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Abstract

Measuring criteria weights in multicriteria decision making is a key issue
in order to amalgamate information when reality is being described from sev-
eral different points of view. In this paper we propose a method for evaluating
those weights taking advantage of Dimension Theory, which allows the repre-
sentation of the set of alternatives within a real space, provided that decision
maker preferences satisfy certain consistency conditions. Such a representa-
tion allows a first information about possible underlying criteria in decision
maker’s mind. In particular, we propose to measure the importance of those
underlying criteria by means of all possible representations associated to the
dimension of the binary preference relations between criteria, each one being
understood as a linear order of the set of alternatives.

Keywords: Multicriteria Decision Analysis, Valued Preference Relations,
Dimension Theory.

1 Introduction

Most multicriteria decision making models assume that reality is being explained
by means of a finite set of criteria, each one being represented by a linear order. It
is commonly assumed that these criteria are already known, so their importance
can be measured in terms of weights, i.e., a real value. Alternatively, some models
consider that it is enough to know the relative position of each criteria in the
real line (see, e.g., [8, 16, 19]). An quite extended approach, perhaps the most
popular one lately, was proposed by Saaty [18], based upon a preference matrix A
where aij represents the degree to which the decision maker considers that criteria
i is more important than criteria j (assigning, for example, the values aij = 1
when the criteria are equally important, aij = 3 when i is slightly more important
than j, aij = 5 when i is strongly more importance than j, aij = 7 when i has
demonstrate more importance than j, and aij = 9 when criteria i is absolutely more
importance than j). Taking into account this information, Saaty [18] determine
the importance (measures as weights) of each criteria. But Saaty´s method find
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serious difficulties in building up Saaty’s matrix (because of discrimination between
moderate, strong, demonstrable and absolutely categories, or because of implied
consistency conditions). For example, Saaty [18] and some other decision making
procedures do not accept incomparability between criteria, in such a way that
criteria define a linear order.

In this paper we want to stress the role of those inconsistencies in preference
modelling, if we really pretend to model decision maker’s mind. Complex decision
making problems do need methodologies for a better understanding rather than
choice proposals (Aid for Knowledge is more appropriate to our objectives than
Aid for Decisions). In this context, searching for a representative geometrical
representation will play a key role, as a natural way for describing the complexity
of the problem decision maker is faced to. Our approach here is based upon such
a simple argument: a good representation of alternatives should give hints about
the structure of the decision making problem, and should help decision makers to
understand the problem, and therefore determine the importance of those criteria
explaining their preferences.

The paper is organized as follows: in section 2 we present a short review of
classical dimension theory, pointing out some limitations of the model. In section
3 we present a new dimension concept that avoids those limitations, extending the
concept to valued preference relations. In section 4 we propose a new method to
determine criteria weights by means of the information comparing those criteria.
Finally, in section 5 we stress the relevance of our approach.

2 Classical dimension theory translated to valued
preference relations

Dimension theory was initially developed by Dushnik-Miller [7] for crisp partial
orders R ⊂ X ×X, i.e, mappings

µR : X ×X → {0, 1}

where X = {x1, x2, . . . , xn} represents a finite set of alternatives and µR(xi, xj) =
1 whenever xiRxj and µR(xi, xj) = 0 otherwise. Being a partial order implies
that the following conditions hold: non reflexivity (µR(xi, xi) = 0 ∀xi ∈ X),
antisymmetry (µR(xi, xj) = 1 ⇒ µR(xj , xi) = 0), and transitivity (µR(xi, xj) =
µR(xj , xk) = 1 ⇒ µR(xi, xk) = 1). In particular, based on a result due to Szpilrajn
[20] proving that every partial order can be represented as an intersection of linear
orders, the dimension of a partial order R was defined by Dushnik-Miller [7] in the
following way.

Definition 2.1 (Dushnik-Miller 1941) Given X a finite set of alternatives, the
dimension of a partial order relation R, dim(R), is the minimum number of linear
orders Lt in X, such that

R =
⋂
t

Lt.
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Hence, each element xi ∈ X in a crisp partial order set (poset) R with dimension
d can be represented in the real space (x1

i , . . . , x
d
i ) ∈ Rd in such a way that xiRxj

if and only if
xk

i > xk
j ∀k ∈ {1, . . . d} ∀xi, xj ∈ X

Of course the associated representation is not unique (see Trotter [21]), but within
decision making each one of these linear orders of the set of alternatives sug-
gests a possible underlying criteria playing a role in decision maker’s mind. By
[x[i1], x[i2], · · · , x[id]] we shall denote here the linear order such that x[ij ] > x[ik] for
all j < k.

Then, given X a finite set of alternatives, a valued preference relation in X is
a fuzzy subset of the cartesian product X ×X. A valued preference relation in X
will be characterized by its membership function

µ : X ×X → [0, 1]

where µ(xi, xj) will represent the degree to which alternative xi is preferred to
alternative xj . We shall assume here that such a preference intensity is referred to
a strict preference, so by definition µ(xi, xi) = 0 ∀xi ∈ X.

A natural way to bring into this valued framework classical dimension theory
would be to associate a dimension to each α-cut of the valued preference relation:
once a value α ∈ (0, 1] has been fixed, the α-cut of µ is defined as the crisp binary
relation Rα in X such that

xiR
αxj ⇐⇒ µ(xi, xj) ≥ α

Meanwhile Rα is a partial order set, a dimension d(α) can be associated to such
α-cut. A dimension function can be then defined as the mapping

d : [0, 1] → N

where d(α) = dim(Rα) whenever such a dimension is well defined, see [14] (notice
that crisp dimension of all α-cuts were taken also into account in [6] in order
to obtain operative bounds). However, this approach requires antisymmetry and
transitivity for each α-cut.

For example, in case our valued preference relation is max-min transitive, i.e.,

µ(xi, xj) ≥ min{µ(xi, xk), µ(xk, xj)}

for all xi, xj , xk ∈ X, then Rα is a partial order set whenever antisymmetry holds,
i.e., meanwhile those α-cuts do not show 2-order cycles. In particular (see [15]),
Rα is antisymmetric for all α > α2, being

α2 = max
xi 6=xj

min{µ(xi, xj), µ(xj , xi)}

Therefore, since µ is max-min transitive if and only if every α-cut Rα is transitive
(see [11] but also [6]), if µ is max-min transitive, then dimension is defined for
Rα,∀α > α2.
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But imposing strong consistency restrictions seems unrealistic when dealing
with valued preference relations, even if the number of alternatives is relatively
small. As pointed out in [14, 15], more effort should be devoted to understand
and explain decision maker inconsistencies (accepted inconsistencies are some times
extremely informative). The following section presents an interesting less restrictive
approach that generalizes classical dimension.

3 Dimension theory for arbitrary preference rela-
tions

Since representation of arbitrary binary preference relation must be an objective,
the following result shows that any strict preference relation can be represented
in terms of unions and intersections of linear orders (see [14, 15] but also [9]). In
this way we offer a representation in a real space avoiding main restrictions of the
classical approach.

Theorem 3.1 Let X = {x1, ..., xn} be a finite set of alternatives, and let us con-
sider

C = {L/L linear order on X }

Then for every non-reflexive crisp binary relation R on X there exists a family of
linear orders {Lst}s,t ⊂ C such that

R =
⋃
s

⋂
t

Lst

Proof: see [14].
Hence, a generalized dimension function can be translated into the valued pref-

erence framework, which will allow a realistic approach to dimension function, since
no strong condition is needed for every α-cut.

Definition 3.1 Let us consider X a finite set of alternatives. The generalized
dimension of a crisp binary relation R is the minimum number of different linear
orders, Lst, such that

R =
⋃
s

⋂
t

Lst

Of course, practical implementation of generalized dimension is still subject to
the resolution of its algorithmic complexity , also present in the classical definition
(see [22] but also [23]). But the existence of the above general representation is
always assured, no matter if it is a partial ordered set or not. This is an important
issue when dealing with preferences in practice.

Notice also that under our approach intransitivity due to a missing preference
will be not confused with intransitivity due to a cycle: these two situations will
have different representation, as shown in the next two examples (equal dimension
but different representation).
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Example 3.1 Let us consider X = {x1, x2, x3} and R a crisp binary relation
showing a 3-cycle, in such a way that its membership function verifies

µR(xi, xj) =
{

1 if (xi, xj) = (x1, x2), (x2, x3), (x3, x1)
0 otherwise

Then R can be represented as

R = P1 ∪ P2 ∪ P3

where P1, P2 and P3 are strict partial orders respectively defined by:

µP1(xi, xj) =
{

1 if (xi, xj) = (x1, x2)
0 otherwise

µP2(xi, xj) =
{

1 if (xi, xj) = (x2, x3)
0 otherwise

and

µP3(xi, xj) =
{

1 if (xi, xj) = (x3, x1)
0 otherwise

Hence,

R =
(
[x1, x2, x3]∩[x3, x1, x2]

)
∪

(
[x1, x2, x3]∩[x2, x3, x1]

)
∪

(
[x3, x1, x2]∩[x2, x3, x1]

)
in such a way that Dim(R) = 3.

Example 3.2 Let us consider R′ with

µR′(xi, xj) =
{

1 if (xi, xj) = (x1, x2), (x2, x3)
0 in other cases

then R′ can be represented as the union

R′ = P1 ∪ P2

where

µP1(xi, xj) =
{

1 if (xi, xj) = (x1, x2)
0 otherwise

µP2(xi, xj) =
{

1 if (xi, xj) = (x2, x3)
0 otherwise

Hence,
R′

3 =
(
[x1, x2, x3] ∩ [x3, x1, x2]

)
∪

(
[x1, x2, x3] ∩ [x2, x3, x1]

)
but still Dim(R′) = 3.
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Example 3.3 Let us consider now R′′ with

µR′′(xi, xj) =
{

1 if (xi, xj) = (x1, x2), (x1, x3)
0 in other cases

then R′′ is a partial order set with

R′′ = [x1, x2, x3] ∩ [x1, x3, x2]

being in this case Dim(R′′) = 2.

It should be pointed out that, in general, generalized dimension of a partial
order may not be equal to its classical dimension value. From a practical point
of view, we expect that each representation will suggest different explanation of
preferences (the search for a meaningful representation will be more relevant than
the dimension value).

3.1 Dimension function of arbitrary preference relations

Based upon the above generalized representation of crisp preferences we can there-
fore assure the existence of a generalized dimension function (see [14, 15]).

Definition 3.2 Given a valued strict preference relation

µ : X ×X → [0, 1]

its generalized dimension function is given by the mapping

D : (0, 1] → N
α → D(α) = Dim(Rα)

where Dim(Rα) is the generalized dimension of Rα.

This approach will then lead to a generalized dimension function showing the
generalized dimension for every α-cut, no matter if our valued preference relation
µ is max-min transitive or not. In general, X being a finite set of alternatives,
the interval (0, 1] is divided in two subsets, depending on the existence of union
operators in the above generalized representation.

A standard dimension analysis under approach is suggested in the following
example, where only three alternatives are considered.

Example 3.4 Let us consider X = {x1, x2, x3} and let µ be the strict valued pref-
erence relation depicted in figure 1.

µ =

 0 0.2 0.3
0.4 0 0.6
0.9 0.1 0


Seven different α-cuts intervals can be considered:
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Figure 1: Binary valued relation in example 3.4

1. When α ≤ 0.1, we have

µRα

=

 0 1 1
1 0 1
1 1 0


This relation shows cycles (e.g., x1 > x3, x3 > x1) but it is transitive. This
relation can be obtained as

Rα = L1 ∪ L2

where

µL1 =

 0 1 1
0 0 1
0 0 0

 µL2 =

 0 0 0
1 0 0
1 1 0


That is,

Rα = ([x1, x2, x3]) ∪ ([x3, x2, x1])

and dim(Rα) = 2.

2. When 0.1 < α ≤ 0.2, Rα also shows cycles and transitivity does not hold:

µRα

=

 0 1 1
1 0 1
1 0 0


In this case, Rα can be obtained as the union of two posets

Rα = L1 ∪R1

where

µR1 =

 0 0 0
1 0 0
1 0 0


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in such a way that

Rα = ([x1, x2, x3]) ∪ ([x3, x2, x1] ∩ [x2, x3, x1])

and dim(Rα) = 3.

3. When 0.2 < α ≤ 0.3, relation Rα still shows cycles but it is transitive again:

µRα

=

 0 0 1
1 0 1
1 0 0


Hence,

Rα = L3 ∪R2

where

µL3 =

 0 0 0
1 0 1
1 0 0

 µR2 =

 0 0 1
0 0 0
0 0 0


and

Rα = ([x2, x3, x1]) ∪ ([x2, x1, x3] ∩ [x1, x3, x2])

in such a way that dim(Rα) = 3.

4. When 0.3 < α ≤ 0.4, the α-cut shows no cycles and it is transitive:

Rα = L3 = [x2, x3, x1]

Therefore, dim(Rα) = 1.

For higher values, α > 0.3, the relation Rα will not show cycles.

5. When 0.4 < α ≤ 0.6, however, the relation Rα becomes non transitive:

µRα

=

 0 0 0
0 0 1
1 0 0


and the union operator it is again needed:

Rα = R3 ∪R4

where

µR3 =

 0 0 0
0 0 0
1 0 0

 µR4 =

 0 0 0
0 0 1
0 0 0


in such a way that

Rα = ([x2, x3, x1] ∩ [x3, x1, x2]) ∪ ([x1, x2, x3] ∩ [x2, x3, x1])

and dim(Rα) = 3.
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6. When 0.6 < α ≤ 0.9, the relation Rα defines the previous R3 poset:

µRα

=

 0 0 0
0 0 0
1 0 0


and

Rα = [x2, x3, x1] ∩ [x3, x1, x2]

in such a way that dim(Rα) = 2.

7. When α > 0.9, the relation Rα is the empty relation.

µRα

=

 0 0 0
0 0 0
0 0 0


with dim(Rα) = 2 and

Rα = [x1, x2, x3] ∩ [x3, x2, x1].

4 Determination of weights

If descriptive tools are useful in order to help decision maker capture complexity of
a problem, the search for good representation models should be a main objective.
Dimension theory seems a natural alternative under this framework, and will allow
us to avoid the restrictive classical assumption of a family of criteria C being
imbedded in the real line, i.e., dim(C) = 1 (it is important to stress that this is the
only possibility being allowed in standard methods). In this section we will show
how we can take advantage of the above sequence of representations, in order to
determine the importance of each criteria. It is again extremely important to realize
that we are avoiding restrictive constraints being assumed in standard approaches
(see [8, 16, 18, 19]), both in the crisp and valued context (see also [9]).

Our objective is the next subsections is to get information about the importance
of criteria taking into account the above sequence of representations for a given
valued preference relation between criteria

µC : C × C :−→: [0, 1]

being associated to each value α ∈ (0, 1]. Lets address before the crisp case.

4.1 Partial order of criteria

Let
µC : C × C :−→ {0, 1}

be a crisp preference relation between criteria. Let us suppose first that µC defines
a partial order, and let R =

⋂
k=1,d Lk be a representation of R, being understood

and accepted by the decision maker.
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Definition 4.1 Let C be the set of criteria and let L be a lineal order on C. We
will say that

FL : C −→ [0, 1]

is a fair allocation rule for the pair (C,L) if and only if:

• If ciLcj then FL(ci) < FL(cj).

•
∑
c∈C

FL(c) = 1.

It is easy to see that most standard models in the literature (see, e.g., [18, 19, 8])
are fair allocation rules in the above sense (additional information may be required
in each particular case). Two interesting examples of fair allocation rule are the
following, both based on the position of the j-th criteria in the above ordering, rj :

1. F (cj) =
1

rj
n∑

i=1

1
ri

.

2. Wj = (n−rj+1)
n∑

i=1

(n− ri + 1)
.

Once we have a fair allocation rule FL for each lineal order L, we only need to
aggregate the weights

(FL(c1), FL(c2), . . . FL(c|C|))

in such a way that the sum of final weights is one (notice that there are alternative
options, see [1, 3]).

So, given a representation of the crisp preference relation R =
d⋂

k=1

Lk, a family

of fair allocation rules for this representation {FLk
}, and given φ : [0, 1]d −→ [0, 1]

an aggregation operator (see [4] but also [2, 5] ), the aggregated weights of every
criteria (W1,W2, . . . W|C|) can be obtained as

Wi = φ (FL1(ci), . . . , FLd
(ci)) ∀i = 1, . . . , |C|

Obviously, aggregation operators can not be chosen arbitrarily, since the final
sum of weights must be one.

Definition 4.2 Let φ : [0, 1]d −→ [0, 1] be an aggregation operator. We will say
that this operator is doubly efficient with respect to the sum if

|C|∑
i=1

φ(w1
i , w2

i , . . . , wd
i ) = 1

whenever
|C|∑
j=1

wj
i = 1 ∀i = 1, 2, . . . , d
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Proposition 4.1 If φ is a additive aggregation operator i.e.

φ(x1, . . . , xd) =
d∑

k=1

akxk (1)

then φ is doubly efficient with respect to the sum.

Proof: Since φ(1, . . . , 1) = 1 by definition of aggregation operator (see [4]),
then we have that

∑d
k=1 ak = 1. Then,

|C|∑
i=1

φ(w1
i , w2

i , . . . , wd
i ) =

|C|∑
i=1

d∑
r=1

arw
r
i =

d∑
r=1

ar

|C|∑
i=1

wr
i =

d∑
r=1

ar = 1

So, additive aggregation operators define fair allocation rules.

Example 4.1 Let C1, C2, C3 be the criteria of a given decision making problem,
and let

R = µC =

 0 0 0
0 0 0
1 1 0


Hence, c1 < c3 (the importance of c1 is less than c3), c2 < c3 and c1||c2 (in-
comparable importance of these two criteria). In this case, dim(R) = 2 because
R = [c2, c1, c3]

⋂
[c1, c2, c3]. If decision maker accepts and understands this repre-

sentation, and for example

FLk
(cj) = wj =

1
rj

n∑
i=1

1
ri

then the weights for L1 are ( 3
11 , 2

11 , 6
11 ), and the weights for L2 are ( 2

11 , 3
11 , 6

11 ). If
φ is the median aggregate operator we get W = ( 5

22 , 5
22 , 12

22 ).

4.2 Valued preferences of criteria

Let µC : C ×C :−→ [0, 1] be a valued preference relation between criteria, in such
a way that µC(ci, cj) represents the degree to which ci is more important than
cj for the decision maker. As already pointed out, a standard generalization of
the classical representation needs max-min transitive valued preference relations,
plus the condition µC(c, c) = 0, so a representation of criteria can be obtained for
each α ∈ (0, 1] in order to determine the importance (weights) of criteria. It is
important to notice that even in this case, the weighting function W (α) depends
on the attitude of the decision maker: different people with the same valued pref-
erence relation, if forced to be crisp, can face different problems depending on their
exigency level.



184 D. Gómez, J.Montero & J. Yáñez

We can therefore aggregate all possible attitudes of the decision maker, for

example as
∫ 1

0

W (α)dα. And in case we know the probability distribution of the

attitude, defined by means of their density function a(α), we can aggregate W (α)

as
∫ 1

0

W (α) a(α)dα. Of course, other aggregations are possible.

4.3 Generalized dimension function

The above sections allow us to obtain the importance of each criteria when decision
maker preferences between criteria are max-min transitive, but of course this is not
always possible. In order to determine the weights in a more general case, we can
introduce generalized dimension [14, 15], which allows a representation of arbitrary
binary relations, as already shown in section 3.

Given R a binary preference relation represented as

R =
k⋃

r=1

dr⋂
s=1

Lrs

we can aggregate this information taking into account a fair allocation rule for each
Lrs. Now we need to aggregate the information in two steps, in order to obtain
the aggregated importance of each criteria.

Let us denote by wrs
j = FLr,s(cj) the weight of the j-th criteria in the lineal

order Lrs. First, we aggregate the information contained in ∩s=1,dr
Lrs, obtaining

wr
j = φr(w

r,1
j , wr,2

j , . . . , wr,dr

j )

and the aggregated weight Wj will be the aggregation of wr
j ,∀r = 1, . . . , k:

Wj = ϕ(w1
j , w2

j , . . . , wk
j )

Hence, given
R = ∪r=1,k ∩s=1,dr

Lrs

a representation of the binary preference relation,

φr : [0, 1]dr −→ [0, 1]

a family of aggregation operator for r = 1, . . . k and

ϕ : [0, 1]k −→ [0, 1]

another aggregation operator, in this case we need to impose that

|C|∑
j=1

ϕ
(
φ1

(
w11

j , . . . w1,d1
j

)
, . . . , φk

(
wk1

j , . . . wk,dk

j

))
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takes value 1, for all wrs
j such that

|C|∑
j=1

wrs
j = 1 ∀s = 1, . . . , dr ; ∀r = 1, . . . , k

Proposition 4.2 Given R = ∪k
r=1 ∩

dr
s=1 Lrs a representation of the binary prefer-

ence relation, φr : [0, 1]dr −→ [0, 1] a family of aggregation operators (r = 1, . . . k),
and ϕ : [0, 1]k −→ [0, 1] another aggregation operator, if ϕ and {φr}k

r=1 are aggre-
gation operators being double efficient with respect to the sum, then

|c|∑
j=1

ϕ
(
φ1

(
w11

j , . . . w1,d1
j

)
, . . . , φk

(
wk1

j , . . . wk,dk

j

))
is one, for all wrs

j such that

|C|∑
j=1

wrs
j = 1 ∀s = 1, . . . , dr ; ∀r = 1, . . . , k

Proof: Let us denote

wr
j = φr(wr1

j , . . . , wrdr
j )

Since ϕ is a aggregation operator being double efficient with respect to the sum,
we only need to prove that

|C|∑
j=1

wr
j = 1,∀r = 1, . . . k

Fixed r ∈ {1, . . . k},
|C|∑
j=1

wr
j =

|C|∑
j=1

φr(wr1
j , . . . , wrdr

j )

where
∑

s=1,dr
wrs

j = 1,∀j. Then, since φr is doubly efficient,

|C|∑
j=1

φr(wr1
j , . . . , wrdr

j ) = 1

and the result holds.

Proposition 4.3 Under the previous conditions, if ϕ and φ are additive aggrega-

tion rules then
|C|∑
i=1

Wi = 1.
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Proof: direct from 4.1 and 4.2.

It is important to point out that we have been able to represent the dimension
function for any value of α and for any valued preference relation.

Example 4.2 Let us consider C = {C1, C2, C3} a set of three criteria, and let µ
be the strict valued preference relation analyzed in the example 3.4. If we consider
the operators and allocation rule given in such example, the weights for each alpha
cut are:

1. When α ≤ 0.1, Rα = ([c1, c2, c3]) ∪ ([c3, c2, c1]), so W (α) =
(

4
11 , 3

11 , 4
11

)
2. When 0.1 < α ≤ 0.2, Rα = ([c1, c2, c3])∪ ([c3, c2, c1]∩ [c2, c3, c1]), so W (α) =(

4
11 , 2.75

11 , 4.25
11

)
3. When 0.2 < α ≤ 0.3, Rα = ([c2, c3, c1])∪ ([c2, c1, c3]∩ [c1, c3, c2]), so W (α) =(

4.25
11 , 3

11 , 3.75
11

)
4. When 0.3 < α ≤ 0.4, Rα = [c2, c3, c1], so W (α) =

(
6
11 , 2

11 , 3
11

)
.

5. When 0.4 < α ≤ 0.6, Rα = ([c2, c3, c1]∩ [c3, c1, c2])∪ ([c1, c2, c3]∩ [c2, c3, c1]),
so W (α) =

(
4.25
11 , 3.25

11 , 3.5
11

)
.

6. When 0.6 < α ≤ 0.9, Rα = [c2, c3, c1] ∩ [c3, c1, c2], so W (α) =
(

4.5
11 , 4

11 , 2.5
11

)
.

7. When 0.9 < α, Rα = [c1, c2, c3] ∩ [c3, c2, c1], so W (α) =
(

4
11 , 3

11 , 4
11

)
.

If we consider that any attitude of the decision maker is possible, the final
criteria weights can be aggregated as

∫ 1

0
W (α)dα. Therefore,

W =
(

4.425
11

,
3.225
11

,
3.35
11

)
= (0.4022, 0.2931, 0.3045)

5 Final remarks

In this paper we continue the research initiated in [10] in order to develop an alter-
native method to determine the importance of criteria in decision making, obtained
from possible representations of preferences within real space. This method will be
specially useful when incomparability among criteria appears.

It must be noticed that key degrees of freedom in our approach should be
carefully fixed through experience: aggregation operator is not unique, neither the
associated representation or the consistency behind (see [11]). The role of decision
makers is extremely relevant, since representations, in order to be useful, should
be understandable and manageable by them (see [13]). Our generalized dimension
approach to preference relations opens interesting possibilities for decision making
aid, so importance of criteria can be put in clear, perhaps acknowledging that such
an importance valuation does not imply the assumption of a linear order in the set
of criteria. In this sense, we again want to stress the key role representation tools
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play in order to get a good understanding of complex decision making problem.
Representation techniques should be considered as part of a necessary data mining
analysis, previous to any decision making procedure (see, e.g., [13, 12]). In this
paper we have explored a particular representation technique based upon dimension
theory, assuming that this approach should give natural hints about underlying
criteria and their relative importance.
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