
Mathware & Soft Computing 12 (2005) 121-128

Characterizing Intraregular Semigroups by

Intuitionistic Fuzzy Sets

Y. Hong1,2 and X. Fang3

1College of Electronic Information & Engineering,
Tongji Univ., 200092, Shanghai, China

2College of Information Science & Engineering,
Shandong Univ. of Science and Technology,

266510, Qingdao, Shandong, China
3Maths and Physics Dept.,

Anhui Univ. of Science and Technology,
232001, Huainan, China

Abstract

In this paper, we give some theorems which characterizes the intraregular
semigroups in terms of intuitionistic fuzzy left, right, and biideals.
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1 Introduction

The concept of fuzzy set was introduced by Zadeh [9]. Fuzzy set theory has been
shown to be a useful tool to describe situations in which the data are imprecise or
vague. Fuzzy sets handle such situations by attributing a degree to which a certain
object belongs to a set. The semigroup theory of fuzzy sets was deeply studied
by many authors[1-6]. But in fuzzy sets theory, there is no means to incorporate
the hesitation or uncertainty in the membership degrees. In 1983, Antanassov [10]
introduces the concept of intuitionistic fuzzy sets, which constitute a extension
of fuzzy sets theory: intuitionistic fuzzy sets give both a membership degree and
a non-membership degree. The only constraint on these two degrees is that the
sum must smaller than or equal to 1. In this paper, we give some theorems which
characterizes the intraregular semigroups in terms of intuitionistic fuzzy left, right,
and biideals.
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2 Preliminaries

Let S be a semigroup, a subsemigroup of S is a nonempty subset A of S such
that A2 ⊆ A and a left (right) ideal of S is a nonempty subset A of S such that
SA ⊆ A (AS ⊆ A), a two-ideal (or simply ideal) is a subset of S which is both a
left and a right ideal of S.

Definition 1[12]: An intuitionistic fuzzy set A in S is an object

A = {〈x, µA (x) , vA (x)〉|x ∈ S}

where, for allx ∈ S,µA (x) ∈ [0, 1] and vA (x) ∈ [0, 1] are called the membership
degree and the non-membership degree, respectively, of x in S, and furthermore
satisfy µA (x) + vA (x) ≤ 1.

Definition 2[12]: Let A, B be two intuitionistic fuzzy sets in S, then

A ⊆ B iff (∀x ∈ S) (µA (x) ≤ µB (x) & vA (x) ≤ vB (x)) ,

A ∩B = {〈x,min {µA (x) , µB (x)} ,max { vA (x) , vB (x)}〉|x ∈ S} ,

A ◦B = {〈x, µA◦B (x) , vA◦B (x)〉|x ∈ S}

where

µA◦B (x) =

{
sup
x=yz

{min {µA (y) , µB (z)}} if x is expressible as x = yz

0 otherwise
,

vA◦B (x) =

{
inf

x=yz
{max {vA (y) , vB (z)}} if x is expressible as x = yz

1 otherwise
.

Definition 3: If S be a semigroup, an intuitionistic fuzzy set A in S is called
an intuitionistic fuzzy semigroup in S if

µA (xy) ≥ min {µA (x) , µA (y)} and vA (xy) ≤ max {vA (x) , vA (y)} for all x, y ∈
S.

And is called a intuitionistic fuzzy left (right) ideal of S if

µA (xy) ≥ µA (y) and vA (x, y) ≤ vA (y) (µA (xy) ≥ µA (x) and vA (x, y) ≤ vA (x))

for all x, y ∈ S. An intuitionistic fuzzy set A in S is called an intuitionistic fuzzy
two-sided ideal of S if it is both an intuitionistic fuzzy left and an intuitionistic
right ideal of S.
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Definition 4: An intuitionistic fuzzy semigroup A in S is called an intuitionistic
fuzzy biideal of if

µA (xyz) ≥ min {µA (x) , µA (z)} , vA (xyz) ≤ max {vA (x) , vA (z)}

for all x, y, z ∈ S.
Let A be a subset of a semigroup S, then we denote

Ã =
{〈

x, µÃ(x), vÃ(x)

〉∣∣∣ x ∈ S
}

where

µÃ(x) =
{

1 x ∈ A
0 otherwise , vÃ(x) =

{
0 x ∈ A
1 otherwise .

Obviously Ã is an intuitionistic fuzzy set in S, semigroup S also can be seen as
an intuitionistic fuzzy set S̃ = {〈x, 1, 0〉|x ∈ S}. In the present paper, we will use
S represent S and S̃.

Definition 5: A semigroup S is called intraregular if, for each element a of S,
there exist element x and y of S such that a = xa2y.

Lemma 1[13]: For a semigroup S the following conditions are equivalent:
(1) S is intraregular;
(2) A ∩B ⊂ AB holds for every left ideal A and every right ideal B of S.

Lemma 2[15]: A nonempty subset A of a semigroup S is a biideal of S if and
only if Ã is an intuitionistic fuzzy biideal of S.

Lemma 3[15]: For a semigroup S, the following conditions are equivalent:
(1) S is regular;
(2) A ◦ B = A ∩ B for every intuitionistic fuzzy right ideal A and every intu-

itionistic fuzzy left ideal B of S.

Lemma 4[15]: For an intuitionistic fuzzy set A of a semigroup S, the following
conditions are equivalent:

(1) A is an intuitionistic fuzzy left ideal of S.
(2) S ◦A ⊆ A.

Lemma 5[15]: For an intuitionistic fuzzy set A of a semigroup S, the following
conditions are equivalent:

(1) A is an intuitionistic fuzzy right ideal of S.
(2) A ◦ S ⊆ A.

Lemma 6[14,15]: Let A be a nonempty subset of a semigroup S, then
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(1) A is a subsemigroup of S if and only if Ã is an intuitionistic fuzzy semigroup
of S.

(2) A is a left (right, two-sided) ideal of S if and only if Ã is an intuitionistic
fuzzy left (right, two-sided) of S.

3 Characterizing intraregular semigroups

As is well known, a semigroup S is intraregular if and only if it is a semilattice
of simple semigroups. Now we shall give a characterization of an intraregular
semigroup by intuitionistic fuzzy right ideals and intuitionistic fuzzy left ideals.

Theorem 1: For a semigroup S the following conditions are equivalent:
(1) S is intraregular;
(2) A ∩ B ⊂ B ◦ A holds for every intuitionistic fuzzy right ideal A and every

intuitionistic left ideal B of S.

Proof: First assume that (1) holds. Let A be any intuitionistic fuzzy biideal
of S, and a any element of S. Since S is intraregular, there exists element x, y in
S such that a = xa2y. Then we have

µB◦A (a) = sup
a=yz

{min {µB (y) , µA (z)}}

≥ min {µB (ax) , µA (ay)}
≥ min {µB (a) , µA (a)}
= µA∩B (a)

vB◦A (a) = inf
a=yz

{max {vB (y) , vA (z)}}
≤ max {vB (ax) , vA (ay)}
≤ max {vB (a) , vA (a)}
= vA∩B (a)

so we have A ∩B ⊆ B ◦A. Thus we obtain (1) implies (2).
Conversely, assume (2) holds, let R and L be a right ideal and a left ideal of S,

respectively. By Lemma6, R̃ and L̃ be the intuitionistic fuzzy right ideal and
intuitionistic fuzzy left ideal of S. Let a be any element of L ∩R, hen we have

µL̃◦R̃ (a) = sup
a=yz

{
min

{
µL̃(y), µR̃(z)

}}
≥ µL̃◦R̃ (a) ,

≥ min
{

µL̃(a), µR̃(a)

}
= min{1, 1}
= 1
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vL̃◦R̃ (a) = inf
a=yz

{
max

{
vL̃(y), vR̃(z)

}}
≤ vL̃◦R̃ (a)
≤ max

{
vL̃(a), vR̃(a)

}
= max{0, 0}
= 0.

This implies that there exist b, c ∈ S, a = bc such that

µL̃(b) = 1, µR̃(c) = 1, vL̃(b) = 0, vR̃(c) = 0.

Then we have

a = bc ∈ LR,

And so we have

L ◦R ⊂ LR.

This is follows from Lemma1 that S is intraregular, and (2) implies (1). This
completes the proof.

Theorem 2: For a semigroup S the following conditions are equivalent:
(1)S is both regular and intraregular;
(2)A ◦A = A for every intuitionistic fuzzy biideals A of S;
(3)A∩B ⊂ (A ◦B)∩ (B ◦A) for all intuitionistic fuzzy biideals A and B of S;
(4) A∩B ⊂ (A ◦B)∩ (B ◦A) for every intuitionistic fuzzy biideal A and every

left ideal B of S;
(5) A∩B ⊂ (A ◦B)∩ (B ◦A) for every intuitionistic fuzzy biideal A and every

intuitionistic fuzzy right ideal B of S;
(6) A ∩ B ⊂ (A ◦B) ∩ (B ◦A) for every intuitionistic fuzzy right ideal A and

every intuitionistic fuzzy left ideal B of S.

Proof: It is clear that (3) implies (4), (4) implies (6), (3) implies (5), (5) implies
(6) , and (3) implies (2). So we will prove that (1) implies (3), (6) implies (1), and
(2) implies (1). In the following, we will prove that (1) implies (3), (6) implies (1),
and (2) implies (1).

First assume that (1) holds. In order to prove that (3) holds, let A and B be
any intuitionistic fuzzy biideals of S, and a any element of S. Then, since S is
regular, there exists an element x in S such that

a = axa(= axaxa).

And, since S is intraregular, there exist elements y and z in S such that

a = ya2z.
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Thus we have

a = axa = axaxa = ax(ya2z)xa = (axya)(azxa).

Since A and B are both intuitionistic fuzzy biideals of S, we have

µA (axya) ≥ min {µA (a) , µA (a)} = µA (a) ,
µB (axya) ≥ min {µB (a) , µB (a)} = µB (a) ,

And

vA (axya) ≤ max {vA (a) , vA (a)} = vA (a) ,
vB (axya) ≤ max {vB (a) , vB (a)} = vB (a) .

Thus we have

µA◦B (a) = sup
a=pq

[min {µA (p) , µB (q)}]

≥ min {µA (axya) , µB (azxa)}
≥ min {µA (a) , µB (a)}
= µA∩B (a) ,

vA◦B (a) = inf
a=pq

[max {vA (p) , vB (q)}]
≤ max {vA (axya) , vB (azxa)}
≤ max {vA (a) , vB (a)}
= vA∩B (a) .

and so we have

A ∩B ⊂ A ◦B.

It can be seen in a similar way that

A ∩B ⊂ B ◦A.

Thus we obtain that

A ∩B ⊂ (A ◦B) ∩ (B ◦A) ,

and that (1) implies (3).
Assume that (6) holds. Let A and B be any intuitionistic fuzzy right ideal and

any intuitionistic fuzzy left ideal of S, respectively. Then we have

A ∩B ⊂ (A ◦B) ∩ (B ◦A) ⊂ (B ◦A) ,

Then it follows from Theorem1 that S is intraregular. On the other hand,

A ∩B ⊂ (A ◦B) ∩ (B ◦A) ⊂ (A ◦B) .

By Lemma5 and Lemma4 we obtain
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A ◦B ⊆ A ◦ S ⊆ A,

A ◦B ⊆ S ◦B ⊆ B,

and we have

A ◦B ⊆ A ∩B.

Thus we obtain that

A ◦B = A ∩B.

Thus it follows from Lemma3 that S is regular. Thus we obtain that (6) implies
(1).

Finally, assume that (2) holds. In order to prove that (1) holds, let C be any
biideal of S, and a any element of C. Since it follows from lemma that C̃ is an
intuitionistic fuzzy biideal of S, we have

sup
a=pq

[
min

{
µC̃(p), µC̃(q)

}]
= µC̃◦C̃ (a) = µC̃(a) = 1,

inf
a=pq

[
max

{
vC̃(p), vC̃(q)

}]
= vC̃◦C̃ (a) = vC̃(a) = 0.

This implies that there exist elements b and c of S with a = bc such that

µC̃(b) = µC̃(c) = 1, vC̃(b) = vC̃(c) = 0.

Then we have

a = bc ∈ CC,

And so we have

C ⊂ CC.

Since C is a biideal of S, the converse inclusion always holds. Thus we obtain
that

C2 = C.

Then it follows from Lemma2 that S is both regular and intraregular. Therefore
we obtain that (2) implies (1). This completes the proof.
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