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1.1 Due to the significance to avoid contradictory outputs in the processes of in-
ference, Trillas et al. (see [11] and [12]) addressed the study of contradiction in
framework of Fuzzy Logic introducing the concept of contradictory set. These pa-
pers formalise the idea that a set is self-contradictory (or contradictory to be short)
if it violates the principle of not contradiction in the following sense: the statement
“If « is P, then x is not P” holds with some degree of truth. So, they established
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that the fuzzy set associated with the predicate P, and determined by up, is contra-
dictory if “up(x) — pu—p(x) for all 27 representing the implication “—” by means
of the reticular order < of [0,1], that is, up is self-contradictory regarding a strong
negation IV, or N-self-contradictory, if up < N o up. The condition u < N o p is
equivalent to Sup(u(x)) < an, where ay is the fixed point of N. Nevertheless, the

x
extent to which this condition holds, that is, how contradictory u is, is a matter
for consideration, since u can behave quite differently regarding this characteristic.
For example, if the fuzzy set determined by pu verifies that Sup(u(x)) = an, then a

x
minimal variation in this supreme could produce a non-N-contradictory fuzzy set.
But, if Sup(u(z)) is much smaller than ay, then small changes in this supreme

x
do not modify the contradictoriness of the disturbed p. The need to speak not
only of contradiction but also of degrees of contradiction was later raised in [3]
and [4], where some functions were considered for the purpose of determining (or
measuring) these degrees.

1.2 The intuitionistic fuzzy sets, as it is well known, were introduced by K. T.
Atanassov in 1983 and they include fuzzy sets as a particular case. Since then
many papers have been published in the theoretical framework of these sets as well
as in that of their applications. The formal definition of intuitionistic fuzzy set is
the following:

Definition 1.1. ([1]) An intuitionistic fuzzy set (IFS) A, in the universe X # 0,
is a set given as A = {(x,na(x),va(x)) :x € X} where pa: X —[0,1], vg: X —

[0,1] are called membership and non-membership functions, respectively, and such
that pa(x) +va(z) <1 forallz € X.

This set could be considered as a L-fuzzy set as defined by Goguen ([9]) being,
in this case, L = {(a1,a2) € [0,1]> : a1 + as < 1}, with the partial order <,
defined as follows: given a = (a1, a2), 8 = (61, 52) € L,

a<l; B a1 <f &ary>ps.

(L,<p) is a complete lattice with smallest element, O, = (0,1), and greatest
element, 1y, = (1,0).

So, an IFS A is a L-fuzzy set whose L-membership function y4 € L* = {y :
X — L} is defined for each z € X as x4(z) = (ua(w),va(z)). Let us denote the
set of all intuitionistic fuzzy sets on X as ZF(X).

Furthermore, K. Atanassov also proposes an early negation operator in the
IFS and, later in [2], a more general definition is established at the same time
that the intuitionisc fuzzy generators are introduced to build intuitionistic fuzzy
negations. Recall that a decreasing function A/ : L — L is an intuitionistic
fuzzy negation (IFN) if N'(0r,) = 1p, and N (1) = O, hold. Moreover, N is a
strong IFN if the equality N (N (a)) = a holds for all @ € L. Moreover De-
schrijver et al. in [7] and [8] focus on the problem of generating and characteriz-
ing a strong intuitionistic fuzzy negation and they prove that any strong IFN N
is characterized by a strong negation N : [0,1] — [0,1] throughout the formula
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N(a1,a2) = (N(1 — a2),1 — N(ay)), for all (a1, as) € L. Regarding strong fuzzy
negations, they were characterized by Trillas in [10]. He showed that N is a strong
negation if and only if there exists an order automorphism in the unit interval,
g:[0,1] — [0,1], such that N(a) = g~ (1 — g(«)), for all « € [0,1]. Thus a strong
IFN N is also determined by an order automorphism g in [0, 1].

1.3 The study of contradiction in the framework of IF'S was initiated in [6] where
the concept of contradictory IF'S was introduced, and some necessary conditions to
be a contradictory set, as well as some sufficient conditions, were obtained. Since
it is interesting to know not only if a set is contradictory, but also the extend to
which this property holds, the problem of measuring the contradiction in the case
of IF'S was initiated in [5] introducing some functions to this purpose.

In this work, we go into this topic and the paper is organized as follows: Sec-
tion 2 deals with self-contradiction regarding a specific negation; first we tackle
contradiction from a geometrical point of view to find some relation suggesting the
way to measure how contradictory an IFS is. Secondly, we propose some measures
to determine the searched degrees of contradiction. After defining these functions
some of their properties are proved as well as some relations among them. An anal-
ogous study with the contradiction without depending on any negation is shown
in section 3. Finally, we raise some conclusions.

2 Measuring N -self-contradiction in ZF(X)

Similarly to the fuzzy case, an IFS A is said to be a self-contradictory set with
respect to some strong IFN, N, if x4(z) < (N o x?)(x) for all x € X, where x4
is the L-membership function of A.

Before defining the functions that measure the contradiction degrees, we analyse
the regions of L in which the contradictory sets for a given negation are located.
This study motivates us to define the mentioned functions.

2.1 Regions of N -contradiction

In [3] it is proved that, given A € ZF(X), with x* = (pa,va) € LY, and N a
strong IFN, associated with the strong negation N, then

(i) A is N-contradictory < N(pa(x)) +va(z) > 1 forall z € X.

(ii) A is N-contradictory < g(pa(z))+g(1—va(x)) < 1forallz € X, provided
g is the generator of V.

Preceding inequalities, that are equivalent, determine a region free of contra-
diction in L and another one where the contradictory sets must remain. Let us see
those regions for some particular negations and afterwards in the general case.

2.1.1 MN;-contradiction with standard negation Ns(ay,az) = (a2, a1)

If we consider the standard negation, N, that is given by N = 1 — id, where the
generator ¢ is the identity; then the above statements become: A is A/-contradictory
if and only if 1 — pa(x) +va(x) > 1, or va(z) > pa(x) Vo € X.
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Figure 1: N;-contradiction area.

So, A is Ns-contradictory if and only if x4(X) = {x*(z) : v € X} C {(a1,a2) €
L : oy < as}; therefore, the image of X under x#, that we also call range of A,
should be inside of the region showed in figure 1, and the line a; = a» is the
boundary between the contradictory and non-contradictory regions.

2.1.2 MNj-contradiction being N, the strong IFN associated with a
Sugeno’s negation

The order automorphism g(a) = m(l}]_ga) determines the strong Sugeno’s negation

Ny(a) = }_‘F—g In this case, the set A € ZF(X) is Ny-contradictory if and only if

1 —pa(z)

>1 VxelX
1+ pa(x) tralz) 2 v

Thus, A is Ny-contradictory if and only if (fig. 2(a))

YAX) ¢ {(a,a2) €L:as+ ajas —2a; >0}

2.1.3 MN,-contradiction with A, determined by g,(a) = a”, r >0

Let us consider the family of strong negations {N,},~0, where for each r > 0 the
automorphism determining N, is g,(«) = &”. This family includes as a particular
case the standard negation for r = 1, and for each r > 0 it is N,.(a) = (1 —a”)!/"
with fixed point ay, = 21% .

A € ITF(X) is Ny-contradictory, where N, is the IFN associated with N, (or
with g,), if and only if

XA(X) C{(ag,a0) € L:af+ (1 —ao)" <1}

For each r > 0 the curve af + (1 — a2)” = 1 is the boundary delimiting the
contradiction region, and if an IFS takes some L-value under that curve, then it is
not N,.-contradictory.
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In particular, A is Na-contradictory if and only if the image of X under y*
is inside or on the circumference with centre O, and radius 1 (fig. 2(b)). Let
us point out that the boundary curve of the contradiction region, with equation
a? + (1 — az)? = 1, intersects the line with equation oy + as = 1 at the point
(an,,1—an,) = (1/\/5, 1-— 1/\/5), where ay, is the fixed point of Nj.

0,
0, L L
YAX) :
WX ] Ny-contradiction
ﬂ\g-contradiction N2-1,24\2) area VTR )
area
\\ 1 \ .
L 2 2_
a,(1+a,) =2a, 0L1"'(1_O°2) =1

(a) (b)

Figure 2: (a) Ny-contradiction area with a Sugeno’s negation, and (b) N2-contradiction
area with N> determined by g2(a) = o®.

Let us note that the more r increases, the more the curve of + (1 — ag)” =1
comes closer to axis a; (except for ay = 1); to be precise, when r — oo, the family
of functions {1 — (1 —a%)"/"},~0 is pointwise convergent to the null function for all
ay € [0,1) and to 1 at ; = 1; therefore, the non-A,-contradiction region decreases.
Furthermore, when r — 0, the family of functions {(1 —(1—a2)")"/"},~¢ converges
for all s € [0,1) to the null function, and for as = 1 converges to 1; that is, the
more r decreases, the more the curve delimiting the contradiction region comes
closer to axis g (except for ag = 1), and then the non-A,-contradiction region
spreads when r decreases.

Figure 3: Curves af + (1 — a2)" = 1.

On the other hand, if 0 < r < s the curve af + (1 — a2)® = 1 is under
the curve of + (1 — a2)” = 1 (in figure 3 some of them are showed), and, if
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A € TF(X) is Ny-contradictory, A is Ng-contradictory for all s > r. Indeed, if
r<sitisaj >af forall oy € (0,1), and, as g1 is increasing and 1/s < 1/r, it is
(1—aN'V" < (1 —a$)'/" < (1 —af)'/#, from which it follows that the coordinate
s of the curve related to s is smaller than the one related to r.

Finally, let us observe that the aforementioned family of curves almost “cover”
the lattice L with the exception of the axis without the origin, that is:

Ur>0 {(al,ag) cL: OLT + (]. — a2)r = ].} =
L\ {(a1,2) # (0,0) : @1 =0 or ao = 0}.

2.1.4 General case of N'-contradiction

If AV is a strong IFN associated with the strong negation N, a set A € ZF(X) is
N-contradictory if and only if

XA(X) C{(aq,a2) € L: N(ay) + g > 1},

and the boundary curve delimiting the contradiction region, N(a1) + a2 = 1, and
that we name N -boundary curve and we note Ly, verifies the following properties:
(1) ae =1 — N(aq) is an increasing function of .

(2) Its range contains the point (0,0).

(3) The intersection of N(ay) +as =1 and a1 + az = 1 is the point (an,1 — an),
being «ayy the fixed point of N.

2.2 Degrees of N -contradiction

As we noted in the introduction, it is important to measure how much contradictory
a set is, and not only in the fuzzy case, but also in the intuitionistic one. In fact,
the IFS with L-membership function x°=(z) = 0O, for all z € X is N -contradictory
for any IFN NV, and A € ZF(X) taking all its L-values on the A'-boundary curve,
N(a1) + as = 1 (where N is the strong negation associated with N), is also A/-
contradictory. Nevertheless, small disturbances in the L-values of A could return
a new set, very similar to A, but not A/-contradictory, whereas small disturbances
on O, will never change its nature of contradictoriness. So, it seems quite suitable
to assign the value 0 as the degree of NV-contradiction of A, and also of any set
taking L-values on the A/-boundary curve or underneath it. Analogously, it seems
appropriate to assign positive degree to a set whose range is above the boundary
curve and it will be as much higher as the range is farther away from the curve.
Taking in account these comments, we will define different functions that could be
used to determine the contradiction degrees.

Definition 2.1. Let A € ZF(X) determined by x* = (pa,va) € LX; then
(i) CN(A) = Max (0, Ig"((N(,uA () + va(z) — 1)) is the N -contradiction degree

of A according to the strong megation N associated with N, or cq -contradiction
degree of A.
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(ii) CY (A) = Max (O, 1- fél)};(g(uA(x)) +g(1 - VA<.T)))> is the N -contradiction

degree of A according to the automorphism g determining N, or Cév -contradiction
degree of A.
(i1i) The contradiction degree according to the distance to the non-N -contradiction
TeGION 1S
A (X), L)

d(Or,, L)

where d is the euclidean distance, and Ly = {a = (a1,a2) € L : N(aq) + e < 1}
is the N -contradiction free region, that is, the region below the curve Ly ; thus,

sl (4) =

d(x*(X), Ly) = Inf {d(XA(x),a) tx € X,a € Ly}

and d(0y, Ly’) = Inf{d(Op,): o € Ly}. We will say that C{(A) is the C-
contradiction degree of A.

The above three functions take their values in [0,1] and, in general, they are
different measures, as the following example shows.

Example 2.2. Let A € ZF([0,1]) with L-membership function x*(z) = (z/4,1 —
x/2) (fig.4), and let us consider the strong IFN A determined by the fuzzy negation

N(x) =1 — 22, with g(x) = 2%. Then:

N(4) = C(Ey?ow)) o viso2
G (A)_Max<0’wéf6f,u< ! (4) 2))‘ 1

e - 0. sm (974 (3))) - 3

And, finally , /s
Mgy - A(X) Ly) . Vb
G "on Iy T
<
0,
X)
CNA)
cXay| N
S~
02+ (1-a)2=1

I

Figure 4: Geometrical interpretation of different contradiction degrees.
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Remark 2.3. The function €1V is motivated by the characterization of the contra-
diction (i) of 2.1, whereas C§ is originated by (ii). Although both characterizations
are equivalent, C{v and Cév do not match up, as it is showed in the above example
2.2. Besides, Cév represents a relative distance: the euclidean distance between
the range of an IFS and the non-N-contradiction region of L, Ly, relative to the
distance between the “most contradictory” set and the same region; whereas C{V
represents the infimum of the distances between the ordinates of the L-values of
the IF'S and those of £ with the same abscises, that is, the infimum on the x € X
of euclidean distances d((ua(x),va(z)), (pa(x),az)) being (ua(x), a2) € Ly (see
the figure 4). Regarding Cy', it is possible to find some geometrical interpretations
in some particular cases.

Theorem 2.4. For i = 1,2,3, the function CZN : IF(X) — [0,1] given for each
A € IF(X) and for each IFN N as in the definition 2.1 satisfies:

(i) If Or, denotes the IFS such that x°=(x) = Oy, for all x € X, then CN(0L) = 1.
(i1) If A € TF(X) satisfies the condition xIél)f( va(z) =0, then CN(A) = 0.

(iii) CZN is anti-monotonic with respect to the orders <y, in L and the usual one
of R: If A, B € TF(X) with x4 <p x? (that is, x*(x) <p, xB(x) for all x € X),
then CN(B) < CN(A).
Proof: (i) CN(0g) =1 for i = 1,2, 3 trivially.
(ii) Let A € ZF(X) be a set such that Iél)f( va(z) = 0. Since N(pa(z)) —
x

1 <0 for all x € X, where N is the fuzzy negation associated with the IFN
N, then Iél)f((N(,uA(x)) +rva(x) — 1) < Ig)f( va(z) = 0, and therefore C{V(A) =
x €T

Ma (0. 1 (N (1a(0) + va(0) = 1)) =0,

If ¢ is the automorphism associated with A/, then

Sup g(1 — vale) = g (gggu - uA<x>>) o (1 - Inf uA<x>) — ) =1,

and so Sup(g(pa(x))+g(1 —va(x)) > Sup g(1 —va(z)) = 1, consequently, it holds
reX zeX
that

O (A) = Max (o, 1 Suplolia(w)) + 901 - uA<x>>>) 0.

Since In)f( va(x) = 0 there exists some (ayg, 0) belonging to the closure of x4 (X),
e

xA(X). If ag > 0 there exists some (a1, ) € x*(X) such that N(a;)+az2 < 1 and
then d(x*(X), Ly) = 0. If ag = 0 it is (0,0) € xA(X)N L, then d(x*(X), Ly) =
0 and so C4/(A) = 0.

(iii) Let us see that the three functions are anti-monotonic. If x4 <; x? then

pa(x) < pp(x) and  N(pa(z)) > N(ps(w))

va(z) >vp(z) and 1—wva(z)<1-—wvp(n) }Vx € X,



Searching Degrees of Self-Contradiction in Atanassov’s Fuzzy Sets 147

therefore, N(pa(z)) +va(z) > N(pup(x))+vp(z) for all z € X and it follows that
CN(B) < ¢ (A). Moreover,

5’2}2 (9(ps(x)) +9(1 —vp(x))) > 5;1)12 (9(pa(x)) +g(1 —va(x)))

and so C3Y(B) < CY (A).

Finally, let us see the anti-monotony of Cé\[ . For this, we will prove that all
x € X satisfies d(x(x), Ly) > d(xB(x), Ly) provided x* <; xZ. Let x*(z) =
(aft,af) € L and xP(z) = (af,af) € L. If d(x*(x),Ly) = 0 then x4(z) =
(aft,a8)) € Ly = Ly, thus N(af') + as < 1. Since x* <, x? then

N@P)+af <N@f) +as <1

and therefore d(x? (), Ly’) = 0 and the required inequality is satisfied. Now, let
us suppose that d(x*(x), Lx’) > 0 then this distance is reached on the boundary
of Ly, Lar, since Ly is a compact set. Let a* = (af, a3) € L be the point such
that

d(x*(z), Ln) = d(x* (2), ")
and we consider the following four regions contained in the set [x“(z),11] = {a €
L : x*z) <1 a} (see figure 5): Ly N [x*(2), 1], x*(2),@"] = {a € L :
x*(z) <p a <p a*},

R = {Ol = (a1, a2) € [XA(-T),].L] : N(oq) +an>1 }

a3 > ao
and
B B N(oi)+az>1
R, = {a = (o, 22) € [x" (), 10] af <o }
0y
[x4(x),0]
v (x
Ry o
L, N [A),1,]
1.

Figure 5: The four regions in [x*(z), 1L].

Note that the union of these four sets is the whole L-interval [x*(x),1r] and
we assume x 2 (2) € [x?(z), 1L].
If x%(2) € Ly N [x*(2),10] then d(x”(2), Lx) = 0 < d(x*(x), L)
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Since the diameter D([x*(x),a*]) = Sup{d(c,B) : a,B € [x*(z), a*]} is ex-
actly the distance between y“(z) and o*, if x?(x) € [x”(z), a*] then the required
inequality is satisfied because of

d(x" (), Ln) < d(x"(2), @) < D(Ix" (2), @’]) = d(x" (2), &)

Now let us suppose that xZ(z) = (af,af) € R, and we consider the point of £

with the second coordinate o, that is (N~1(1 — o), a) (see figure 6(a)), so
d(x"(2), Ly) < d((af,05), (N"H(1 - a5),a8)) = N1 —ay) —af (1)
Moreover, af < aj implies
NY(1—af) < N7 (1—aj) = o] (2)
From (1) and (2)
d(x"(2),Ly) < o —af <af —af <d(x*(z2),a")

is obtained.

The last possibility is x?(z) € R, and let us see that the required inequality
is also satisfied. We consider the point of £y with first coordinate af, that is
(aP,1— N(aP)) (see figure 6(b)), then

d(x” (), Lx) < d((af,0f), (o7, 1 = N(a7')) = af — (1= N(a7))  (3)
Moreover, a] < a’lg implies
a3 =1-N(aj) <1-N(a) (4)
From (3) and (4) the following is obtained:

d(x"(2), Ly) < o — a3 < d(x* (z), ")

0, 0, g
xB(x)
x4 (x) x4 (x)
K@~ | R N
Ny —
1
R, \(/N‘\l(l—af),af) (oF,1-N(a%))
1, 1,
(a) (b)

Figure 6: Illustration of theorem 2.4(iii) proof.
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Remark 2.5. Let us see some considerations:
(a) The inequality Sup pa(x) <1-— In)f( va(x) is satisfied since pa(x) <1—va(x)
z€X z€

for all x € X, so if Sup pa(x) = 1 then CZN(A) =0 for all ¢ = 1,2,3 and for all

reX
strong IFN A,
(b) There exist many sets that are contradictory regarding any negation and there
exist many sets that are non-contradictory with regard to any negation. Indeed,
if A € ZF(X) satisfies Sup x”(z) = (0,a3) then A is N-contradictory for all A/
reX

strong IFN. Furthemore if o > 0 then CV(A) = In}f( va(z) = o5 > 0 for all
fAS]

N, CY(A) > 0 and C{(A) > 0 being values C§'(A) and CY(A) dependent on

N; but if a5 = 0 then CN(A) = 0 for all N and for i = 1,2,3. In short, if

all L-values of A are on the axe a; = 0, then A is N-contradictory for all N.

Meanwhile if Sup x*(z) = (af,0), where af > 0 and (0,0) ¢ x4(X) then A is non-
reX

N-contradictory for all strong IFN N (see proposition 3.4). However, if A does not
satisfy any of these possibilities, then A is a contradictory set regarding countless
negations and, at the same time, it is a non-contradictory set with respect to other
countless negations as it is shown in the following result.

Proposition 2.6. Let A € TF(A) with L-membership function x* = (ua,va) €

LY. If Sup x*(2) = o* = (af,a3) with af > 0 and ol > 0, then the following is
zeX

satisfied:

(i) A is N'-contradictory for all N such that its associated fuzzy negation N satisfies

1 < N(af) + ab. Moreover, CN(A) > 0 for i = 1,2,3, with CN according to the

formula in definition 2.1.

(i1) A is non-N-contradictory for all N such that the fized point an of the fuzzy

negation associated with N verifies any < of.

Proof: (i) For all z € X
N(pa(z)) +val@) = N(ay) + a3 > 1
holds, and so A is AV/-contradictory. Moreover

C'(4) = Tnf (N (ua(@)) +va(z) — 1) = N(a}) +a5 1> 0.

Furthermore, if ¢ is the automorphism associated with N, condition 1 < N(«af)+a3
is equivalent to 1 > g(aj) + ¢g(1 — o) and thus

glpa(@) +g(1 —va(x)) <gla}) +gl—a3) <1 VeeX

therefore C§'(A) > 0.

Now, let us suppose that C(A4) = 0, then d(x*(X),Lx) = 0 and since
xA(X) C [0n,a*], it is d([0r,a*],Ly) = 0. As [0p,a*] and Ly are compact
sets of R? with the usual topology, then there exists 3 = (31, B2) € [Or,a*] N Ly,
and consequently

L<N(aj) +a; <N(Bi) + P2 <1
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which is absurd, therefore C4'(A) > 0.

(ii) If the fixed point of N, aiy, satisfies an < af = Sup p4(x) then there exists
reX

zo € X such that any < pa(zo) < af, thus

N(pa(zo)) +va(zo) < N(an) +valzo) <an+1—pa(zo) <1

holds, and therefore A is a non-N-contradictory set. ]

In the following, we reach some relations between the measures C{V , Cé\[ and
¢} defined in 2.1 in some particular cases.

Proposition 2.7. Let N be the standard IFN, then for all A € TF(X) it holds:
e (4) = e (4) = € (4),

Proof: Since the fuzzy negation associated with N is the standard negation
N =1—1d, then

cVe(A) = Max (0, Inf (va(z) — ,uA(m))>
zeX
Moreover, as the automorphism associated with Ay is g = id then:

3" (4)

Max (0, 1— Eg; (na(z)+1— VA@)))

Max (0, mIél)f((uA(x) - MA(@))

Thus C)*(4) = ¢ (A).

If xA(X)N{(e1,02) € L : oy < g} # 0 then C)=(A) = C)(A) =C-(4) =0
holds. Let us suppose that v4(z) > pa(x) for all x € X, then for each x € X (see
figure 7)

S

d(x* (@), Lw.) = d(x* (@), L) = (va(@) — pa(@)) sin % = (va(z) — palz) 5

holds; therefore

A0AX), Ly a2fal@) —pale)v2/2

N _ _
Go(A) = d0r,Ly.) d(0r, L)
= Inf (va(z) — pa(@)) = €1 (4)

since d(Or, Ly,) = V2/2. O
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0,

XA(X):(HA (x),v,(x))
N
NS d (¢ (), Loxe)

v, ()= (¥) 4

d(o,,Ly)

Lo

I

Figure 7: Proof of proposition 2.7.

Proposition 2.8. If N, is the IFN generated by the automorphism g(a) = o2,

then for all A € TF(X) the following is satisfied:
C*(A) =1—(1-C57(4))%

Proof: If A is Ny-contradictory then Cév”(A) = Cé\[" (A) = 0 and the required
inequality holds. If A is non-Ny-contradictory, since £ N, is the circumference with
centre O, and radius 1, d(x*(z), L;,) = 1 — d(x*(z),0v) for all z € X, and then

Ny
;7 (4)

1= 52)12(”,4(35)2 +(1—va(@)?) =1~ 53)1? d(x"(2),01)

2
= 1 Sup(1 — d( (@), La )P = 1 (1 - (g aotio.£x0)) )

zeX

1—(1-C"(4)?).

O

Remark 2.9. From previous preposition the next comment is followed: if x*(X)
is a compact set, the supremum in definition Cév” (A) and the infimum in definition
Cév" (A) are obtained from the same point x“(zg), provided g(a) = a?, despite
C;\[g (A) # e (A). Nevertheless this fact does not happen when we deal with
functions C; ¢ and Cé\[”, that is, we can find an IFS A such that C{\[”(A) and
Cé\[" (A) are obtained from different points of L. Indeed, let X # (} be any universe
of discourse whose cardinal is greater than 1, and we consider A € ZF(X) such
that x4(X) = {(1/2,1/2),(0,a)} where 1 — 1/v/2 < a < (v/3 —1)/2. There exist
21,79 € X, such that z; # 22, x*(z1) = (1/2,1/2) and x*(22) = (0,«). Since the
point in Ly, with ay = 1/2 is (1/2,1 — v/3/2) the following is satisfied (see figure
8):

4y = Min{a((1/2,1/2),(1/2,1-v3/2)) ,d((0,),(0,0))}

Min{V3/2 —1/2,a} = o = d(x*(x2), (0,0))
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and

wQZ
=
|

Min {d ((1/2,1/2), Ly, ) ,d((0,a), L)}
= Min{d ((1/2,1/2),Ly,) .d((0, ), (0,0))}
= Min{l —1/v2,a} =1—1/v2 =d(x*(z1),Ly,)

0,

IN2

A =(1/2,1/2)

X6 =(0.0) V3 /2-112

Gainlt" Aniven

AN "

o?+(1—ay) *=1

Figure 8: Illustration of remark 2.9.

3 Measuring Self-contradiction in ZF(X)

The previous section establishes the contradiction of an IFS related to a chosen
negation. We now address contradiction more generally, without depending on a
specific IFN. In [6] an IFS A € ZF(X) was defined self-contradictory (or contradic-
tory to be short) if A is A-self-contradictory regarding some strong IFN A. The
aim of this section is to define some functions to measure how self-contradictory an
IFS is in the same line as the functions to measure A -self-contradiction. To that
purpose, it is very useful to show some results.

Proposition 3.1. ([6]) Given A € TF(X) with L-membership function x* =
(ua,va) € LY, the following holds:
(i) If A is self-contradictory, then Sup pa(x) < 1.

rcX

(i) If Iél)f(VA(x) > 0, then A is self-contradictory.

Corollary 3.2. If A € ZF(X), with membership function pa € [0,1]%, is contra-
dictory, then Sup(pa(zr) —va(z)) < 1.
zeX

Proposition 3.3. Let A € TF(X) with L-membership function x* = (pa,va) €
LX. If A is self-contradictory then for all {xy }nen C X such that lim va(z,) =0,
n—oo
lim pa(zy,) =0 is satisfied.
n—oo
Proof: Let {zp}neny C X such that lim vy(x,) =0, then lim (1 —va(zy)) =

n—oo

1 and, if ¢ is an order automorphism, lim ¢g(1 — va(z,)) = 1 provided g is a
n—oo
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continuous function. Besides, since A is N-contradictory for all A, in particular

for N' = N, then
0<g(pa(zn)) <1—g(1—va(zy)), VneN
Therefore, lim g(pua(zy)) =0, and so lim pa(x,) =0. O
n— oo n—00

The reciprocal of condition (ii) in proposition 3.1 is not true since if X =
[0,1] and A € LI®Y such that x*(x) = (z/2,2/2) for all x € [0,1], then A is a

self-contradictory set and, however, I%f ]I/A(ZL’) = 0. Nevertheless, we have the
x€(0,1

following result:

Proposition 3.4. Let A € TF(X) with L-membership function x* = (pa,v4) €
LY such that Ig)f( va(z) =0 and (0,0) ¢ xA(X), then A is non-self-contradictory.
€T

Proof: If there exists (a,0) € x*(X) with a > 0, as it is previously shown, A
is non-N-contradictory for all strong IFN A, If for all o € [0, 1], (o, 0) ¢ x*(X),
then there exists {z,}neny C X such that lim v4(z,) = 0. Thus, the sequence

{(pa(xn), va(rn))neny C LY has a convergent subsequence { (1a(7y,, ), va(2n,,)) ke
since L is a compact set. Moreover, klim pa(zn, ) = a > 0provided (0,0) ¢ y4(X),

and this implies A is non-self-contradictory because if A were self-contradictory
then, according to the previous proposition, klim ta(Tn,) =0 which is absurd. O
— 00

Corollary 3.5. Let A € ZF(X) with L-membership function x* = (ua,va) € LY

and such that (0,0) ¢ x4(X), then the following is verified:

In)f( va(z) =0 <= A is non-self-contradictory
e

Definition 3.6. Let A € TF(X) with L-membership function x* = (u?,v?) €
LX;: then the C;-contradiction degree of A, for i=1,2, is defined as follows:

(i) C1(A) = xlg)f( va(x).

0 if Inf va(z)=0
(i) C2(A) = 1—pa(z)+va(z) er
Ig)f( Ha > A in other case

Essentially, the definition of C; is based on point (ii) of the proposition 3.1,
whereas Cs is motivated by the corollary 3.2 taking into account the proposition
3.4.

Example 3.7. Let 4,B € IF([0,1]) determined by x*(z) = (1/4,1/4) and
xB(x) = (3/4,1/4) for all x € [0, 1], respectively. Then C1(A) = C1(B) = 1/4;
however, C2(A) = 1/2 and Ca(B) = 1/4. How could we explain these results? As
both sets are contradictory, it is obvious that the two measures should be positive
for them. The first one measures how much each set needs to stop being self-
contradictory, as that is just what is missing to “touch” the axis . But, how
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to interpret that the degree for Co is greater for A? A possible answer is that the
set A is N-contradictory for the same negations A that B and, furthermore, for
a lot more of them, that is, there are more negations N that make A contradic-
tory than that make B contradictory. In this sense, the measure Co provides more
information than C; about contradictoriness. <

Remark 3.8. On the one hand, it is evident that the function C; measures the
euclidean distance from the range of a contradictory set A € ZF(X) to the axis a4
(that we denote L4):

Ci(A) = d(x (X), £1) = dN(X), L1)

d(0r, L1)
On the other hand,
0, if Infva(z)=0
zeX
Co(A) = A
2(4) M, in other case
dy(0r, 1y,)

that is, the function Co measures the reticular or Hamming distance between the
range of A and 1y, relative to the reticular distance from Oy, to 1r,. These geomet-
rical interpretations of the measures C; y Co suggest another way to measure the
contradiction degree.

Definition 3.9. The function Cs3 : IF(X) — [0,1] is defined for each A € TF(X),
with L-membership function x* = (pa,va), as follows:
0, if :}gg VA(mn) =0
Ca(4) = { dxA(X),1u)

in other case.
d(OL, 1L)

Proposition 3.10. For all A € ZF(X) the following is satisfied:
C1(A) <Co(A) <C3(A) VAeIF(X)

Proof: As va(z) <1 — pa(z) for all z € X, the inequality va(z) < (va(x) +
1—pa(z))/2 follows trivially for all x € X, and therefore C;(A4) < Ca(A).

From v (z)? —2v4(z)(1—pa(x))+(1—pa(z))? > 0 for all z € X, the inequality
va(@)? + (1= pa())® +2va(2)(1 — pa(z)) < 2val ) + (1 — pa(x))?) follows for

all z € X, and then v (2)+1—pa(x) < V2/va(z)? + (1 — pa(z))? forallz € X.
Therefore
B va(z) +1—pax \/VA + (1 —pa(x)?
o) = gug P4 < g AT
O

Finally, similar properties to those ones of measures that depend on some strong
IFN are now obtained trivially.
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Theorem 3.11. For each i =1,2,3, the function C; satisfies:
(i) C;(0,) = 1.
(ii) If A € TF(X) verifies Iél)f( va(xz) =0, then C;(A) = 0.

x

(iii) C; is anti-monotonic respect to the orders <p, into L and the usual of R: If
A, B € IF(X) such that x* <p xP, then C;(B) < C;(A).

4 Conclusions

The study of self-contradiction in the framework of IFS has been tackled from
two aspects. The first one was the contradiction depending on a particular strong
negation. In order to find out some models to measure how self-contradictory an
IF'S is, we have proposed some functions based on a previous geometrical study. The
fundamental properties of these functions have been proved. Furthermore, some
results about the relations among these functions have been attained. Finally,
as the second aspect, the contradiction without depending on any negation was
studied throughout similar steps.
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