Mathware & Soft Computing 13 (2006) 127-134

Fuzzy Neural Network Approach to Fuzzy
Polynomials

S. Abbasbandy®® M. Otadi®
¢ Department of Mathematics, Science and Research
Branch, Islamic Azad University, Tehran, 14778, Iran
®Department of Mathematics, Faculty of Science, Imam Khomeini
International University, Ghazvin, 34194, Iran

Abstract

In this paper, an architecture of fuzzy neural networks is proposed to
find a real root of a dual fuzzy polynomial (if exists) by introducing a learn-
ing algorithm. We proposed a learning algorithm from the cost function for
adjusting of crisp weights. According to fuzzy arithmetic, dual fuzzy poly-
nomials can not be replaced by a fuzzy polynomials, directly. Finally, we
illustrate our approach by numerical examples.
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1 Introduction

Polynomials play a major role in various areas such as mathematics, engineering
and social sciences [2]. The numerical solution of a fuzzy polynomial by fuzzy neural
network is investigated by Abbasbandy and Otadi [5], by finding the solution of
polynomial Ajx+Asz?+...+A,a™ = Ag for z € R (if exists) where Ag, A1,..., 4,
are fuzzy numbers. In this paper we are interested in finding solution to a dual
fuzzy polynomials like A\ z+ Aga®+.. .+ A 2" = Ajx+ Aya®+.. .+ A, z"+ Ay for
z € R (if exists) where Ay, All, ey A;; are fuzzy numbers by a learning algorithm
of fuzzy neural networks.

Ishibuchi et al. [11] proposed a learning algorithm of fuzzy neural networks
with triangular fuzzy weights and Hayashi et al. [10] also fuzzified the delta rule.
Linear and nonlinear fuzzy equations are solved by [1, 3, 4, 7, 9]. Buckley and
Eslami [8] is concerned with neural net solutions to fuzzy problems.

In this paper, first we propose an architecture of fuzzy neural networks with crisp
weights for fuzzy input vector and fuzzy target. The input-output relation of each
unit is defined by the extension principle of Zadeh [15]. Output from the fuzzy
neural network, which is also fuzzy number, is numerically calculated by interval
arithmetic [6] for crisp weights and level sets(i.e.,a-cuts) of fuzzy inputs. Next, we
define a cost function for the level sets of fuzzy output and fuzzy target. Then,
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a crisp learning algorithm is derived from the cost function for find the real root
(if exists) of the polynomials. The proposed algorithm illustrated by solving some
examples in last section.

2 Preliminaries

We represent an arbitrary fuzzy number by an ordered pair of functions (u(r),a(r)),
for 0 < r <1, which satisfies the following requirements [13]:

1. u(r) is a bounded left continuous non decreasing function over [0, 1].
2. @(r) is a bounded left continuous non increasing function over [0, 1].

3. u(r) <a(r), for 0 <r <1.

I

A crisp number « is simply represented by u(r) = u(r) = «, for 0 < r < 1. The
set of all the fuzzy numbers is denoted by E'. A popular fuzzy number is the
triangular fuzzy number u = (m — o, m,m + ) = (u1, u2,u3) with membership
function

R4l m—a<z<m,

pu(z) =9 #5E4+1, m<z<m+p,
0, otherwise,

for a, 8 > 0 where uy = m — «a, us = m and uzg = m + 3. Its parametric form is

wry=m+alr—1), alr)=m+p(1-r).

2.1 Operations of fuzzy numbers

We briefly mention fuzzy number operations defined by the extension principle
[15]. Since input vector of feedforward neural network is fuzzified in this paper,
the following addition, multiplication and nonlinear mapping of fuzzy numbers are
necessary for defining our fuzzy neural network:

payp(2) = mar{pua(x) A up(y)lz = 2+ y}, (1)

pier) (2) = maz{pune ()2 = f(z)}, (2)

where A, B, Net are fuzzy numbers, u.(.) denotes the membership function of
each fuzzy number, A is the minimum operator, and f(x) = x is the activation
function of output unit of our fuzzy neural network.

The above operations of fuzzy numbers are numerically performed on level sets
(i.e., a-cuts). The h-level set of a fuzzy number X is defined as

(X)n = {z|lpx(x) > h,x € R} for 0<h<1, (3)
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and [X]o = Upe(o,1[X]n- Since level sets of fuzzy numbers become closed intervals,

we denote [X];, as
X = (X5 (XT3, (4)

where [X]F and [X]Y are the lower limit and the upper limit of the h-level set [X]p,
respectively.

From interval arithmetic [6], the above operations of fuzzy numbers are written for
h-level sets as follows:

[ Al + [Bln = [[A]5 + [BJi, [Al} + By, ()

f([Net]n) = f([[Netly, [Net]]]) = [f([Net]y), f([Net];)], (6)

w.[A]y = [w[A)F, w.[AY), if w>0,

(7)
w.[Alp = w.[AlY,w.[A)E], if w<O.

Theorem 1. Let a and c are fuzzy numbers. The equation a+x = ¢ has a solution

z if and only if ¢; — a1 < co —as < ¢35 — as.

Proof. Taking a-cuts we obtain [a]{ + [2]{ = [c]{ and [a]} + [z]L = [c]4. Then
1 < 22 < 3,

. L . U . . . L . U
and [%]5 > 0, [4], < 0if and only if ¢; — a1 < ¢2 — az < ¢3 — as, where [%]5, [%]g
are the derivative of [z]L and [2]{, respectively, with respect to a.

|

2.2 Input-output relation of each unit

Let us fuzzify a two layer feedforward neural network with n input units and one
output unit. Input vector, target vector are fuzzified and weights are crisp. In
order to derive a crisp learning rule, we restrict fuzzy inputs and fuzzy target
within triangular fuzzy numbers. The input-output relation of each unit of the
fuzzified neural network can be written as follows:

Input units:

Oi:Ai, i:1,2,...,n. (8)
Output unit:
Y = f(Net), (9)
Net = Z’LUj.Oj, (10)
j=1

where A; is a fuzzy input and w; is crisp weight.
The input-output relation in Egs.(8)-(10) are defined by the extension principle
[15] as in Hayashi et al.[10] and Ishibuchi et al.[12].
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2.3 Calculation of fuzzy output

The fuzzy output from each unit in Eqs.(8)-(10) is numerically calculated for crisp
weights and level sets of fuzzy inputs. The input-output relations of our fuzzy
neural network can be written for the h-level sets:

Input units:

[Oi]n = [Ai]n, i=1,2,...,n. (11)

Output unit:
[Y]n = f([Net]n), (12)
[Net], = ij.[oj]h. (13)

From Eqs.(11)-(13), we can see that the h-level sets of the fuzzy output Y is cal-
culated from those of the fuzzy inputs and crisp weights. From Egs.(5)-(7), the
above relations are written as follows:

Input units:

[Oi]n = [[Oi]ﬁ’ [Oi]g] = [[Ai]ﬁ’ [Ai]g]a i=1,2,...,n. (14)
Output unit:
Yn = (Y], [YIR] = [f([Net]}), f([Net])], (15)
[Net]n = [Net]f;, [Net]}]] =
[Z w;.[05)1; + Z%‘-[@]ﬂ Z w; [O;]5 + ij.[Oj]ﬁ], (16)

where m = {j |w; >0}, c={j| w; <0} and mUc={1,...,n}.

3 Fuzzy polynomials

Usually, there is no inverse element for an arbitrary fuzzy number u € E!, i.e.,
there exists no element v € E' such that

u+v=0.
Actually, for all non-crisp fuzzy number u € E' we have
u+ (—u) #0.
Therefore, the dual fuzzy polynomials
Az + Agr® + ..+ Aa" = Ao+ Aya® + ...+ A 2" + Ay, (17)

cannot be equivalently replaced by the fuzzy polynomials (A; — A} )z—+(Ay— Ay a2+
..+ (4, — A,)z" = Ap which had been investigated. Therefore, we find solution
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" 7 " 7 "

Eq.(17) by the neural network, with suppose A;; — A;} < Ajy — Ajy < Ajg — Aly
for i = 1,...,n. Therefore, we have of the Eq.(17)
A1£C+A2£C2++An$n :Ao, (18)

’

for v € R, when A4, € E, for i = 1,...,n that A; = (A, A2, Ais) = (4;; —
A;/pA;g - A;/27A;3 — A;/3) fori=1,...,n.

A FNN; (fuzzy neural network with fuzzy set input signals and real number
weights) [11] solution to Eq.(18) is given in Figure 1. The input neurons make no
change in their inputs, so the input to the output neuron is

Az + Asx® + ...+ Az
and the output, in the output neuron, equals its input, so
Y = Az + Asx® + ...+ Apa™.

How is the FNNs going to solve the fuzzy polynomials? The training data is
(Aq,...,A,) for input and target (desired) output is Ag. We proposed a learning
algorithm from the cost function for adjusting weights.

Figure 1: Fuzzy neural network to solve fuzzy polynomial

3.1 Learning of fuzzy neural network

Let the h-level sets of the target output Ay are denoted by
[Aoln = [[AolF, [A0)r ], h e [0,1], (19)

where A} (h) denotes the left-hand side and AY (h) denotes the right-hand side of
the h-level sets of the desired output. A cost function to be minimized is defined
for each h-level sets as follows:

e(h) = el (h) + eV (h),
et(h) = %(A(?(h) —Y*(h))?, (20)
eV (h) = 5(Af (h) =YY (h))?,
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hence e”(h) denotes the error between the left-hand sides of the h-level sets of
the desired and the computed output, and eV (h) denotes the error between the
right-hand sides of the h-level sets of the desired and the computed output. Then
the error function for the training pattern is

e=>_he(h). (21)
h

Theoretically this cost function satisfies the following equation if we use infinite
number of h-level sets in Eq.(21)

e— 0 if and only if Y — Ag
The weights are updated by the following rules [11, 14]

Nwy(t) = —nZha(;—gl) +a. Aw(t—1), (22)
- 1

where 7 is a learning constant, « is a momentum constant and ¢ indexes the number
of adjustments. The derivatives in Eq.(22) can be written as follows:

de(h)  de*(h) n deY (h)

owq owq Owy
del(h)  0el(h) y oYL (h)
Owy oYL owy;
deY(h)  0eY(h) " aYY(h)
Oown oYv Owy
9eY (h)
oyv

b

deL(h)
oYL
If w1 Z 0

= (A5 (h) — YE(h)), = —(AF (h) = YY(h)).

oY L(h)
8101

= Af (h), = A7 (),

otherwise 5 L(h)
Y
= A7 (h),

8'(1}1
Therefore, if w; >0

L(h) AF (h)+

Awy (t) = nZh h[(Ag(h) -Y (23)
(AF (h) = YT (h)AY (h)] + a. A wi(t — 1),
otherwise
A (t) = S, WA (1) = YE()AY () + 1)

(AY () = YU (1) AF(R)] + . A wn (¢ — 1),
We can adjust other weights by
w; =wt  for i=2,...,n.

The fuzzy polynomials may have no real root for crisp w;,1 < i < n. In this
case there is no hope in making the error measure close to zero.
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4 Numerical examples

Example 4.1. Consider the following dual fuzzy polynomial
(=2,0,3)z + (—2,0,3)2% = (—1,0,2)x + (—1,0,2)z> + (-2,0,2),

with the exact solution x = 1. The training starts by w(0) = 0.25 and training is
completed in step 2 with the solution wq(2) = 1.00984, where n = 0.1, = 0.3 and
e <= 0.01.

Example 4.2. Consider the following dual fuzzy polynomial

(—=2,0,3)x + (=3,0,4)2 + (0,2,4)2 = (=1,0,2)x + (—1,0,2)2? + (0,1,2)23

+ (757 717 3)’
with the exact solution is # = —1. The training starts by w;(0) = —1.5 and
training is completed in step 3 with the solution w;(3) = —1.00780, where n = 0.1,
a =0.3 and e <= 0.01.
Example 4.3. Consider the following dual fuzzy polynomial

(2,4,6)z +(0,2,4)2% + (3,6,8)23 + (—3,0,2)z* = (1,2,3)z+ (0,1,2)z + (1,2, 3)2>
+(=2,0,1)z* + (2,7,11),

with the exact solution is x = 1. The training starts by w;(0) = 0.5 and training
is completed in step 3 with the solution w;(3) = 1.00801, where n = 0.1, o = 0.3
and e <= 0.01.

Example 4.4. Consider the following dual fuzzy polynomial

(=2,0,3)x + (—2,0,2)2? = (~1,0,2)x + (—1,0,1)2? + (12,14, 19),

which has no any real root. The training start by w;(0) =7, n = 0.1, « = 0.3, and
e <= 0.01. In this case there is no hope in making the measure of error close to
zero, see Table 1 for more details.

¢ | Example 1 | Example 2 | Example 3 | Example 4
0 0.25 -1.5 0.5 7.0

1 0.87982 -1.06313 0.8317 -0.26250
2 1.00984 -1.04608 0.98421 6.9475

3 -1.00780 1.00801 -0.1435
4 6.97130
5 -0.1973
6 6.96053

Table 1. The obtained values of w1 (3), the approximation of real root

5 Conclusions

In this paper, we introduced a learning algorithm of crisp weights of two-layer
feedforward fuzzy neural network, that input-output relations were defined by the
extension principle, for finding the real root of a dual fuzzy polynomials.
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