ n
n+1 , and d∞(aj , χ{0}) ≤ 1

n(n+1) , for i ∈ I and

j ∈ J .

2. ai is M
2(n+1) -Lipschitzian, for i ∈ I.

Then (1) has a solution in BM .

Proof. We define the mapping

A : BM −→ BM ,

by Ax = anxn + an−1x
n−1 + · · · + a1x + a0. To check that A is well-defined, let

x ∈ BM and then

|(Ax)L(α) − (Ax)L(β)| =

|[(an)L(α)xn
L(α) + (an−1)L(α)xn−1

L (α) + · · · + (a1)L(α)xL(α) + (a0)L(α)] −

[(an)L(β)xn
L(β) + (an−1)L(β)xn−1

L (β) + · · · + (a1)L(β)xL(β) + (a0)L(β)]|

≤ |(an)L(α) − (an)L(β)|xn
L(α) + |(an−1)L(α) − (an−1)L(β)|xn−1

L (α) + · · ·+
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|(a1)L(α) − (a1)L(β)|xL(α) + |(a0)L(α) − (a0)L(β)|+

(an)L(β)|xn
L(α) − xn

L(β)| + (an−1)L(β)|xn−1
L (α) − xn−1

L (β)| + · · ·+

(a1)L(β)|xL(α) − xL(β)|.

By using

xn
L(α) − xn

L(β) = (xL(α) − xL(β))(xn−1
L (α) + xn−2

L (α)xL(β) + · · · + xn−1
L (β))

we have
|(Ax)L(α) − (Ax)L(β)| ≤

M

2(n + 1)
(n + 1)|α − β| +

M

n(n + 1)
|α − β|(1 + 2 + · · · + n)

= M |α − β|, ∀ α, β ∈ [0, 1],

and, analogously,

|(Ax)R(α) − (Ax)R(β)| ≤ M |α − β|, ∀ α, β ∈ [0, 1],

therefore, by Theorem 3, Ax ∈ E1 is M−Lipschitzian and, using the hypotheses
and χ{0} ≤ x ≤ χ{1}, we obtain

0 ≤ (an)L(α)xn
L(α) + (an−1)L(α)xn−1

L (α) + · · · + (a1)L(α)xL(α) + (a0)L(α) =

(Ax)L(α) ≤ (Ax)R(α) =

(an)R(α)xn
R(α) + (an−1)R(α)xn−1

R (α) + · · · + (a1)R(α)xR(α) + (a0)R(α)

≤
1

n(n + 1)
+ · · · +

1

n(n + 1)
+

n

n + 1
=

n + 1

n + 1
= 1, ∀ α ∈ [0, 1].

Therefore Ax ∈ BM . Moreover, A is a non-decreasing and continuous mapping. A

is bounded, since
d1(α) =

(an)L(α)xn
L(α) + (an−1)L(α)xn−1

L (α) + · · · + (a1)L(α)xL(α) + (a0)L(α),

d2(α) =

(an)R(α)xn
R(α) + (an−1)R(α)xn−1

R (α) + · · · + (a1)R(α)xR(α) + (a0)R(α)

then
d∞(Ax, χ{0}) = d∞(anxn + an−1x

n−1 + · · · + a1x + a0, χ{0}) =

sup dH([anxn + an−1x
n−1 + · · · + a1x + a0]

α, χ{0}) =

sup dH([an]α[xn]α + [an−1]
α[xn−1]α + · · · + [a1]

α[x]α + [a0]
α, χ{0}) =

sup max{|d1(α) − 0|, |d2(α) − 0|} = sup{|d2(α)|} =

sup{(an)R(α)xn
R(α) + (an−1)R(α)xn−1

R (α) + · · · + (a1)R(α)xR(α) + (a0)R(α)}

≤
1

n(n + 1)
+

1

n(n + 1)
+ · · · +

1

n(n + 1)
+

n

n + 1
= 1, ∀ x ∈ BM .
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Let S ⊂ BM a bounded set (consisting of continuous fuzzy numbers) with r(S) > 0.
We prove that that A(S)L and A(S)R are relatively compact. Indeed, using that
for y ∈ A(S), χ{0} ≤ y ≤ χ{1}, we obtain that A(S)L is a bounded set in C[0, 1],

‖ yL ‖∞≤ d∞(y, χ{0}) ≤ 1, y ∈ A(S).

Let f ∈ A(S)L, then f is M -Lipschitzian, and A(S)L is equicontinuous. This
proves that A(S)L is relatively compact by Arzela-Ascoli Theorem, and the same
for A(S)R. Lemma 1 guarantees that A(S) is relatively compact and so

r(A(S)) = 0 < r(S)

and, therefore, A is condensing. Besides, χ{0} and χ{1} are elements in BM and
χ{0} ≤ Aχ{0}, Aχ{1} ≤ χ{1}. This completes the proof. In fact, there exist ex-
tremal solutions between χ{0} and χ{1}. 2

Theorem 6. Let ai be Lipschitzian fuzzy numbers with ai ≥ χ{0} for i =
0, 1, . . . , n. Moreover, suppose that there exist k > 0, S ≥ 0 such that

(an)R(0)kn + (an−1)R(0)kn−1 + · · · + (a1)R(0)k + (a0)R(0) ≤ k, (5)

and

Mnkn + · · · + M1k + M0 + S

n
∑

i=1

iki−1(ai)R(0) ≤ S, (6)

where Mi are, respectively, the Lipschitz constants of ai, i = 0, 1, . . . , n. Then (1)
has a solution in

Bk,S = {x ∈ E1 : χ{0} ≤ x ≤ χ{k}, x is S − Lipschitzian}.

Proof. Define
A : Bk,S −→ E1,

by Ax = anxn +an−1x
n−1 + · · ·+a1x+a0. We show that A(Bk,S) ⊆ Bk,S . Indeed,

for x ∈ Bk,S , and every α ∈ [0, 1],

0 ≤ (an)L(α)xn
L(α) + (an−1)L(α)xn−1

L (α) + · · · + (a1)L(α)xL(α) + (a0)L(α)

= (Ax)L(α) ≤ (Ax)R(α) =

(an)R(α)xn
R(α) + (an−1)R(α)xn−1

R (α) + · · · + (a1)R(α)xR(α) + (a0)R(α)

≤ (an)R(α)kn + (an−1)R(α)kn−1 + · · · + (a1)R(α)k + (a0)R(α)

≤ (an)R(0)kn + (an−1)R(0)kn−1 + · · · + (a1)R(0)k + (a0)R(0) ≤ k,

which proves that χ{0} ≤ Ax ≤ χ{k}. Besides, for x ∈ Bk,S , and α, β ∈ [0, 1],

|(Ax)L(α) − (Ax)L(β)|

≤ |(an)L(α) − (an)L(β)|xn
L(α) + |(an−1)L(α) − (an−1)L(β)|xn−1

L (α) + · · ·+
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|(a1)L(α) − (a1)L(β)|xL(α) + |(a0)L(α) − (a0)L(β)|+

(an)L(β)|xn
L(α) − xn

L(β)| + (an−1)L(β)|xn−1
L (α) − xn−1

L (β)| + · · ·+

(a1)L(β)|xL(α) − xL(β)|

≤ {Mnkn + · · · + M1k + M0 + S

n
∑

i=1

iki−1(ai)L(β)}|α − β|

≤ {
n

∑

i=0

Mik
i + S

n
∑

i=1

iki−1(ai)R(0)}|α − β| ≤ S|α − β|,

and, similarly,
|(Ax)R(α) − (Ax)R(β)| ≤ S|α − β|,

proving Ax ∈ Bk,S . The proof is completed in the same of Theorem 5.2

Remark 1. Inequalities (5) and (6) in Theorem 6 are equivalent to

n
∑

i=0

d∞(ai, χ{0})k
i ≤ k, (7)

and
n

∑

i=0

Mik
i + S

n
∑

i=1

iki−1d∞(ai, χ{0}) ≤ S, (8)

since, for x ∈ E1, x ≥ χ{0},

d∞(x, χ{0}) = sup
α∈[0,1]

max{|xL(α)|, |xR(α)|} = xR(0).

Corollary 2. In Theorem 6, take (ai)R(0) ≤ 1
n(n+1) for i = 1, 2, ..., n and

(a0)R(0) ≤ n
n+1 , and M0 = M1 = · · · = Mn = M

2(n+1) , with M > 0, to obtain

Theorem 5.

Proof. Conditions in Theorem 6 are valid for k = 1 and S = M . Indeed,

(an)R(0)kn + (an−1)R(0)kn−1 + · · · + (a1)R(0)k + (a0)R(0) ≤ 1 = k,

and

Mnkn + · · · + M1k + M0 + S

n
∑

i=1

iki−1(ai)R(0) ≤
M

2
+

M

n(n + 1)

n
∑

i=1

i = M = S.2

Theorem 7.( [22], Theorem 11) Let X be a complete lattice and

F : X −→ X

a non-decreasing function, i,e., F (x) ≤ F (y) whenever x ≤ y. Suppose that there
exists x0 ∈ X such that F (x0) ≥ x0. Then F has at least one fixed point in X .
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Lemma 2. If a, x, y ∈ E1 are such that a ≥ χ{0} and χ{0} ≤ x ≤ y, then
an ≥ χ{0} and χ{0} ≤ anx ≤ any for n ∈ N.

Proof. By hypotheses, for all α ∈ [0, 1],

0 ≤ xL(α) ≤ yL(α), 0 ≤ xR(α) ≤ yR(α),

0 ≤ aL(α) ≤ aR(α),

so that
[an]α = [an

L, an
R],

[anx]α = [an
L(α)xL(α), an

R(α)xR(α)], [any]α = [an
L(α)yL(α), an

R(α)yR(α)],

where
0 ≤ an

L(α)xL(α) ≤ an
L(α)yL(α),

0 ≤ an
R(α)xR(α) ≤ an

R(α)yR(α), ∀α ∈ [0, 1],

hence an ≥ χ{0} and
χ{0} ≤ anx ≤ any.

2

Theorem 8. Let ai, i = 0, 1, . . . , n be fuzzy numbers such that

ai ≥ χ{0},

and suppose that there exist p > 0 such that

(an)R(0)pn + (an−1)R(0)pn−1 + · · · + (a1)R(0)p + (a0)R(0) ≤ p.

Then (1) has extremal solutions in the interval

[χ{0}, χ{p}] = {x ∈ E1 : χ{0} ≤ x ≤ χ{p}}.

Proof. Since p > 0, χ{0} < χ{p}. Define

A : [χ{0}, χ{p}] −→ E1,

by Ax = anxn + an−1x
n−1 + · · · + a1x + a0. We show that A([χ{0}, χ{p}]) ⊆

[χ{0}, χ{p}]. Indeed,

Aχ{0} = an(χ{0})
n + an−1(χ{0})

n−1 + · · · + a1(χ{0}) + a0 =

χ{0} + χ{0} + · · · + χ{0} + a0 = a0 ≥ χ{0},

so that, using the conditions, for all α ∈ [0, 1], we have

[Aχ{p}]
α = [(an)L(α), (an)R(α)]pn + [(an−1)L(α), (an−1)R(α)]pn−1

+ · · · + [(a1)L(α), (a1)R(α)]p + [(a0)L(α), (a0)R(α)] = [L(α), R(α)],
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where

L(α) = (an)L(α)pn + (an−1)L(α)pn−1 + · · · + (a1)L(α)p + (a0)L(α),

and

R(α) = (an)R(α)pn + (an−1)R(α)pn−1 + · · · + (a1)R(α)p + (a0)R(α).

By hypotheses and using the properties of (ai)L and (ai)R, we obtain, for all
α ∈ [0, 1],

L(α) ≤ R(α) ≤ R(0) ≤ p.

This proves that Aχ{p} ≤ χ{p}. Moreover, A is non-decreasing operator. Indeed,
for χ{0} ≤ x ≤ y, we have for all α ∈ [0, 1],

0 ≤ xL(α) ≤ yL(α), 0 ≤ xR(α) ≤ yR(α),

and thus
0 ≤ (xL(α))n ≤ (yL(α))n, 0 ≤ (xR(α))n ≤ (yR(α))n.

Hence
χ{0} ≤ xn ≤ yn.

This fact could have also been deduced from application of Lemma 2. Using that
ai ≥ χ{0}, for i = 1, . . . , n, and applying Lemma 2, we obtain

Ax = anxn + an−1x
n−1 + · · ·+ a1x+ a0 ≤ anyn + an−1y

n−1 + · · ·+ a1y + a0 = Ay.

Therefore, A : [χ{0}, χ{p}] −→ E1 is non-decreasing and [χ{0}, χ{p}] is a complete
lattice. Tarski’s Fixed Point Theorem provides the existence of extremal fixed
points for A in [χ{0}, χ{p}], that is, extremal solutions to (1) in the same interval.2

Remark 2. To find an appropriate p > 0, we can solve inequality

(an)R(0)pn + (an−1)R(0)pn−1 + · · · + ((a1)R(0) − 1)p + (a0)R(0) ≤ 0.

If (a1)R(0) > 1, there is no such value of p.

Remark 3. If 0 ≤ (an)R(0) + (an−1)R(0) + · · · + (a1)R(0) < 1, (an)R(0) > 0,
(ai)R(0) ≥ 0 for i = 1, . . . , n − 1, and

(a0)R(0)

1 − (an)R(0) − (an−1)R(0) − · · · − (a1)R(0)
≤ 1,

then we can take 0 < p ≤ 1 such that

p ≥
(a0)R(0)

1 − (an)R(0) − (an−1)R(0) − · · · − (a1)R(0)
.

In this case,

(an)R(0)pn + (an−1)R(0)pn−1 + · · · + (a2)R(0)p2 ≤
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(an)R(0)p + (an−1)R(0)p + · · · + (a2)R(0)p

and

(a0)R(0) ≤ p[1 − (an)R(0) − (an−1)R(0) − · · · − (a1)R(0)],

hence

(an)R(0)pn + (an−1)R(0)pn−1 + · · · + (a1)R(0)p + (a0)R(0) ≤

p[(an)R(0) + (an−1)R(0) + · · · + (a1)R(0)] + (a0)R(0) ≤ p.

Theorem 9. Let a0 and ai, i = 1, . . . , n, be fuzzy numbers such that

ai ≥ χ{0},

and suppose that there exist b, c ∈ E1 with c > b ≥ χ{0} and

anbn + an−1b
n−1 + · · · + a1b + a0 ≥ b,

ancn + an−1c
n−1 + · · · + a1c + a0 ≤ c.

Then (1) has extremal solutions in the interval

[b, c] = {x ∈ E1 : b ≤ x ≤ c}.

Moreover, if b = c, then b is a solution to (1).

Proof. Define

A : [b, c] −→ E1,

by Ax = anxn + an−1x
n−1 + · · ·+ a1x+ a0. We show that A([b, c]) ⊆ [b, c]. Indeed,

by hypotheses

Ab = anbn + an−1b
n−1 + · · · + a1b + a0 ≥ b,

Ac = ancn + an−1c
n−1 + · · · + a1c + a0 ≤ c.

Then Ab ≤ Ac. Moreover, A is non-decreasing operator. Indeed, for χ{0} ≤ x ≤ y,
we have

Ax ≤ Ay.

Therefore, A : [b, c] −→ E1 is non-decreasing and [b, c] is a complete lattice. Tarski’s
Fixed Point Theorem provides the existence of extremal fixed points for A in [b, c],
that is, extremal solutions to (1) in the same interval.2

4 The Newton’s method

In this section, we suppose that x = xL and x = xR. Now our aim is to obtain a
solution for quadratic fuzzy equations (1), i.e.

anxn + an−1x
n−1 + · · · + a1x + a0 = x,
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where x and ai, i = 0, 1, . . . , n, are positive fuzzy numbers. The parametric form
for all α ∈ [0, 1] is as follows:







an(α)xn(α) + an−1(α)xn−1(α) + · · · + a1(α)x(α) + a0(α) = x(α),

an(α)xn(α) + an−1(α)xn−1(α) + · · · + a1(α)x(α) + a0(α) = x(α).
(9)

Definition 7. The solution of (9) for all α ∈ [0, 1], is called analytical solution of
(1).

Suppose that x = (z, z) be the solution of (9), i.e., for all α ∈ [0, 1]







an(α)zn(α) + an−1(α)zn−1(α) + · · · + (a1(α) − 1)z(α) + a0(α) = 0,

an(α)zn(α) + an−1(α)zn−1(α) + · · · + (a1(α) − 1)z(α) + a0(α) = 0.

Now we suppose that the functions H and H are defined for all α ∈ [0, 1] as follows:







H(z, α) = an(α)zn(α) + an−1(α)zn−1(α) + · · · + (a1(α) − 1)z(α),

H(z, α) = an(α)zn(α) + an−1(α)zn−1(α) + · · · + (a1(α) − 1)z(α).

Therefore, if x0 = (x0, x0) is approximation solutions for this system, then for
all α ∈ [0, 1], there are h1(α), k1(α) such that

{

z(α) = x0(α) + h1(α),
z(α) = x0(α) + k1(α).

Now if we use the Taylor series of H, H about (x0, x0), we have







H(z, α) = H(x0, α) + h1(α)Hx(x0, α) + O(h2
1(α)) = −a0(α),

H(z, α) = H(x0, α) + k1(α)Hx(x0, α) + O(k2
1(α)) = −a0(α).

If x0 and x0 are near to z and z, respectively, then h1(α) and k1(α) are small. We
assume, of course, that all needed partial derivatives exist and bounded. Therefore
for enough small h1(α) and k1(α) we have







H(x0, α) + h1(α)Hx(x0, α) ≃ −a0(α),

H(x0, α) + k1(α)Hx(x0, α) ≃ −a0(α),

and hence h1(α) and k1(α) are unknown quantities which can be obtained by
solving the following equations:

J(x0, x0, α)

[

h1(α)
k1(α)

]

=





−a0(α) − H(x0, α)

−a0(α) − H(x0, α)



 ,
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where

J(x0, x0, α) =

[

Hx(x0, α) 0

0 Hx(x0, α)

]

.

Hence, the next approximations for x(α) and x(α) are as follows

{

x1(α) = x0(α) + h1(α),
x1(α) = x0(α) + k1(α),

for all α ∈ [0, 1].
We can obtain approximated solution by using the recursive scheme

{

xn(α) = xn−1(α) + h1,n−1(α),
xn(α) = xn−1(α) + k1,n−1(α),

where h1,0(α) = h1(α) and k1,0(α) = k1(α) for n = 1, 2, . . . and for initial guess,
one can use Theorem 8. Indeed, we solve the inequality

ϕ(p) = (an)R(0)pn + (an−1)R(0)pn−1 + · · · + ((a1)R(0) − 1)p + (a0)R(0) ≤ 0.

Let p1 > 0 be the smallest number such that ϕ(p1) ≤ 0. Now for initial guess we
can use the triangular fuzzy number x0 such that 0 ≤ x0 ≤ x0 ≤ p1.

Remark 4. Sequence {(xn, xn)}∞n=0 convergent to (z, z) if and only if ∀α ∈ [0, 1],
limn→∞ xn(α) = z(α) and limn→∞ xn(α) = z(α).

5 Numerical application

Here we present two examples to illustrating the Newton’s method for fuzzy non-
linear systems.

Example 1. Consider the fuzzy equation

(0, .5, 1)x3 + (.5,
2

3
, 1)x2 + (0, .1, .25)x + (0, .06, .1) = x.

Suppose that x be positive, therefore the parametric form of this equation is as
follows











.5αx3(α) + (.5 + (2
3 − .5)α)x2(α) + (.1α − 1)x(α) + .06α = 0,

(1 − .5α)x3(α) + (1 − (1 − 2
3 )α)x2(α) + (.25 − .15α − 1)x(α)+

(.1 − .04α) = 0.

(10)

Since p1 = .0.191773 ≃ .192, therefore we choose initial guess as follows:

x0 = (0, .092, .192),
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hence x0(α) = .092α and x0(α) = .192 − .1α. Suppose that x = (x, x) = (z, z) be
the solution of (10), then











H(z, α) = .5αz3(α) + (.5 + (2
3 − .5)α)z2(α) + (.1α − 1)z(α) + .06α,

H(z, α) = (1 − .5α)z3(α) + (1 − (1 − 2
3 )α)z2(α) + (.25 − .15α − 1)z(α)+

(.1 − .04α),

and

[

h1(α)
k1(α)

]

= (J(x0, x0, α))−1





−.06α − H(x0, α)

−(.1 − .04α) − H(x0, α)



 ,

J(x0, x0, α) =

[

Hx(x0, α) 0

0 Hx(x0, α)

]

for all α ∈ [0, 1].

Now determine x1(α) = x0(α) + h1(α) and x1(α) = x0(α) + k1(α). After 2 it-
erations, we obtain the solutions of x which the maximum error would be about
5 ∗ 10−5 . For more details see Figures 1 and 2.
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0.4

0.6

0.8

1

Figure 1: Analytical solution for Example 1
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Figure 2: Newton’s Method for Example 1

Example 2. Consider fuzzy equation

(0, 1, 3)x7 + (1, 2, 5)x6 + (1, 2, 3)x3 + (0, .5, 1)x2 + (0, .06, .1)x + (0, .06, .1) = x,

with positive solution. The parametric form of this equation is as follows


















αx7(α) + (1 + α)x6(α) + (1 + α)x3(α) + .5αx2(α) + (.06α − 1)x(α) + .06α = 0

(3 − 2α)x7(α) + (5 − 3α)x6(α) + (3 − α)x3(α) + (1 − .5α)x2(α)+

(.1 − .04α − 1)x(α) + (.1 − .04α) = 0.

Since p1 = 0.1443369682692823 ≃ 0.144, therefore we choose initial guess as x0 =
(0, 0.044, 0.144), hence x0(α) = 0.044α and x0(α) = 0.144−.1α. One can determine
k1(α), k2(α), x1(α) and x1(α) as example 1. If we apply two iterations from
Newton’s method, the maximum error would be less than 2 ∗ 10−5, see Figures 3
and 4.
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Figure 3: Analytical solution for Example 2
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Figure 4: Newton’s Method for Example 2

6 Conclusions

In this paper, we obtained extremal solutions for fuzzy polynomials and suggested
numerical method for these polynomials instead of standard analytical techniques
which are not suitable everywhere. In Section 4 we wrote fuzzy polynomials in
parametric form and then solve them by Newton’s method. Finally, examples were
presented to illustrate proposed method.
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