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Splaiul Independenţei 313, Bucharest, Romania

lavinia ciungu@math.pub.ro

Abstract

The aim of the paper is to investigate some concepts of convergence in
the class of perfect BL-algebras. Similarity convergence was developed by G.
Georgescu and A. Popescu in the case of the residuated lattices, while the con-
vergence with a fixed regulator was studied by Š. Černák for lattice-ordered
groups and MV-algebras and by the author for residuated lattices. In this
paper we study the similarity convergence and the convergence with a fixed
regulator for the perfect BL-algebras. The main result is the construction of
Cauchy completion of a perfect BL-algebra.
Keywords Perfect BL-algebras, Archimedean BL-algebras, Radical, Locally
Archimedean, Similarity convergence, Convergence regulator, Cauchy com-
pletion

1 Introduction

A variety of papers has been written on the subject of convergence in ordered
structures. Order convergence in a lattice-ordered group is studied in [21] and
[22], while L-convergence is presented in [1] and convergence in [2]. Š. Černák
studied the convergence with a fixed regulator for abelian `-groups in [8] and for
Archimedean `-groups in [6]. Order convergence in MV-algebras is presented in [17],
α-convergence was investigated in [20] and various kinds of Cauchy completions of
MV-algebras are studied in [3]. Using the Mundici functor, Š. Černák [7] extended
the convergence with fixed regulator from abelian l-groups to MV-algebras. For the
class of perfect MV-algebras, order convergence has been presented in [14] and the
convergence with a fixed regulator was treated by the author in [10], based on the Di
Nola-Lettieri functors D and ∆. Order convergence on  Lukasiewicz-Moisil algebras
was studied in [16]. In the case of residuated lattices, two concepts of convergence
have been developed: similarity convergence by G.Georgescu and A.Popescu in [18]
and the convergence with a fixed regulator by the author in [9]. BL-algebras are
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fuzzy structures constructed from continuous t-norms and they were introduced
by Hájek in [19] as algebraic counterparts for his Basic Logic. In this paper we
investigate the similarity convergence and the convergence with a fixed regulator in
the case of perfect BL-algebras. Because the Archimedean property plays a crucial
role for various kinds of convergence in the ordered structures, we are interested
in investigating the convergences on non Archimedean structures. Similarly with
the case of the perfect MV-algebras we introduce the locally Archimedean property
of a perfect BL-algebras. The main results state that any perfect BL-algebra has
a Cauchy completion and any locally Archimedean BL-algebra has a v -Cauchy
completion.

2 Preliminaries on BL-algebras and perfect BL-
algebras

Definition 2.1. A BL-algebra is an algebra (A,∨,∧,⊗,→, 0, 1) of the type
(2, 2, 2, 2, 0, 0, 0) satisfying the following conditions (x, y, z ∈ A):
(B1) (A,∨,∧, 0, 1) is a bounded lattice;
(B2) (A,⊗, 1) is a commutative monoid;
(B3) x⊗ y ≤ z iff x ≤ y → z;
(B4) x ∧ y = x⊗ (x → y);
(B5) (x → y) ∨ (y → x) = 1.

We will refer to a BL-algebra (A,∨,∧,⊗,→, 0, 1) by its univers A. A BL-
algebra is not trivial if 0 6= 1. For any BL-algebra A, the reduct L(A) is a bounded
distributive lattice ([23]). A BL-algebra A is called BL-chain or linear BL-algebra
if it is totally ordered, i.e. a BL-algebra such that its lattice order is total.
For any x ∈ A we define x̄ = x → 0.
For any n ∈ N,x ∈ A we put x0 = 1 and xn+1 = xn ⊗ x = x⊗ xn.
The order of x ∈ A, denoted ord(x) is the smallest n ∈ N such that xn = 1.
If no such n exists, then ord(x) = ∞. A BL-algebra is called locally finite if all non
unit elements of A have finite order.
The following proposition provides some rules of calculus in a BL-algebra.

Proposition 2.2. ([12], [13], [19]) In any BL-algebra A the following properties
hold: (1) x⊗ y ≤ x ∧ y ≤ x, y;
(2) x ≤ y implies x⊗ z ≤ y ⊗ z;
(3) x ≤ y iff x → y = 1;
(4) 1 → x = x, x → x = 1, x ≤ y → x, x → 1 = 1;
(5) x⊗ x̄ = 0;
(6) x⊗ y = 0 iff x ≤ ȳ;
(7) x ∨ y = 1 implies x⊗ y = x ∧ y;
(8) 1̄ = 0, 0̄ = 1, x ≤ ¯̄x, ¯̄̄x = x̄;
(9) x → (y → z) = (x⊗ y) → z;
(10) (x → y) → (→ z) = x ∧ y) → z;
(11) x ≤ y implies z → x ≤ z → y, y → z ≤ x → z and ȳ ≤ x̄;



Convergences in Perfect BL-algebras 69

(12) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z);
(13) x⊗ (y ∧ z) = (x⊗ y) ∧ (x⊗ z);
(14) x → (y ∧ z) = (x → y) ∧ (x → z) ;
(15) (y ∧ z) → x = (y → x) ∨ (z → x);
(16) (x ∨ y) → z = (x → z) ∧ (y → z);
(17) x → y ≤ (y → z) → (x → z);
(18) x → y ≤ (z → x) → (z → y);
(19) x → y ≤ (x⊗ z) → (y ⊗ z) ;
(20) (x → y)⊗ (y → z) ≤ x → z;
(21) (x ∧ y)̄ = x̄ ∨ ȳ and (x ∨ y)̄ = x̄ ∧ ȳ;
(22) x⊗ y)̄ = x → ȳ;
(23) (x ∨ y) = [(x → y) → y] ∧ [(y → x) → x].

Definition 2.3. ([19]) A filter of a BL-algebra A is a nonempty subset F ⊆ A
such that for all x, y ∈ A:
(F1) x, y ∈ F implies x⊗ y ∈ F ;
(F2) x ∈ F and x ≤ y implies y ∈ F .

Definition 2.4. ([25]) A deductive system of a BL-algebra A is a subset D ⊆ A
such that:
(D1) 1 ∈ D;
(D2) for all x, y ∈ A, x, x → y ∈ D implies y ∈ D.
A deductive system D is called:
a) proper - if 0 /∈ D;
b) prime - if D is proper and for all x, y ∈ A, x ∨ y ∈ D implies x ∈ D or y ∈ D;
c) maximal - if D is proper and for any deductive system E such that D ⊆ E ⊆ A,
either E = D or E = A;
d) primary - if D is proper and for all x, y ∈ A, (x⊗ y)̄ ∈ P implies (xn)̄ ∈ P or
(yn)̄ ∈ P for some n ∈ N ;
e) Boolean - if for all x ∈ A, x ∨ x̄ ∈ D;
f) implicative - if for all x, y, x ∈ A, x → (z̄ → y) ∈ D and y → z ∈ D imply
x → z ∈ D.
A BL-algebra A is called local if it has a unique maximal deductive system.

Proposition 2.5. ([23]) If A is a BL-algebra and F ⊆ A, then the following are
equivalent:
(i) F is a filter of A;
(ii) F is a deductive system of A.

For every subset X ⊆ A, the smallest filter of A which contains X, i.e. the
intersection of all filters F of A such that X ⊆ F is called the filter generated by X
and it is denoted by [X).

Proposition 2.6. ([12], [13]) If X ⊆ A, then
[X) = {y ∈ A|y ≥ x1 ⊗ x2 ⊗ ...⊗ xn for some n ≥ 1 and x1, x2, ..., xn}.

Remarks 2.7. ([12], [13])
(1) If X is a filter of A, then [X) = X;
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(2) If X = x we write [x) instead of [{x}) and [x) = {y ∈ A | y ≥ xn for some
n ≥ 1}.
[x) is called principal filter.
(3) If X is a filter of A and x ∈ A, then
F (x) = [F ∪{x}) = {y ∈ A | y ≥ (f1⊗x)n1 ⊗ (f2⊗x)n2 ⊗ ...⊗ (fm⊗x)nm for some

m ≥ 1, n1, n2, ..., nm ≥ 0, f1, f2, ..., fm ∈ F}.

If D is a proper deductive system of A, consider D∗ = {x ∈ A | x ≤ ȳ for some
y ∈ D}. We have D ∩D∗ = �. Indeed, if x ∈ D ∩D∗ = � then x ∈ D and x ≤ ȳ
for some y ∈ D. It follows that x̄ ≥ ¯̄y > y. Because D is deductive system we get
x̄ ∈ D.
Hence, 0 = x⊗ x̄ ∈ D, which is a contradiction.
We also denote by D(A) = {x ∈ A | xn > 0 for all n ∈ N}.

Proposition 2.8. ([26]) In any BL-algebra A the following are equivalent:
(i) D(A) is a deductive system;
(ii) [D(A)) is a proper deductive system;
(iii) A is local;
(iv) D(A) is the unique maximal deductive system of A;
(v) For all x, y ∈ A and n ∈ N, n ≥ 1, we have xn, yn > 0 iff xn ⊗ yn > 0.

According to [24], if D is a deductive system of the BL-algebra A we define the
equivalence relation ≈ on A by:

x ≈ y iff (x → y)⊗ (y → x) ∈ D.

Then, the quotient algebra A/D becomes a BL-algebra with the natural operations
induced from those of A. Denoting by x/D the equivalence class of x, then x/D =
1/D iff x ∈ D.

Proposition 2.9. ([15], [26]) Let A be a BL-algebra. Then:
(1) A is local iff for all x ∈ A, ord(x) < ∞ or ord(x̄) < ∞;
(2) A deductive system P of A is primary iff A/P is local ;
(3) Any prime deductive system is primary ;
(4) BL-algebra A is local iff every proper deductive system of A is primary ;
(5) The subset A0 = {x ∈ A|x̄ = 0} is a proper deductive system of A and A0 ⊆
D(A).

Definition 2.10. ([26]) A local BL-algebra is called perfect if for any x ∈ A,
ord(x) < ∞ iff ord(x̄) < ∞.

Proposition 2.11. ([26]) Let A be a local BL-algebra. The following are equiva-
lent:
(i) A is perfect
(ii) A = D(A) ∪D(A)∗.

Definition 2.12. ([5]) The intersection of the maximal deductive systems of the
BL-algebra A is called the radical of A and it is denoted by Rad(A).
Obviously, Rad(A) is a deductive system of A.
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Proposition 2.13. ([13]) Rad(A) = {x ∈ A|(xn)− ≤ x for any n ∈ N}.

Denote Rad(A)− = {x̄ | x ∈ Rad(A) }. One can easy check that if x ∈ Rad(A),
then x̄ ∈ Rad(A)− and if x ∈ Rad(A)−, then x̄ ∈ Rad(A).

Definition 2.14. ([5] A nonunit element x ∈ A is called infinitesimal if xn ≥ x̄
for any n ∈ N . We will denote by Infinit(A) the set of all infinitesimal elements of
A.

Proposition 2.15. ([5]) Let A be a local BL-algebra and x ∈ A, x 6= 1. The
following are equivalent:
(i) x ∈ Infinit(A) ;
(ii) x ∈ Rad(A).

Corollary 2.16. Rad(A) = Infinit(A) ∪ {1}.

Proposition 2.17. The local BL-algebra A is perfect iff A = Rad(A) ∪Rad(A)∗.

Proof. Because A is a local BL-algebra, By Proposition 2.8 it follows that D(A) is
the unique maximal deductive system of A. Hence, Rad(A) = D(A). By Proposi-
tion 2.11 we get A = Rad(A) ∪Rad(A)∗.

From the proof of the above proposition it follows that Rad(A)∗ = D(A)∗.

Proposition 2.18. In any BL-algebra A the following are equivalent:
(i) Rad(A) = {1};
(ii) xn ≥ x̄ for any n ∈ N implies x = 1;
(iii) xn ≥ ȳ for any n ∈ N implies x ∨ y = 1;
(iv) xn ≥ ȳ for any n ∈ N implies x → y = y and y → x = x.

Proof. (i) ⇔ (ii) follows from Proposition 2.15 ;
(ii) ⇒ (iii). Let x, y ∈ A such that xn ≥ ȳ for any n ∈ N. By Proposition 2.2 and
by the hypothesis we have:

(x ∨ y)− = x̄ ∧ ȳ ≤ ȳ ≤ xn ≤ (x ∨ y)−,

hence (x∨y)n ≥ (x∨y)− for any n ∈ N. Thus, by the hypothesis we get x∨y = 1.
(iii) ⇒ (ii). Consider x ∈ A such that xn ≥ ȳ for any n ∈ N.
By (iii), taking y = x we get x ∨ x = 1, hence x = 1.
(ii) ⇒ (iv). Let x, y ∈ A such that xn ≥ ȳ for any n ∈ N.
Similarly as in (i) ⇒ (ii), if x, y ∈ A we have (x ∨ y)n ≥ (x ∨ y)− for any n ∈ N,
hence, by the hypothesis, we get x ∨ y = 1.
By Proposition 2.2 we have x ∨ y = [(x → y) → y] ∧ [(y → x) → x].
Since x ∨ y = 1, it follows that [(x → y) → y] ∧ [(y → x) → x] = 1,
hence (x → y) → y = 1 and (y → x) → x = 1.
From (x → y) → y = 1 we have x → y ≤ y and taking in consideration that
y ≤ x → y we obtain x → y = y. Similarly, y → x = x.
(iv) ⇒ (ii). Consider x ∈ A such that xn ≥ x̄ for any n ∈ N. By the hypothesis we
obtain x → x = x, hence x = 1.
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Definition 2.19. A BL-algebra is called Archimedean or semisimple if one of the
equivalent above conditions is satisfied.

Definition 2.20. A perfect BL-algebra A is called locally Archimedean whenever
from x, y ∈ Rad(A) such that xn ≥ y for all n ∈ N, it follows that x = 1.

Example 2.21. Define on the real unit A = [0, 1] the operations:

x⊗ y = min{x, y}

x → y =
{

1, if x ≤ y
y, otherwise

Then (A,≤,min, max,⊗,→, 0, 1) is BL-algebra called Gödel structure.
Obviously, x̄ = x → 0 = 0 and xn = x for all x ∈ A.
It follows that Rad(A) = (0, 1] and Rad(A)∗ = {0}, hence A is a perfect BL-
algebra, but it is not Archimedean. A is not locally Archimedean (indeed, for
x = 1/2, y = 1/3 we have xn > y for all n ∈ N, but x 6= 1).

Example 2.22. Define on the real unit A = [0, 1] the operation ⊗ as usual multi-
plication of real numbers and the operation

x → y =
{

1, if x ≤ y
y/x, otherwise

Then (A,≤,min, max,⊗,→, 0, 1) is a BL-algebra called the product structure.
Obviously, x̄ = x → 0 = 0 for all x ∈ A.
It follows that Rad(A) = (0, 1] and Rad(A)∗ = {0}, hence A is a perfect BL-algebra,
but it is not Archimedean. One can easy check that A locally Archimedean.

In a BL-algebra A we define the distance function d : A×A → A by

d(x, y) = (x → y) ∧ (y → x).

Proposition 2.23. ([18]). The distance function fulfills the following properties:
(1) d(x, y) = d(y, x) ;
(2) d(x, y) = 1 iff x = y ;
(3) d(x, 1) = x ;
(4) d(x, 0) = x̄ ;
(5) d(x, z)⊗ d(z, y) ≤ d(x, y) ;
(6) d(x, y) ≤ d(x⊗ u, y ⊗ u) ;
(7) d(x, u)⊗ d(y, v) ≤ d(x⊗ y, u⊗ v) ;
(8) d(x, u)⊗ d(y, v) ≤ d(x → x, v → u) ;
(9) d(x, u) ∧ d(y, v) ≤ d(x ∧ y, u ∧ v) ;
(10) d(x, u) ∧ d(y, v) ≤ d(x ∨ y, u ∨ v) ;
(11) If x, y ∈ [x′, y′] then d(x′, y′) ≤ d(x, y).

Let (xn)n be a sequence in a BL-algebra A. If (xn)n is increasing we denote
(xn)n ↑ . Similarly, if (xn)n is decreasing we denote (xn)n ↓ .
If (xn)n is increasing, ∨nxn exists and ∨nxn = x, we denote (xn)n ↑ x.
Similarly, if (xn)n is decreasing, ∧nxn exists and ∧nxn = x, we denote (xn)n ↓ x.
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Proposition 2.24. ([18]) (1-sphere propery) If (xn)n and (yn)n are two sequences
in A such that (xn)n ↑ 1 and (yn)n ↑ 1, then (xn ∗ yn)n ↑ 1.

3 Convergence in perfect BL-algebras

In this section we will introduce the concept of convergence in perfect BL-algebras
in the same way it was introduced in [18] for the case of residuated-lattices.

Lemma 3.1. If (xn)n is a sequence in a perfect BL-algebra A and (xn)n ↑ 1, then
there is n0 ∈ N such that xn ∈ Rad(A) for any n ≥ n0.

Proof. Since Rad(A) is a deductive system and (xn)n is an increasing sequence, it
suffices to show that there is n0 ∈ N such that xn ∈ Rad(A) for all n ≥ n0.
Assume xn /∈ Rad(A) for all n ∈ N. If Rad(A) 6= {1}, then there is an element
y ∈ Rad(A), y < 1 such that y ≥ xn for all n ∈ N which is a contradiction with
the fact that ∨nxn = 1. If Rad(A) = {1}, then Rad(A)− = {0} so xn = 0 for all
n ∈ N which is again a contradiction.

Definition 3.2. Let (xn)n be a sequence in an arbitrary BL-algebra A. Then
(xn)n converges to x ∈ A if there is a sequence (sn)n such that (sn)n ↑ 1 and
d(xn, x) ≥ sn for all n ∈ N. We will denote xn →s x.

Proposition 3.3. Let (xn)n be a sequence in an arbitrary BL-algebra A. If xn →s

x1 and xn →s x2, then x1 = x2.

Proof. There exist (sn)n, (tn)n ⊆ A such that (sn)n ↑ 1, (tn)n ↑ 1 and d(xn, x1) ≥
sn, d(xn, x2) ≥ tn for all n ∈ N. We have: d(x1, x2) ≥ d(x1, xn)⊗d(xn, x2) ≥ sn⊗tn
for all n ∈ N. But, by the 1-sphere property (sn ∗ tn)n ↑ 1, so d(x1, x2) = 1, hence
x1 = x2.

Proposition 3.4. Let (xn)n, (yn)n ⊆ A such that xn →s x and yn →s y. Then:
(1) xn ⊗ yn →s x⊗ y ;
(2) xn ∨ yn →s x ∨ y ;
(3) xn ∧ yn →s x ∧ y ;
(4) (xn → yn) →s (x → y) ;
(5) x̄n →s x̄.
Moreover, if xn ≤ yn for all n ∈ N, then x ≤ y.

Proof. (1)− (5) follow from Propositions 2.23.
If xn ≤ yn, then xn → yn = 1 for all n ∈ N, so (xn → yn) →s 1.
But, by (4) (xn → yn) →s (x → y) and applying Proposition 3.3 we get x → y = 1.
Thus, x ≤ y.

Proposition 3.5. Let A be an arbitrary BL-algebra and (xn)n ⊆ Rad(A). If
xn →s x, then x ∈ Rad(A).

Proof. Since xn ∈ Rad(A) we have xk
n ≥ x̄n for all n, k ∈ N. By Proposition 3.4

we get xk ≥ x̄ for all n ∈ N, that is, x ∈ Rad(A).
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Corollary 3.6. Let A be a perfect BL-algebra. If (xn)n ⊆ Rad(A)− and xn →s x,
then x ∈ Rad(A)−.

Proof. By the above proposition, taking in consideration that (x̄n)n ⊆ Rad(A).

Proposition 3.7. Let A be a perfect BL-algebra and (xn)n ⊆ A, xn →s x.
If x ∈ Rad(A), then there is n0 such that xn ∈ Rad(A) for all n ≥ n0.

Proof. If for any n ∈ N there exists kn ≥ n such that xkn
/∈ Rad(A), we get a

sequence (xkn
) ∈ Rad(A)− which is convergent to x ∈ Rad(A). This is a contra-

diction with Corollary 3.6.

Corollary 3.8. Let A be a perfect BL-algebra and (xn)n ∈ A such that xn →s x.
If x ∈ Rad(A)−, then there is n0 ∈ N such that xn ∈ Rad(A)− for all n ≥ n0.

Definition 3.9. A sequence (xn)n ⊆ A is called Cauchy sequence if there is a
sequence (sn)n such that (sn)n ↑ 1 and d(xn, xn+p) ≥ sn for all n, p ∈ N.
A BL-algebra A is Cauchy complete if any Cauchy sequence is convergent.

Proposition 3.10. Let (xn)n, (yn)n be two Cauchy sequences in a BL-algebra A.
Then, the sequences (xn ∧ yn)n, (xn ∨ yn)n, (xn ⊗ yn)n, (xn → yn)n, (x̄n) are
Cauchy.

Proof. Since (xn)n and (yn)n are Caucy sequences, there exist two sequences
(sn)n ↑ 1 and (tn)n ↑ 1 such that d(xn, xn+p) ≥ sn and d(yn, yn+p) ≥ tn for
all n, p ∈ N.
By Proposition 2.23 we have

d(xn ∧ yn, xn+p ∧ yn+p) ≥ d(xn, xn+p) ∧ d(yn, yn+p) ≥ sn ⊗ tn.

Using the 1-sphere property it follows that (xn ∧ yn)n is a Cauchy sequence.
The rest of assertions in the proposition follow similarly.

Proposition 3.11. Let A be a perfect BL-algebra. If (xn)n ⊆ A is a Cauchy
sequence, then there is n0 ∈ N such that {xn | n ≥ n0} ⊆ Rad(A) or {xn | n ≥
n0} ⊆ Rad(A)−.

Proof. Since (xn)n is a Cauchy sequence, then there exists (sn)n ↑ 1 such that
d(xn, xn+p) ≥ sn for all n, p ∈ N. By Lemma 3.1, there is n0 ∈ N such that
xn ∈ Rad(A) for any n ≥ n0. Assume there is n ≥ n0 and p ∈ N such that
xn ∈ Rad(A)− and xn+p ∈ Rad(A). We have:

xn = d(xn, 1) ≥ d(xn, xn+p)⊗ d(xn+p, 1) ≥ sn ⊗ xn+p ∈ Rad(A),

hence xn ∈ Rad(A) which is a contradiction.
If there is n ≥ n0 and p ∈ N such that xn ∈ Rad(A) and xn+p ∈ Rad(A)− we get:

xn+p = d(xn+p, 1) ≥ d(xn+p, xn)⊗ d(xn, 1) ≥ sn ⊗ xn ∈ Rad(A),

hence xn+p ∈ Rad(A) which is again a contradiction.
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Theorem 3.12. Any complete BL-algebra is Cauchy complete.

Proof. Let (xn)n be a Cauchy sequence in the complete BL-algebra A, i.e. there
exists a sequence (sn)n such that (sn)n ↑ 1 and d(xn, xn+p) ≥ sn for all n, p ∈ N.
Since A is complete lattice, there exists x = xm0 = ∨n≤1xn. Hence, for all n ∈ N
we have d(xn, x) = d(xn, xm0) ≥ sn. Thus, xn →s x and it follows that A is
Cauchy complete.

Definition 3.13. Let A ↪→ B be an embedding of the perfect BL-algebras A and
B. We say that B is a Cauchy completion of A if:
a) B is a Cauchy complete BL-algebra ;
b) for each x ∈ Rad(B) there exist two sequences (xn)n, (sn)n ⊆ Rad(A) such that
(sn)n ↑ 1 and d(xn, x) ≥ sn for all n ∈ N.

For two Cauchy sequences (xn)n and (yn)n of a BL-algebra A we define:

(xn)n ≡ (yn)n iff d(xn, yn) →s 1.

The relation ≡ is an equivalence relation on the set C(A) of all Cauchy sequences
of the BL-algebra A.
Let A∗ = C(A)/≡ and [(xn)n] the equivalence class of the sequence (xn)n.
Then A∗ is a BL-algebra with respect to the component-wise operations.
If [x] is the class of the constant sequence (x, x, x, . . .), than the map x → [(x)] is
an embedding of BL-algebras A ↪→ A∗.

Theorem 3.14. [18] A∗ is a complete lattice and for any x ∈ A∗ there is (xn)n ⊆ A
such that xn →s x.

Proposition 3.15. Let A ↪→ B be an embedding of the perfect BL-algebras A and
B. Assume that for each x ∈ B there exist two sequences (xn)n, (sn)n ⊆ A such
that (sn)n ↑ 1 and d(xn, x) ≥ sn for all n ∈ N. Then, for each x ∈ Rad(B) there
exist two sequences (xn)n, (sn)n ⊆ Rad(A) such that (sn)n ↑ 1 and d(xn, x) ≥ sn

for all n ∈ N.

Proof. Assume x ∈ Rad(B) ⊆ B. Then, there exist two sequences (xn)n, (sn)n ⊆ A
such that (sn)n ↑ 1 and d(xn, x) ≥ sn for all n ∈ N. According to Lemma 3.1 we
can assume that sn ∈ Rad(A) for all n ∈ N. Then we have:

xn = d(xn, 1) ≥ d(xn, x)⊗ d(x, 1) ≥ x⊗ sn ∈ Rad(B).

It follows that xn ∈ A ∩Rad(B) = Rad(A).

Theorem 3.16. A∗ is a Cauchy completion of A.

Proof. It follows from Theorem 3.14 and Proposition 3.15.
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4 Convergence with a fixed regulator in perfect
BL-algebras

Definition 4.1. Let A be a BL-algebra and 0 < v ∈ A. The sequence (xn)n ⊆ A
is said to be v-convergent to an element x ∈ A (or x is v-limit of (xn)n) denoted
by xn →v x, if there is q ∈ N such that d(xn, x)p ≥ vq for all p, n ∈ N.

Proposition 4.2. Let (xn)n, yn)n ⊆ A such that xn →v x and yn →v y. Then:
(1) xn ⊗ yn →v x⊗ y ;
(2) xn ∨ yn →v x ∨ y ;
(3) xn ∧ yn →v x ∧ y ;
(4) (xn → yn) →v (x → y) ;
(5) x̄n →v x̄;
(6) a⊗ xn →v a⊗ x for any a ∈ A.

Proof. By the hypothesis there are q1, q2 ∈ N such that d(xn, x)p ≥ vq1 and
d(xn, x)p ≥ vq2 for all p, n ∈ N.
(1) By Proposition 2.23, for all p ∈ N we have:

d(xn ∧ yn, x ∧ y)p ≥ d(xn, x)p ∧ d(yn, y)p ∧ vq1 ∧ vq2 .

Taking q = max(q1, q2) we get d(xn ∧ yn, x ∧ y)p ≥ vq for all p, n ∈ N, hence

xn ⊗ yn →v x⊗ y;

(2), (3), (4) follow similarly, applying Proposition 2.23 ;
(5) By Proposition 2.23 we have

d(x−n , x) = d(xn → 0, x → 0) ≥ d(xn, x) ∗ d(0, 0) = d(xn, x).

Thus, x−n →v x;
(6) It follows immediately from d(a ∗ xn, a ∗ x) ≥ d(xn, x).

Proposition 4.3. Let A be a BL-algebra and (xn)n ⊆ Rad(A), 0 < v ∈ Rad(A).
If xn →v x, then x ∈ Rad(A).

Proof. Since xn →v x, there is q ∈ N such that d(xn, x)p ≥ vq for all p, n ∈ N.
We have:

x = d(x, 1) ≥ d(xn, x)⊗ d(xn, 1) ≥ vq ⊗ xn.

Because Rad(A) is a deductive system of A and vq, xn ∈ Rad(A) it follows that
vq ⊗ xn ∈ Rad(A) and then x ∈ Rad(A).

Proposition 4.4. Let A be a locally Archimedean BL-algebra. If (xn)n ⊆ Rad(A)
and 0 < v ∈ Rad(A), then the v-limit of the sequence (xn)n is unique.

Proof. Suppose x1, x2 ∈ Rad(A) such that xn →v x1 and xn →v x2, that is, there
exist q1, q2 ∈ N such that d(xn, x)p ≥ vq1 and (d(xn, x)p ≥ vq2 for all p, n ∈ N.
Taking q = q1 + q2 we have d(x1, x2)p ≥ d(x1, xn)p ⊗ d(xn, x2)p ≥ vq for all p ∈ N.
Because A is locally Archimedean we obtain d(x1, x2) = 1, hence x1 = x2.
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Proposition 4.5. Let A be a locally Archimedean BL-algebra. If (xn)n, (yn)n ⊆
Rad(A) and 0 < v ∈ Rad(A) such that xn →v x, yn →v y and xn ≤ yn for all
n ∈ N, then x ≤ y.

Proof. Since xn ≤ yn, we have xn → yn = 1 →v 1. By Proposition 3.2 it follows
that (xn → yn) →v (x → y) and by Proposition 3.4 we get x → y = 1. Thus,
x ≤ y.

Example 4.6. a) The constant sequence (x, x, x, . . .) v-converges to x for any
0 < v ∈ A
b) Consider the BL-algebra in Example 2.21. If xn = n−1

n , then xn →1 1;
c) If a BL-algebra A is not locally Archimedean, then the v-limit is not unique for
any 0 < v ∈ A. Indeed, let’s consider the non locally Archimedean BL-algebra A
in Example 2.21, the constant sequence (xn)n = ( 1

3 )n and v = 1
3 ∈ A. One can

check that xn →v 1 and xn →v
1
3 which means that the v-limit of the sequence

(xn)n above defined is not unique.

Definition 4.7. Let 0 < v ∈ A. The sequence (xn)n is said to be v-fundamental
or v-Cauchy sequence if there is q ∈ N such that d(xn, xm)p ≥ vq for all p, m, n ∈
N,m ≥ n.
A BL-algebra A is v-Cauchy complete if any v-Cauchy sequence is v-convergent.

Proposition 4.8. Let 0 < v ∈ A. If the sequence (xn)n is v-convergent in a
BL-algebra A, then (xn)n is v-Cauchy.

Proof. Supose that xn →v x and let’s consider p, m, n ∈ N,m ≥ n.
We have d(xn, xm)p ≥ d(xn, x)p ⊗ d(xm, x)p. Since xn →v x and xm →v x, there
exist q1, q2 ∈ N such that d(xn, x)p ≥ vq1 and d(xm, x)p ≥ vq2 for all p,m, n ∈ N.
Taking q = q1 + q2 we get d(xn, xm)p ≥ vq for all p, m, n ∈ N,m ≥ n, hence the
sequence (xn)n is v-Cauchy.

Proposition 4.9. Let (xn)n, (yn)n be two v-Cauchy sequences in the BL-algebra
A. Then, the sequences (xn ∧ yn)n, (xn ∨ yn)n, (xn ⊗ yn)n, (xn → yn)n, (x̄n) are
v-Cauchy.

Proof. It follows from Propositions 2.23 and 2.24.

Definition 4.10. Let A ↪→ B be an embedding of the perfect BL-algebras A and
B. We say that B is a v-Cauchy completion of A if:
a) B is a v-Cauchy complete BL-algebra ;
b) for each x ∈ Rad(B) there exists a sequence (xn)n ⊆ Rad(A) such that xn →v x.

For two Cauchy sequences (xn)n and (yn)n of a BL-algebra A we define:

(xn)n ≡ (yn)n iff d(xn, yn) →v 1.

The relation ≡ is an equivalence relation on the set C(A) of all Cauchy sequences
of the BL-algebra A.
Let A∗ = C(A)/≡ and [(xn)n] the equivalence class of the sequence (xn)n.
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Then A∗ is an BL-algebra with respect to the component-wise operations.
If [x] is the class of the constant sequence (x, x, x, . . .), than the map x → [(x)] is
an embedding of BL-algebras A ↪→ A∗.

Theorem 4.11. [9] A∗ is a complete lattice and for any x ∈ A∗ there is (xn)n ⊆ A
such that xn →v x.

Proposition 4.12. Let A ↪→ B be an embedding of the perfect BL-algebras A and
B and 0 < v ∈ Rad(A). Assume that for each x ∈ B there exists a sequence
(xn)n ⊆ A such that xn →v x. Then, for each x ∈ Rad(B) there exists a sequence
(xn)n ⊆ Rad(A) such that xn →v x.

Proof. Assume x ∈ Rad(B) ⊆ B. Then, there exists a sequence (xn)n ⊆ A such
that xn →v x. Then we have:

xn = d(xn, 1) ≥ d(xn, x)⊗ d(x, 1) ≥ x⊗ vq ∈ Rad(B).

It follows that xn ∈ A ∩Rad(B) = Rad(A).

Theorem 4.13. A∗ is a v-Cauchy completion of A.

Proof. It follows from Theorem 4.11 and Proposition 4.12.

5 Conclusions

The variety of types of convergences in multi-valued logic algebras is still a very
actual domain of research. As conclusions of this paper we emphasize two main
points:
1. On the technical level, we showed that the study of the connection between the
convergences in BL-algebras and those in perfect BL-algebras is quite different than
the corresponding connection in the case of MV-algebras. In the case of perfect
MV-algebras a crucial result is the categorical equivalence between the category
of perfect MV-algebras and the category of abelian `-groups established by A.
Di Nola and A. Lettieri ([11]). This equivalence allows us to extend to perfect
MV-algebras the results established for abelian `-groups. The lack of this kind of
equivalence for BL-algebras makes the study of convergences more difficult in these
structures, more precisely, we should develop a different theory of convergences for
BL-algebras.
On the other hand, based on the isomorphism between an arbitrary MV-algebra
and some subalgebra of a perfect MV-algebra established by L.P. Belluce and A. Di
Nola in [4], some results in perfect MV-algebras can be transferred to an arbitrary
MV-algebra. In the case of BL-algebras and perfect BL-algebras, the theories of
convergences work parallel and the results can not be transferred from one level to
the other.
2. From the point of view of importance of convergences in multiple-valued logic
algebras, the convergences investigated in this paper seem to be the appropriate
ones for the study of continuous Bosbach states on BL-algebras. More precisely, one



Convergences in Perfect BL-algebras 79

can define the s-continuous and v-continuous state on a BL-algebra corresponding
to the s-convergence and respectively v-convergence. It is also a very interesting
problem to study if there is a way to extend a Bosbach state on the BL-algebra
A to an s-continuous or v-continuous Bosbach state on the corresponding Cauchy
completion of A.
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