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Abstract 

 
 

Statistical control charts are useful tools in monitoring the state of a manufacturing process.  

Control charts are used to plot process data and compare it to the limits set for the process.  

Points plotting outside these limits indicate an out-of-control condition.  Standard control 

charting procedures, however, are limited in that they cannot take into account the case when 

data is of a fuzzy nature.  Another limitation of standard charting methods is when the data 

produced by the process is short-run data.  Often, the situation where the data is short-run 

occurs in conjunction with data that is considered fuzzy.  This paper dicusses the 

development of a fuzzy control chartting technique, called short-Run α-cut p Control Chart, 

to account for fuzzy data in a short-run situation.  The developed chart parameters accounted 

for the fuzzy nature of the data in a short-run situation.  The parameters were validated by 

comparing the false alarm rates for various combinations of subgroup numbers (m) and 

subgroup sizes (n).  It was shown that for every combination of m and n, the Short-Run α-cut 

p Control Chart limits produced a lower false alarm rate than that of the standard fuzzy α-cut 

control chart. 

 

Keywords: Fuzzy Sets, Statistical Quality Control, Short Run. 

 

 

1. Introduction 
  

One of the primary tools used in the statistical control of a process is the control chart.  

Created by Walter Shewhart in 1924, the Shewhart control chart gives a crisp picture of 

the state of a process by plotting the data produced by a process on a chart bound by 

upper and lower specification limits [3].  The main function of a control chart is to 
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monitor a process in order to identify whether or not the process is in control.  “In-

control” conditions mean that a process is producing parts that are close to the target 

value with little variation.  “Out-of-control” conditions mean that some type of 

assignable cause has occurred, and the process is, therefore, yielding products at either 

an unacceptable distance from the target value, with an unacceptable amount of 

variation, or both.  The control chart consists of three lines: an upper control limit 

(UCL), a lower control limit (LCL), and a center line (CL) (refer to Figure 1). The upper 

and lower control limits are the maximum and minimum values for a process 

characteristic to be considered in-control while the center line is the mean value for the 

process.  For Shewhart charts, 3-sigma control limits are used.  Three sigma ( σ3 ) 

control limits establish bounds on the data that extend above and below the mean of the 

process by 3 times the standard deviation of the process statistic being plotted.  Data to 

be plotted on control charts are obtained directly from the process.  Data points falling 

outside the set limits indicate a possible out-of-control condition in the process [3].   

 

Xbar Control Chart Based on R
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Figure 1: X Control Chart Using R [1] 

 

     The information plotted on control charts consists of either variable or attribute data.  

Variable data represent measurable characteristics.  Examples of variable data are 

dimensions such as diameters, volumes, or lengths.   Attribute data are data that refer to 

either a pass or a fail situation.  In other words, if a product passes inspection, it is 

considered a pass, and thus, it conforms to the standards outlined for the product.  If a 

product fails, it is considered nonconforming to the standards outlined for the product.  

  

2. The p-Chart 

 
In Statistical Quality Control the p-chart is used to monitor the fraction of 

nonconforming units for a process.  It models the ratio of nonconforming items in 

relation to the entire population of process data [3]. Nonconformities, also known as 
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defects, are attributes that are either absent from the product such as a missing hole or 

switch, or appear on the product when they should not, such as a scratch, indention, or 

tear [5].  The CL of the p chart is the average of the individual sample nonconforming 

ratios.  The CL is given in Equation 1.   
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The LCL and UCL of the p chart are then defined as: 
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3. A p- chart Example 
  

To illustrate the characteristics of the p-chart, an example is presented here. The example 

involves the manufacture of cardboard cans used to pack frozen orange juice.  

Manufacturers of the cardboard cans consider a can nonconforming if it leaks along one 

of its seams.  The objective is to minimize the fraction nonconforming of cans produced.  

In order to evaluate the process, 30 samples of 50 cans (n = 50) each were obtained.  The 

data produced by the process is given in Table 1 [3]. 

     From this data, the fraction nonconforming ( ip̂ ) for each sample was obtained by 

dividing the number of nonconforming cans for each sample (Di) over the total sample 

size (n = 50) (Equation 2).   
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     The resulting values for each sample are given in Table 2.  Next, the center line (CL) 

for the chart can be obtained by using Equation 1. 
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     From the center line calculation, the lower and upper control limits were computed 

using equations 3 and 4, respectively: 
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     The fraction of nonconforming cans for each sample was then plotted on the control 

limits.  The resulting chart is shown in Figure 2. The chart shows that samples 15 and 23 

plot outside the control limits indicating that an out-of-control condition is occurring 

within the process.  The process should then be stopped, and assignable cause should be 

determined for each out-of-control point.  The process should then be returned to 

statistical control according to the causes found. 

 

  Number of    Number of  

Sample  Nonconforming  Sample  Nonconforming  

Number Cans, Di Number Cans, Di 

1 12 16 8 

2 15 17 10 

3 8 18 5 

4 10 19 13 

5 4 20 11 

6 7 21 20 

7 16 22 18 

8 9 23 24 

9 14 24 15 

10 10 25 9 

11 5 26 12 

12 6 27 7 

13 17 28 13 

14 12 29 9 

15 22 30 6 

  

Table 1:  Number Nonconforming for Can Production 

 

4. Short-Run Control Charts 

Short-Run Control Charts are used in any situation where very little (i.e., less than 20 

subgroups) or no data exists about the process, and therefore, chart parameters cannot be 

estimated [1].  According to Elam and Case [1], there are three situations in which a 

short-run control chart should be used instead of a standard control chart.  The first 

situation is when a process has just been initiated, and thus, no data exists about it.  The 
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second is when a process is being monitored that has just been brought into statistical 

control after having been previously deemed out of control.  The third application area is 

to a process which produces very little data.  In each case, traditional charting parameters 

and constants become insufficient, and a new method is needed. 

     

Sample  Sample Fraction Sample  Sample Fraction 

Number Nonconforming, pi Number Nonconforming, pi 

1 0.24 16 0.16 

2 0.3 17 0.2 

3 0.16 18 0.1 

4 0.2 19 0.26 

5 0.08 20 0.22 

6 0.14 21 0.4 

7 0.32 22 0.36 

8 0.18 23 0.48 

9 0.28 24 0.3 

10 0.2 25 0.18 

11 0.1 26 0.24 

12 0.12 27 0.14 

13 0.34 28 0.26 

14 0.24 29 0.18 

15 0.44 30 0.12 

 

Table 2: Fraction Nonconforming for Can Production 

 

 

     The short-run charting method used in this research has a two stage process.  In the 

first stage, a set of data with m subgroups (i.e., m < 20) of size n is collected from the 

process, and used to estimate the initial parameters of the particular control chart of 

interest ( cpRX ,,, ).  For the first stage, a set of factors are utilized to account for the 

small size of the data set being used to estimate the parameters of the process.  

Therefore, the first stage calculations include the point to be plotted.  In the second stage, 

the subgroups that were not deleted from the data set, after review of the stage 1 results, 

are used to set the parameters for the process, given the points plotted during this stage 

do not indicate an out-of-control condition.   
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Figure 2:  p chart for Can Production 

     The second stage plots a future value of the process and therefore the point being 

plotted is no longer included in the chart calculations.  A set of factors also exist for the 

second stage to account for the small data set being used to estimate chart parameters 

[1]. 

 

 

5. Short-run p charts 

Short-run p charts were introduced by Nedumaran and Leon [4].  They proposed that the 

standard p charts could be modified to obtain a chart which would appropriately 

represent processes where little or no data was available.  They suggested that factors k1 

and k2, for the first and second stages, respectively, could be substituted for the 3-sigma 

limits in standard p charts to obtain charts sensitive to the small amount of data available 

from the process.  Each factor was based on an α value which specified the desired 

probability of a Type I error, or false alarm.  These values were denoted as α1 and α2 for 

the first and second stage factors, respectively.  For an α1 (or α2) value of 0.0027, both 

factors approach 3, as the subgroup size m increases.   The factors were obtained using 

knowledge of the probability that a point will plot outside the control limits when the 

process is in-control [4].  These factors are generally derived in equations 5 through 11. 

1. Let equations 5 and 6 represent the fraction nonconforming for subgroup i 

and the average fraction nonconforming for the data set, 
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2. Let pσ̂  represent the estimate of the standard deviation of the fraction 

nonconforming for the data set. 
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3. Let α1 represent the probability of a false alarm, or the probability that a point 

will plot outside of the control limits when the process is actually in-control. 

4. Then, the probability that a point (pi) will plot within the control limits is 1-α1 

or: 
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5. Solving for k1 results in Equation 9. 
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     The second-stage factor, k2, was obtained similarly.  The probability of a false alarm 

for the k2 derivation is α2.  The probability of a point plotting within the control limits is 

then represented by Equation 10 with pf representing the fraction nonconforming for a 

future subgroup f.   
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Solving for the factor k2, Equation 11 is obtained. 
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The resulting control limits, after substituting the first and second stage factors, are given 

in equations 12 through 17.  
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6. Fuzzification of the p Chart 
 

For a p chart, the sample mean (Mj) and center line (CL) are defined as: 
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     The sample mean, Mj, is essentially a weighted average of the data according to the 

categories in which the data values are placed.  For each of the specified categories, a 

membership value exists.   This membership value serves as the weight for the category 

in the Mj calculation.  In Equation 18, kij is the number of data values within the category 

i for the sample j, ri is the membership value for the particular category i, and nj is the 

sample size of sample j.   

     The equation for the center line (Equation 19) is an average of the sample means.  

This average results in a fuzzy set where this fuzzy set can be represented by triangular 

fuzzy numbers (TFNs).  Using this representation, the Lj(α) and Rj(α), the left and right 

plot values, can be defined as in equations 20 and 21. 

 

αα jj ML =)(                                            (20) 

])1[(1)( αα jj MR −−=                                (21) 

The resulting membership function of the mean M , or CL is given in Equation 22. 
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The representation of the mean M and the sample mean Mj as triangular fuzzy numbers 

is shown in Figure 3. 

 

 

Figure 3:  TFN Representation of M and Mj [2] 
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     The membership function of the CL is divided into two parts to represent the left and 

right portions of the TFN.  Therefore, a CL, UCL, and LCL exist for each half of the CL.  

The resulting control limits are given in Equation 23.  
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     The α-cut is represented by the horizontal dotted line shown in Figure 4.  This value 

can be adjusted according to the inspection tightness desired by the quality controller or 

management personnel.  As the value of α approaches 1, the inspection of the data 

becomes tighter.  Similarly, as the value of α approaches 0, the tightness of the 

inspection limits loosens.  In the former case, as the inspection limits tighten, the 

probability of a point falling outside the control limits increases; however, in the latter, 

the inspection limits are loosening and the probability of a point falling outside the 

control limits decreases.  With the fuzzy control chart, the basis for deciding whether or 

not a process is in control is much the same as with traditional charts.  The process is 

considered in-control if both the left and right plot values plot inside the control limits.  

If either plot value is found outside its respective control limits, the process is considered 

out-of-control.  

 

7. Fuzzy Short-Run α-cut p Control Chart 

 
The parameters of the Fuzzy Short-Run α-cut p Control Chart were derived from the 

principles of the short-run control charts for the fraction nonconforming as well as the 

reported application of the α-cut method for fraction nonconforming charts derived by 

Gulbay et al. [2].  The resulting Short-Run α-cut p Control Chart provides a method of 

monitoring processes that are new, have been recently brought back into control, or 
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contain too little data to monitor by standard methods.  With the properties of the α-cut 

method included, the chart also has the advantage of allowing practitioners to specify 

differing levels of inspection ranging from 0 to 1, with 0 used for less precise processes, 

and values closer to 1 used for more intricate processes. 

     For the standard p chart, it was found by Nedumaran and Leon [4] that the factors k1 

and k2 can be substituted for the 3-sigma limits, assumed for a false alarm probability of 

0.0027, to account for the fact that the data is of a short-run nature.  This modification of 

the traditional p chart limits was considered for the α-cut chart limits proposed by 

Gulbay et al. [2].  It was found that since the α-cut method was derived from the same 

traditional p chart limits as the short-run method, and the α-cut method also used 3-

sigma limits, the modification using k1 and k2 could be used here as well.  Therefore, the 

α-cut limits given in Equation 3.11 were modified for both the first and second stage 

short-run situations by replacing 3-sigma with the first and second stage short-run 

factors, respectively.  The resulting limits are given in equations 24 and 25. 

 

 
Figure 4:  α-cut Control Limits Using Average Sample Size 

 

     As with the original α-cut method, the resulting limits produce control charts with 

both a left and a right-hand side.  The interpretation of these charts is also the same as 

that of the original α-cut method; any points plotting outside the limits of either the left 

or right-hand sides are considered indications of an out-of-control condition.   
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Second-stage: 
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8. Example of a Fuzzy Short-Run α-cut p Control Chart 

 
Using the data provided by Gulbay et al. [2] in his example of the standard α-cut p 

Control chart (Table 3), the short-run limits were applied.   
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Sample Standard 

Second 

Choice 

Third 

Choice Chipped 

Size 

(n) Mj 

1 144 46 12 5 207 0.109 

2 142 50 9 5 206 0.107 

3 142 35 16 6 199 0.114 

4 130 70 19 10 229 0.162 

5 126 60 15 10 211 0.154 

6 112 47 9 8 176 0.138 

7 151 28 22 9 210 0.129 

8 127 43 45 30 245 0.258 

9 102 79 20 3 204 0.161 

10 137 64 24 5 230 0.143 

11 147 59 16 6 228 0.126 

12 146 30 6 6 188 0.088 

13 135 51 16 8 210 0.137 

14 186 82 23 7 298 0.131 

15 183 53 11 9 256 0.108 

16 137 65 26 4 232 0.143 

17 140 70 10 3 223 0.114 

18 135 48 15 9 207 0.138 

19 122 52 23 10 207 0.167 

20 109 42 28 9 188 0.178 

21 140 31 9 4 184 0.088 

22 130 22 3 8 163 0.092 

23 126 29 11 8 174 0.119 

24 90 23 16 2 131 0.120 

25 80 29 19 8 136 0.182 

26 138 55 12 12 217 0.146 

27 121 35 18 10 184 0.151 

28 140 35 15 6 196 0.114 

29 110 15 9 1 135 0.069 

30 112 37 28 11 188 0.182 

Table 3: Data for Short-Run α-cut p Control Chart [2] 

 

      As with the example of short-run control charts, 10 subgroups were examined 

initially with 10 additional subgroups added to each succeeding examination of the data. 

The examination of the first 10 subgroups was conducted, and the chart parameters 

determined.  Since the subgroup size differed over the subgroups, the chart parameters 

were not constant but varied with each subgroup.  As an example of the computations 

used to obtain the chart parameters, the calculation of the parameters for the first 

subgroup are given below.  The value for inspection tightness, α, was assumed, as in the 

original Gulbay et al. [2] example, as α = 0.30. 
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The second-stage factor, k2, was calculated as: 
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     The resulting chart for the first 10 subgroups is given in Figure 5.  Since the chart, in 

its standard form, is difficult to interpret because of the wide gap between the left and 

right hand side portions, the graph was split into its respective components for closer 

examination.  These charts are shown in Figures 6 and 7. The charts for the first 10 

subgroups do not indicate an out-of-control condition, and therefore, the next 10 

subgroups are combined with the first 10 for a second evaluation.  Therefore, the chart 

parameters for the second evaluation were based on an average of all 20 subgroups.  The 

results are given in Figure 8 with the left and right-hand sides displayed in figures 9 and 

10.  
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Short-Run alpha-cut p Control Chart (Subgroups 1-10)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1 2 3 4 5 6 7 8 9 10

Subgroups
 

 

Figure 5:  Short-Run α-cut p Control Chart (Subgroups 1-10) 
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Figure 6:  Left-Hand Portion, Subgroups 1-10 
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Right Hand Limits (Subgroups 1-10)
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Figure 7:  Right-Hand Portion, Subgroups 1-10 

 

 

 

Short-Run alpha-cut p Control Chart (Subgroups 1-20)
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Figure 8:  Short-Run α-cut p Control Chart (Subgroups 1-20) 
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Left Hand Limits (Subgroups 1-20)
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Figure 9:  Left-Hand Portion, Subgroups 1-20 

 

 

Right Hand Limits (Subgroups 1-20)
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Figure 10: Right-Hand Portion, Subgroups 1-20 

 

     Again, no data points plotted outside of the control limits, and hence, the next set of 

subgroups is added to the evaluation.  The results for the examination of all 30 

subgroups are given in figures 11 through 13.  The charts for all 30 subgroups show that 

no data points fall outside the control limits.  Since greater than 20 subgroups were 

examined, with no data points plotting outside the control limits, the parameters are 

considered to be an accurate measure of the condition of the process. 
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Short-Run alpha-cut p Control Chart (Subgroups 1-30)
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Figure 11:  Short-Run α-cut p Control Chart (Subgroups 1-30) 
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Figure 12:  Left-Hand Portion, Subgroups 1-30 
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Figure 13:  Right-Hand Portion, Subgroups 1-30 
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9. Validation of the Fuzzy Short-Run α-cut p Control Chart  

 
The validation of the Short-Run α-cut p Control Chart was executed by testing the false 

alarm rate produced by simulated data when the algorithms for the Short-Run α-cut p 

Control Chart limits were used. The false alarm rate is the Type I error for the process.  

The resulting false alarm rates were then compared to the false alarm rate of the standard 

α-cut control chart for the same combination of m and n.  The goal of this comparison 

was to prove that for any combination of m and n, the false alarm rate of the Short-Run 

α-cut p Control Chart would be lower than that of the standard α-cut p control chart.  For 

the purposes of this research, the second-stage calculations, where future data values are 

plotted, is only of concern.  First, the fuzzy short-run control limit calculations were used 

to construct control limits for combinations of m subgroups and n subgroup sizes.  In 

order to test the limits specifically for the short-run case ( i.e., m < 20), the combinations 

were restricted to be less than or just above 20 subgroups.  Control limits were 

constructed for all combinations of m = 5, 6, 7, 8, 9, 10, 15, 20, and 25, and n = 5, 6, 7, 

8, 9, 10, 15, 20, and 25.   

     Once the second-stage limits were obtained for each of the subgroup and subgroup 

size combinations, a simulation was performed to test the performance of the limits.  The 

simulation was conducted using FORTRAN 90.  Several data elements used in the 

simulation were initialized.  The initialized values included the 3 p values used for data 

classification, and the membership values for each category.  Also, before each 

simulation was conducted, the FORTRAN prompt screen queried the user for the right-

side LCL, right-side UCL, left-side LCL, left-side UCL, the subgroup size n, and the α 

value to be used.  For all charts and simulations, an α value of 0.30, used in the Gulbay 

et al. [2] example, was used.  For the simulation, random data from a Uniform (0,1) 

distribution was produced.  Once the data was generated, it was evaluated by a set of 

conditional statements.  The conditional statements used the p values employed in the 

construction of the control limits to determine in which category to place the data.  The p 

values were p1 = 0.70, p2 = 0.95, and p3 = 0.985.  From these three p values, four 

categories were produced.  These categories were again obtained from an example given 

by Gulbay et al. [2], and were labeled "Standard", "Second Choice", "Third Choice", and 

"Chipped".  If a p value produced by the random number generator was less than 0.7, it 

was then classified as a "Standard" product.  If the p value was between 0.7 and 0.95, it 

was classified as "Second Choice".  If the p value was between 0.95 and 0.985, it was 

classified as "Third Choice".  Finally, if the p value was greater than 0.985, it was 

classified as "Chipped".  Counters were used to separate each p value into its respective 

group, with one counter for each of the four categories.  The creation and classification 

of random uniform values was repeated n times.  The n data values produced and 

classified in the first step represented one subgroup.  These data values were then used to 

calculate right and left side plot values for each subgroup.  The plot values were 

calculated as in the Gulbay et al. [2]'s example by first computing the weighted average 

(Mj) of the count for each data category, with the membership values for each category 

serving as the respective weights.  From this weighted average, the left side plot value 
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was obtained by multiplying m times the provided α value.  The right side plot value was 

obtained by a slightly more complicated equation.  The calculation of the Mj value, and 

the left and right side plot values is given in equations 26 through 28. 

  

j

i

i

ij

j
n

rk

M

∑
=   j = 1,…,m                                              (26) 

     In Equation 26, kij is the number of data values in category i for the particular sample 

j, ri is the membership value representing the particular category, and nj is the subgroup 

size of subgroup j.  The value of nj can also be replaced by n , the average subgroup size 

for all m subgroups, to obtain a constant upper and lower control limit.  The average 

sample size approach is used in the validation of the data. 

 

α*MPlotValueSideLeft =−                                               (27) 

     ]*)M1[(1PlotValueSideRight α−−=−                                      (28) 

     Once the left and right side plot values were calculated, they were compared to the 

lower and upper control limits entered for the particular subgroup size, and if the values 

plotted outside these limits, a separate counter was increased by 1.  This creation of n 

data values was repeated for 10,000 subgroups.  After the conclusion of these repetitions, 

the number of points plotting outside the control limits was totaled.  This process was 

repeated 1,000 times and the false alarm rate was calculated by dividing the sum of the 

points plotting outside the control limits by the number of subgroups (10,000) times, the 

number of repetitions of the entire program (1,000).  This value represented the false 

alarm rate of the process for the given subgroup size.   

     The false alarm rate for each combination of m and n was obtained.  The false alarm 

rates for both the Short-Run α-cut p Control Chart, and the standard α-cut p Control 

Chart [2] were obtained.  For some combinations, the false alarm rate equaled 0.00.  

Only the false alarm rates which were greater than 0.00 are shown in Table 4.  The false 

alarm rates in Table 4 show that for every combination of m and n, the rate for the short-

run control limits was lower than the rate for the standard α-cut control limits.  

Therefore, for every combination of m and n, the short-run control limits produced a 

lower false alarm rate than the α-cut limits suggested by Gulbay et al. [2].   

 

m n Short-Run Gulbay m n Short-Run Gulbay 

5 5 0.0000194 0.0000553 8 7 0.0000000 0.0000006 

5 9 0.0000147 0.0000470 9 5 0.0000000 0.0000002 

5 10 0.0000043 0.0000145 9 8 0.0000000 0.0000002 

5 25 0.0000050 0.0000050 9 9 0.0000001 0.0000005 

6 5 0.0000194 0.0000553 10 5 0.0000002 0.0000002 

6 6 0.0000024 0.0000065 10 7 0.0000000 0.0000006 

6 8 0.0000178 0.0000518 10 8 0.0000003 0.0000019 
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7 6 0.0000065 0.0000206 15 10 0.0000001 0.0000001 

7 7 0.0000000 0.0000006 20 5 0.0000000 0.0000002 

8 5 0.0000000 0.0000002 20 10 0.0000001 0.0000001 

8 6 0.0000000 0.0000001 25 6 0.0000008 0.0000024 

  
Table 4: False Alarm Rates for Short-Run and Standard α-cut Control Charts 

 

10. Conclusion 

 
The objective of this research was to modify the α-cut procedure for fraction 

nonconforming control charts to account for the case when data collected from the 

process is of a short-run nature.  The results of the study included algorithms for all chart 

parameters involving the center line, plot values, and upper and lower control limits.  

The Short-Run α-cut p Control Chart parameters were validated and verified, and have 

been proven successful in producing results that exceed that of the standard α-cut p 

control chart by Gulbay et al. [2]. 
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