On Two Conditional Entropies without Probability

D.Vivona - M.Divari *
Sapienza - Universitá di Roma
Dip. di Metodi e Modelli Matematici per le Scienze Applicate
16, Via A.Scarpa - 00161 Roma (Italy) vivona@dmmm.uniroma1.it

Abstract

We generalize the conditional entropy without probability given by Benvenuti in [1] and we recognize that this form is the most general compatible with the given properties.

Then we compare our form of conditional entropy given in [4] with Benvenuti's one.

Key words: Entropy, Conditional entropy, Functional equations.

1 Introduction

In a probabilistic setting, Khinchin and Yaglom proposed a form of conditional entropy, $[3,5]$.

Later, Benvenuti defined the conditional entropy without probability, [1].
In this paper, by using the variables of Benvenuti's form, we give a generalization of conditional entropy.

Then, we point out the link between Benvenuti's expression and the form found by us in a recent paper, [4].

2 Preliminaries

In the crisp setting, following Forte, [2], we consider the following model.

1) Setting. X is an abstract space, \mathcal{A} a σ-algebra of crisp sets $A \subset X, \pi_{A}$ is a partition of A :

$$
\begin{equation*}
\pi_{A}=\left\{A_{1}, \ldots, A_{i}, \ldots, A_{n} / A_{i} \cap A_{h}=\emptyset, i \neq h, A_{i} \neq \emptyset, A_{i} \in \mathcal{A}, \cup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}}=\mathrm{A}\right\} \tag{1}
\end{equation*}
$$

A is the support of π_{A}, \mathcal{E} is the class of all partitions of subsets A of X. This class is not empty because it contains, at least, the partition consisting of the only set A, which will be indicated with $\{A\}$.

[^0]2) Order. The partition π_{A} is less fine than $\pi_{A}^{\prime}\left(\pi_{A} \preceq \pi_{A}^{\prime}\right)$ if every element of π_{A}^{\prime} is included in an element of π_{A}.
3) Algebraical independence. Given two partitions π_{A} as in (1) and
\[

$$
\begin{equation*}
\pi_{B}=\left\{B_{1}, \ldots, B_{j}, \ldots, B_{m} / B_{j} \cap B_{k}=\emptyset, j \neq k, B_{j} \neq \emptyset, B_{j} \in \mathcal{A}, \cup_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{~B}_{\mathrm{j}}=\mathrm{B}\right\} \tag{2}
\end{equation*}
$$

\]

they are algebraically independent if $A_{i} \cap B_{j} \neq \emptyset, \forall i=1, \ldots n, j=1, \ldots m$.
4) Entropy measure. The entropy H without probability is a map $H: \mathcal{E} \rightarrow \mathbb{R}_{0}^{+}$ with the following properties: $\forall \pi_{A}, \pi_{A}^{\prime}, \pi_{B} \in \mathcal{E}$:
(i) $\pi_{A} \preceq \pi_{A}^{\prime} \Rightarrow H\left(\pi_{A}\right) \leq H\left(\pi_{A}^{\prime}\right)$.

Furthermore: $H(\{X\})=0$ and $H(\emptyset)=+\infty$.
(ii) $H\left(\pi_{A} \cap \pi_{B}\right)=H\left(\pi_{A}\right)+H\left(\pi_{B}\right)$,
if π_{A} and π_{B} are algebraically independent.

3 Conditional entropy

Benvenuti in [1] defined the conditional entropy without probability of a partition $\pi_{A} \in \mathcal{E}$ in axiomatic way as

$$
\begin{equation*}
D\left(\pi_{A}\right)=H\left(\pi_{A}\right)-H(\{A\})=H\left(\pi_{A}\right)-J(A) \tag{3}
\end{equation*}
$$

where $J(A)$ is the information of the support A of π_{A} :
the conditional entropy $D\left(\pi_{A}\right)$ of the partition π_{A} is defined as the gap between the unconditional entropy $H\left(\pi_{A}\right)$ and the entropy of the support A.

The conditional entropy (3) enjoys the following properties: $\forall \pi_{A}, \pi_{A}^{\prime}, \pi_{k}(k=$ $1, \ldots, n) \in \mathcal{E}$:
(I) $D(\{A\})=0$,
(II) $\pi_{A} \preceq \pi_{A}^{\prime} \Rightarrow D\left(\pi_{A}\right) \leq D\left(\pi_{A}^{\prime}\right)$,
(III) $D\left(\cap_{k=1}^{n} \pi_{k}\right)=\sum_{k=1}^{n} D\left(\pi_{k}\right)$,
if the partitions π_{k} are algebraically independent.
In the setting of Benvenuti's axioms, we give a generalization of (3), putting

$$
\begin{equation*}
D^{\prime}\left(\pi_{A}\right)=\Psi\left(H\left(\pi_{A}\right), J(A)\right) \tag{4}
\end{equation*}
$$

where $\Psi: \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$must satisfy the following properties for all $\pi_{A}, \pi_{A}^{\prime}, \pi_{B} \in$ \mathcal{E} :
(I') $\Psi(H(\{A\}), J(A))=0$,
(II') $\pi_{A} \preceq \pi_{A}^{\prime} \Rightarrow \Psi\left(H\left(\pi_{A}\right), J(A)\right) \leq \Psi\left(H\left(\pi_{A}^{\prime}\right), J(A)\right)$,
(III') $\Psi\left(H\left(\pi_{A} \cap \pi_{B}\right), J(A \cap B)\right)=\Psi\left(H\left(\pi_{A}\right), J(A)\right)+\Psi\left(H\left(\pi_{B}\right), J(B)\right)$,
if π_{A} and π_{B} are algebraically independent.

Putting $x=H\left(\pi_{A}\right), x^{\prime}=H\left(\pi_{A}^{\prime}\right), y=J(A), z=H\left(\pi_{B}\right), t=J(B)$ with $x, x^{\prime}, y, z, t \in$ $[0,+\infty)$ and $x>y, x^{\prime}>y, z>t$, from (I')-(III') we obtain the following system of functional equations:

$$
\left\{\begin{array}{l}
\text { (a) } \Psi(y, y)=0 \\
\text { (b) } x \leq x^{\prime} \Rightarrow \Psi(x, y) \leq \Psi\left(x^{\prime}, y\right) \\
(c) \quad \Psi(x+z, y+t)=\Psi(x, y)+\Psi(z, t)
\end{array}\right.
$$

4 Solution of the problem

First of all, we recognize that the system is satisfied by the function:

$$
\begin{equation*}
\Psi(x, y)=x-y \tag{5}
\end{equation*}
$$

so we find again the Benvenuti formulation (3).
Now, we look for other solutions, restricting ourselves to functions of the kind

$$
\begin{equation*}
\Psi(x, y)=h^{-1}(h(x)-h(y)) \tag{6}
\end{equation*}
$$

where the function h is strictly increasing with $h(0)=0$.
It is immediate verify that every function Ψ of the kind (6) is solution of the equations (a) and (b).

The equation (c) becomes

$$
\begin{equation*}
h^{-1}(h(x+z)-h(y+t))=h^{-1}(h(x)-h(y))+h^{-1}(h(z)-h(t)) . \tag{7}
\end{equation*}
$$

Putting

$$
\begin{equation*}
y=0, \quad z=t \tag{8}
\end{equation*}
$$

the equation (7) is

$$
h^{-1}(h(x+t)-h(t))=h^{-1}(h(x))+h^{-1}(0)=x
$$

and therefore

$$
\begin{equation*}
h(x+t)=h(x)+h(t): \tag{9}
\end{equation*}
$$

this is the well-known Cauchy equation whose solution is $h(u)=c u, c \in \mathbb{R}_{0}^{+}$.
From (6), we deduce immediately

$$
\Psi(x, y)=x-y
$$

and our generalization coincides with (3).

Therefore, when we use as variables the entropy $H\left(\pi_{A}\right)$ and the information $J(A)$ and we restrict ourselves to the case described in 6 , we have a unique conditional entropy

$$
D^{\prime}\left(\pi_{A}\right)=\Psi\left(H\left(\pi_{A}\right), J(A)\right)=H\left(\pi_{A}\right)-J(A)=D\left(\pi_{A}\right)
$$

which coincides with the conditional entropy given by Benvenuti.

5 Conclusion

In [4], in the crisp case, the authors have characterized an entropy $H_{\pi^{\prime}}(\pi)$ for a partition π conditioned by a partition π^{\prime} as function of $H(\pi \cap \pi)$ and $H\left(\pi^{\prime}\right)$:

$$
H_{\pi^{\prime}}(\pi)=\Phi\left(H\left(\pi \cap \pi^{\prime}\right), H\left(\pi^{\prime}\right)\right)
$$

We have proved that

$$
H_{\pi^{\prime}}(\pi)=H\left(\pi \cap \pi^{\prime}\right)-H\left(\pi^{\prime}\right)
$$

That means that if the conditioning partition π^{\prime} is the support set A the conditional entropy is exactly Benvenuti's conditional entropy (3).

References

[1] P. Benvenuti, Sulle misure di informazione compositive con traccia compositiva universale, Rend.Mat., 2 , s.VI (1969), pp.481-505.
[2] B. Forte, Measures of information: the general axiomatic theory, R.A.I.R.O. (1969), pp.63-90.
[3] A.I. Khinchin, Mathematical foundation of information theory, Dover Publication, New Jork (1957).
[4] D. Vivona and M. Divari, Fuzzy partitions: a form of conditional entropy, Proc. AGOP'07 (2007), 161-163.
[5] A.M. Yaglom and I.M. Yaglom, Probability and information, Riedel Publishing company, (1983).

[^0]: *This research was supported by GNFM of MIUR (Italy) and "Sapienza" - University of Roma

