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Abstract 
 

 
   This paper deals with the use of fuzzy set theory as a viable alternative 
method for modelling and solving the stochastic assembly line balancing 
problem.  Variability and uncertainty in the assembly line balancing problem 
has traditionally been modelled through the use of statistical distributions.  
This may not be feasible in cases where no historical data exists.  Fuzzy set 
theory allows for the consideration of the ambiguity involved in assigning 
processing and cycle times and the uncertainty contained within such time 
variables.  Two widely used line balancing methods, the COMSOAL and 
Ranked Positional Weighting Technique, were modified to solve the balancing 
problem with a fuzzy representation of the time variables.    The paper shows 
that the new fuzzy methods are capable of producing solutions similar to, and 
in some cases better than, those reached by the traditional methods. 
 
Keywords: Line Balancing, Fuzzy Sets, COMSOAL, Ranked Positional 
Weighting Technique. 

 
 
 

1 Introduction 
 
The manufacturing assembly line was first introduced by Henry Ford in the early 
1900’s.  It was designed to be an efficient, highly productive way of manufacturing a 
particular product.  The basic assembly line consists of a set of workstations arranged 
in a linear fashion, with each station connected by a material handling device. The 
basic movement of material through an assembly line begins with a part being fed 
into the first station at a predetermined feed rate.  A station is considered any point 



                                                   D.J. Fonseca, C.L. Guest, M. Elam  & C.L. Karr 

 

58 

 

on the assembly line in which a task is performed on the part.  These tasks can be 
performed by machinery, robots, and/or human operators.  Once the part enters a 
station, a task is then performed on the part, and the part is fed to the next operation.  
The time it takes to complete a task at each operation is known as the process time 
[14].   

 
The cycle time of an assembly line is predetermined by a desired production rate.  
This production rate is set so that the desired amount of end product is produced 
within a certain time period [3].  For instance, the production rate might be set at 480 
parts per day.  Assuming an eight-hour shift, this translates into a requirement of 60 
parts per hour (1 part per minute) being produced by the assembly line.  In order for 
the assembly line to maintain a certain production rate, the sum of the processing 
times at each station must not exceed the stations’ cycle time.  If the sum of the 
processing times within a station is less than the cycle time, idle time is said to be 
present at that station [5].   

  
One of the main issues concerning the development of an assembly line is how to 
arrange the tasks to be performed.  This arrangement may be somewhat subjective, 
but has to be dictated by implied rules set forth by the production sequence [10].  For 
the manufacturing of any item, there are some sequences of tasks that must be 
followed.   

  
The assembly line balancing problem (ALBP) originated with the invention of the 
assembly line.  Helgeson et. al [8] were the first to propose the ALBP, and Salveson 
[13] was the first to publish the problem in its mathematical form.  However, during 
the first forty years of the assembly line’s existence, only trial-and-error methods 
were used to balance the lines [5].  Since then, there have been numerous methods 
developed to solve the different forms of the ALBP.   

 
Salveson [13] provided the first mathematical attempt by solving the problem as a 
linear program.  Gutjahr and Nemhauser [7] showed that the ALBP problem falls into 
the class of NP-hard combinatorial optimization problems.  This means that an 
optimal solution is not guaranteed for problems of significant size.  Therefore, 
heuristic methods have become the most popular techniques for solving the problem.   
 
Even though the assembly line balancing problem has received significant attention 
over its lifetime, many companies still do not utilize the methods proposed in the 
literature.  This fact can be seen in a survey conducted by Chase in 1974.  His survey 
showed that roughly only 5% of companies with production lines utilize traditional 
line balancing techniques to balance their assembly lines [4].  A more recent article 
by Milas [12] showed that this trend is still valid in today’s manufacturing 
environment.  Milas [12] found that most companies perform their line balancing 
based on historical precedent or the ‘gut feel’ of their engineers.  
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Evidently, the lack of industrial use of conventional line balancing techniques 
suggests that there may be some major drawbacks to the use of current techniques.  
One possibility is that current methods are not adequate and/or flexible enough to 
model real situations of the assembly line environment, or that designers are just not 
familiar with the published ALBP literature [5].  

 
 

2 The ALBP: A Numerical Example 
 
To illustrate the dynamics involved in balancing a production line, a numerical 
example of the ALBP is presented here.  The objective is to group the individual 
tasks into workstations.  The demand will be set at an arbitrary value of 20 units per 
hour.  This is equal to a cycle time of 0.05 hours per unit.  The task times and 
precedence relationships can be seen in Figure 1.   
 

Figure1: ALBP Example Task Times and Precedence Diagram 
 
 
 
 
The total work time involved for all 10 tasks is 0.183 hours.  With a cycle time of 
0.05 hours, there should be approximately four workstations (0.183 / 0.05 = 3.66 ~ 
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4).  The solution begins by grouping tasks 1 and 2 together into Workstation 1.  The 
sum of their task times equals 0.050 hours, which leaves zero idle time at this 
workstation.  Therefore, Workstation 2 is opened and tasks 3, 4, and 6 are assigned to 
it.  Their process times total 0.046 hours, which leaves a total of 0.004 hours of idle 
time at that station.  No more tasks will fit at workstation 2, so a new workstation 
must be opened.  Tasks 8 and 9 are assigned to Workstation 3, while tasks 5, 7, and 
10 are assigned to Workstation 4.  Figure 2 shows the final grouping of tasks into 
their workstations. 
 
 

Figure 2: Final Workstations for ALBP Example 
 
 
The idle time for each station is found by subtracting the total time from the given 
cycle time.  By using Equation 1, the percentage idle time for the whole production 
line can be found. 
 

Idle % = ( S (C – Ti)) / (n * C) * 100                                  (1) 
 
Where C is the cycle time, Ti is the total time for workstation i, and n is the total 
number of workstations.  For this example, the percentage idle time is as follows: 
 
Idle % = [( 0.05-0.05) + (0.05-0.046) + (0.05-0.04) + (0.05-0.047)] / (4*0.05)= 85% 
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3 The COMSOAL Technique 
 
One of the methods most widely used to solve the ALBP is the COMSOAL 
technique, developed by Arcus in 1966.  The technique uses a basic record-keeping 
scheme to solve the ALBP.  The approach allows for a large number of sequences to 
be generated and compared against each other.  The sequences are developed by 
randomly choosing an available task, and assigning it to the next feasible 
workstation.  If the chosen task can not fit in the current workstation due to the 
length of its processing, a new workstation is then opened.  The technique keeps 
track of all relevant workstation attributes, such as the remaining workstation idle 
time and the tasks to be assigned.  Tasks must satisfy all constraints in order to be 
considered for assignment [2].   
  
The COMSOAL approach compares generated sequences based on their number of 
workstations.  Every time a new sequence is developed, the number of workstations 
in that sequence is stored.  A new sequence is then generated, and the number of 
workstations is compared against the current best solution (i.e. the upper bound 
solution).  If the number of workstations is higher than the upper bound, the 
sequence is discarded and a new solution is developed.  If it is lower than the current 
upper bound, the sequence is saved and the upper bound is updated [2].   
  
This computerized approach to solving the ALBP has several advantages to other 
techniques.  The heuristic is fairly easy to program, which allows for large problems 
to be modeled in a reasonable amount of time.  Also, feasible solutions are quickly 
found, and the amount of computational effort used is directly proportional to the 
quality of the generated solution.  Lastly, the method can be applied to a wide array 
of decision problems.  As long as the solutions can be built sequentially, and an 
evaluation function can be developed to compare solutions, the COMSOAL 
technique can be applied to solve the problem. 
  
  

4 The Ranked Positional Weighting Technique (RPWT) 
 
This is another widely used line balancing method developed by Helgeson and Birnie 
[8].  Unlike the COMSOAL technique, it is a single-pass heuristic where only one 
feasible solution is generated.  It is a greedy heuristic because it picks tasks based on 
a previously ordered list and does not look ahead into the future.  In this method, 
tasks are prioritized based on the cumulative sum of their individual processing 
times, and the processing times of the job’s successors.  This sum is called the 
‘positional weight’ (PW(i)) of the task, and the tasks with higher positional weights 
are assigned first.  Tasks are assigned to the current open workstation if permitted by 
their processing time.  Otherwise, a new workstation is opened.  The idea behind the 
heuristic is that the greater the number of tasks that are available for assignment, the 
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higher the probability that at least one task will fit at a particular workstation.  By 
following this logic, it is possible to use the most of each station’s cycle time by 
finding appropriate tasks.  This should result in a fewer required stations with 
minimized associated idle times [2].      
  
The procedure for performing the RPWT can be seen in the following steps provided 
by Askin and Standridge [2]: 
 
1. Task ordering: For all tasks i = 1,….,N, compute PW(i).  Order (rank) tasks by 
nonincreasing PW(i). 
2. Task assignment: For ranked tasks i = 1,….,N, assign task i to the first feasible 
workstation. 
 
By examining the fundamentals of the heuristic, it is easy to see that the positional 
weight of a task will assure that its predecessors have already been assigned.  If tasks 
are assigned to workstations that are at least as large (numerically) as their 
immediate predecessor, all precedence relations will then be implicitly satisfied.  In 
order to further demonstrate the RPWT, a numerical example is presented as follows. 
 
 

4 Fuzzyfication of the COMSOAL and RPWT  
 
In order to develop fuzzy versions of the COMSOAL and RPWT methods, cycle and 
processing times had to be represented as fuzzy numbers.  Due to the nature of the 
processing and cycle times, the most appropriate fuzzy sets to use in depicting these 
values are triangular fuzzy numbers (TFN’s). Instead of assigning one particular 
value for the time variables, as in the case of deterministic methods, TFN’s establish 
extreme points to represent the most likely and least likely values for the individual 
variables.  The use of TFN’s to model time values allows the practitioner to account 
for variability and ambiguity, similar to the use of statistical distributions.  However, 
TFN’s differ from statistical distributions in the fact that they do not require prior 
knowledge or historical data to establish their values.  This is one major advantage of 
using TFN’s as opposed to statistics.  This was done by defining the existing 
deterministic time as the most likely value for the new TFN.  This implies that the 
deterministic value represents the fuzzy element in the set with the membership value 
of 1. In order to get the least likely values for the new TFN’s, with the membership 
values of 0, a value of 1 was added and subtracted from the most likely values.  This 
same procedure was performed to adapt the deterministic cycle times into the fuzzy 
domain.   
 
4.1 Fuzzification of COMSOAL  
The COMSOAL heuristic solves the assembly line balancing problem by generating 
random sequences for the ordering of tasks.  After each random sequence is 
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generated, the number of workstations and associated idle times are stored for 
comparison with the last sequence.  If the current sequence is more efficient (i.e. has 
less number of workstations and smaller idle times) than the previous one, it is stored 
as the new lower bound.  This procedure is continued for a pre-established number of 
iterations, and the random sequence with the highest efficiency is kept as the current 
optimum solution.   
  
In order to adapt this heuristic to handle fuzzy processing and cycle times, there were 
no major changes that had to be performed.  The basic functioning of the COMSOAL 
method was suitable for operating in the fuzzy domain, but the intermediate steps 
within the random sequence generation had to be modified.  The use of the existing 
precedence constraint diagrams is still needed, and the violation constraints must still 
be avoided.  However, the time variables are now represented as triangular fuzzy 
numbers, which required some intermediate steps to be adapted to handle such type 
of numbers.   
  
The most predominant change to the existing crisp method deals with how the 
processing times are accumulated for each task that has been assigned.  In the current 
heuristic, when a task is assigned to a workstation, its associated processing time is 
subtracted from the remaining idle time of the workstation.  When the task chosen to 
be assigned next is selected, its processing time must be less than remaining 
workstation’s idle time.  Otherwise, a new workstation must be opened to 
accommodate this task.  In the adapted fuzzy heuristic, the tasks’ fuzzy processing 
times, 3?j, are accumulated using the fuzzy addition operator.  When the subsequent 
task is chosen for assignment to the current workstation, it may only be assigned if 
its processing time will not cause the workstation’s total task time to exceed the 
fuzzy cycle time, &?max.  In other words, the total fuzzy task time for a workstation, 
W?i, is the cumulative sum of all the processing times of the tasks assigned to that 
station.  A new task may only be assigned to that station if the addition of its 
processing time to the current total task time will not cause the total task time to 
exceed the permitted cycle time.  Otherwise, a new workstation must be opened to 
accommodate that task.  In order to compare the total task time of a workstation to its 
permitted cycle time, the Mean Comparison Method was utilized.  Overall, the main 
difference between the crisp and fuzzy heuristics lies in how new processing times 
are accumulated.  In the crisp version, they are subtracted from the remaining idle 
time, while in the fuzzy version they are added to the total task time. 
  
The other steps in the new fuzzy heuristic are very similar to the existing crisp 
method, with slight differences in mathematical calculations.  Tasks are selected for 
assignment based on precedence relations and the generation of a random number.  
The fuzzy heuristic continues until all tasks have been assigned to their workstations.  
After a solution is generated, the number of workstations and the associated idle 
times are calculated.  To compute the idle time at a workstation, the fuzzy 
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subtraction operator is utilized.  Once the idle times for each of the workstations are 
calculated, the fuzzy efficiency and fuzzy idle percentage of the line are established.  
The fuzzy line efficiency is then stored as the lower bound for the line balancing 
solution.  A new solution sequence is then generated and the entire process is 
repeated.  Once a certain number of iterations have been performed, the current 
optimal solution is selected by comparing the line efficiencies and number of 
workstations.  The sequence with the lowest number of workstations and highest line 
efficiency is then chosen as the current best solution.  
  
The notation involved in the constructed fuzzy COMSOAL to solve the stochastic 
assembly line balancing problem is described in Table 1. 
 
 

Table 1. Notation for Fuzzy COMSOAL Procedure 
 
The method used to compare W?1 + 3?j to &?max is called the Mean Comparison Method 
(Gen et. al, 1996).  It compares two TFN’s by defining W?i + 3?j =  �= (a1, a2, a3) and 
&?max  = %?�= (b1, b2, b3); we say that  �> %?, IFF a2>b2.  If  �> %?, then we can add 
job 3?j to the current workstation without exceeding the cycle time.  If a2<b2, then  �
< %?�and we can not assign job 3?j to the current workstation. 
  
 
The fuzzy COMSOAL heuristic involves the following eleven steps: 

1) Establish each job’s processing time and given cycle times as TFN’s 
2) Establish precedence relationships 
3) Begin assigning first chosen task to Workstation 1, and accumulate the   
    fuzzy process times by using fuzzy addition: [ �+ %?�= (a1+b1, a2+b2,   
    a3+b3) = W?1].  Tasks will be chosen based on precedence relations and  
    random number generation, as in the original COMSOAL technique 
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4) Continue to assign job j to current workstation 1, as long as: 
     W?1 + 3?j <= &?max (Use Mean Comparison Method) 
5) Open a new workstation if W?i exceeds &?max with the addition of new  

job j  
6) Continue until all jobs are assigned 
7) Calculate remaining idle time at each station after final assignment by 
     using fuzzy subtraction: [?i = &?max -�Wi  = (a1-b3, a2-b2, a3-b1)] 
8)  Determine F?�(max W?i) and 7 ?�(S W?i)  
9)  Compute ? ?�= 7 ?�/ (m * F?) 
10)  Compute Idle %: Idle % = (S(&?max -�Wi)) / (m * &?max) * 100 
11)  Generate a new sequence using the same method.  The new sequence    

may differ from existing one due to the change in random numbers.  The 
two sequences are compared based on their efficiency.  If the new 
efficiency (new sequence) is higher than the current efficiency (current 
sequence), then the current sequence is kept as the lower bound.  If not, 
the new sequence is discarded and the current sequence remains as the 
lower bound   

 
The process is repeated until the highest efficiency possible is reached. 
 
4.2 Fuzzification of RPWT  
The Ranked Positional Weighting Technique is a single-pass heuristic that generates 
only one solution.  The solution is derived by assigning positional weights to each of 
the tasks based on the sum of their processing times, and the processing times of 
their successors.  Tasks are then ranked in decreasing order of their positional 
weights, and are assigned to workstations based on this ranked order.  The major idea 
behind this heuristic is that tasks with a larger number of successors have higher 
positional weights, and therefore, will be assigned to upstream workstations.   
  
As in the case of the COMSOAL heuristic, the underlying methodology of the 
procedure does not change when adapted to handle fuzzy processing and cycle times.  
Positional weights are calculated for the tasks, and precedence constraints must not 
be violated when assigning these tasks.  However, in order for the RPWT method to 
be effective in the new fuzzy environment, some of the intermediate steps are 
adapted to handle the fuzzy representation of time variables.   
  
The first major adaptation to the crisp heuristic relates to the calculation of the 
positional weights for each task.  In the existing crisp heuristic, positional weights 
are calculated by summing the processing time of the current task with the 
processing times of all of its successors.  This is done using standard mathematical 
addition.  In the new fuzzy heuristic, the fuzzy positional weight for each task, 3?: ?i, 
is also calculated by summing the processing time of the current task with the 
processing times of all its successors.  However, since the processing times are now 



                                                   D.J. Fonseca, C.L. Guest, M. Elam  & C.L. Karr 

 

66 

 

represented by triangular fuzzy numbers, the fuzzy addition operator has to be 
utilized in this calculation.   The next adaptation of the crisp heuristic is in relation to 
the ranking of tasks based on their positional weights.  The traditional method ranks 
these tasks in decreasing order by comparing the values of the crisp positional 
weights.  This step is also performed in the new fuzzy heuristic, but a ranking 
method for triangular fuzzy numbers is adopted.  The fuzzy ranking method used in 
the new heuristic is known as the Average Height Method.  This method is adopted 
from a paper by Hong and Chuang [9].  Basically, the method calculates the average 
height of the triangular fuzzy number by summing the three triangular values and 
dividing this sum by 3.  This results in a crisp number that is easier to rank.  This 
step is performed on the fuzzy positional weight for each task, and then the tasks are 
ranked in a decreasing order based on their average height.   
  
The last adaptation deals with how task processing times are handled when a new 
task is added to a workstation.  As in the case of the traditional COMSOAL 
technique, when a task is assigned to a workstation, the existing RPWT method 
subtracts the associated crisp processing time from the remaining idle time at that 
workstation.  In the fuzzy RPWT method, fuzzy processing times are accumulated 
using the fuzzy addition operator whenever a new task is added to a workstation.  
However, before the chosen task can be assigned to the current workstation, it must 
be shown that the addition of this task will not violate the permitted cycle time of the 
workstation.  As in the fuzzy COMSOAL technique, this validation is performed by 
using the Mean Comparison Method.  If the addition of the chosen task violates the 
permitted cycle time, then a new workstation must be opened to accommodate the 
task.  However, in the RPWT technique, the next subsequent task in the ranked 
positional weight list may be assigned if the current task time does not fit.  This can 
be done only if the precedence constraints are not violated. 
  
The remaining steps in the fuzzy RPWT coincide with those in the crisp RPWT.  
Tasks are assigned until a single solution is generated, and this solution is chosen as 
the current optimal solution.  Some other final calculations are included in the fuzzy 
RPWT method, but are not necessary for generating a solution sequence.  These 
calculations are the fuzzy line efficiency and fuzzy idle percentage of the balanced 
line.  The notation involved in the fuzzy RPWT heuristic to solve the stochastic 
assembly line balancing problem is depicted in Table 2.  
 
The method used to compare W?1 + 3?j to &?max is called the Mean Comparison Method 
[6].  It compares two TFN’s by defining W?i + 3?j =  �= (a1, a2, a3) and &?max  = %?�= 
(b1, b2, b3); we say that  �> %?, IFF a2>b2.  If  �> %?, then we can add job 3?j to the 
current workstation without exceeding the cycle time.  If a2<b2, then  �< %?�and we 
can not assign job 3?j to the current workstation.  The fuzzy RPWT procedure 
involves the following twelve steps: 
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1) Establish each job’s processing time and given cycles time as TFN’s 
2) Establish precedence relationships 
3) Compute 3?: ?i for each task by using fuzzy addition: 
 [ �+ %?�= (a1+b1, a2+b2, a3+b3)] 
 3?: ?i = 3?j + S 3?r (summation for all successors of job j) 

 

Table 2. Notation for Fuzzy RPWT Procedure 
 

4) Put tasks in descending order based on their 3?: ?i into List A.  To rank  
the  tasks for descending order, use the Average Height Method:  
Compute H for task  � and %?� where H( ) = (1/3)*(a1+a2+a3) and 
H(%?)=(1/3)*(b1+b2+b3). We can say that  � > %?� if H( ) > H(%?).  
Otherwise, we assume that  �is not > %? 

5) Begin assigning the first task in List A to Workstation 1, and  
accumulate the fuzzy process times by using fuzzy addition: 

     [ �+ %?�= (a1+b1, a2+b2, a3+b3) = W?1] 
     Tasks will be chosen based on precedence relations and their 3?: ?i rank 
6)  Continue to assign job j to current workstation 1, as long as: 
      W?1 + 3?j <= &?max (Use Mean Comparison Method) 
7)  Open a new workstation if W?i exceeds &?max with the addition of  
 new job j  
8)  Continue until all jobs are assigned 
9)  Calculate remaining idle time at each station after final assignment by      
      using fuzzy subtraction: [?i = &?max -�Wi  = (a1-b3, a2-b2, a3-b1)] 
10) Determine F?�(max W?i) and 7 ?�(S W?i) 
11) Compute ? ?�= 7 ?�/ (m * F?) 
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12) Compute Idle %: Idle % = (S(&?max -�Wi)) / (m * &?max) * 100 
 
 

5. Validation of the Fuzzy Heuristics 
  
In order to validate the developed fuzzy heuristics, example problems from the 
available literature were used as test data.  Two of the problems, involving crisp data 
sets, were adapted by transforming their time variables into fuzzy ones.  The third 
example was taken from a study by Tsujimura et. al [15], which already represented 
the processing and cycle times as triangular fuzzy numbers.   
The criteria used to compare the original solutions to those developed by the new 
heuristics were based on the number of workstations, their respective idle times, and 
the efficiency of the balanced line.  However, since two of the test data sets were 
originally from the crisp domain, the values for the idle times and line efficiencies 
were also crisp. 
   
In order to efficiently perform the validation phase of this research, the fuzzy 
COMSOAL and RPWT techniques were automated using Visual Basic (VB).   
 
5.1 Validation of the Fuzzy COMSOAL 
The new fuzzy COMSOAL heuristic was validated through three example problems 
from the literature.  The solutions reached by the new methods were then compared 
to the solutions generated from the original heuristics. 
   
The first test problem was drawn from Askin and Standridge [2].  The problem data 
set originally contained crisp values, so its time variables were transformed into 
triangular fuzzy numbers.  The solutions generated from the original and fuzzy 
COMSOAL are shown in Table 3 and 4, respectively.  These tables also show the 
line efficiency and idle percentage values for the two solutions. 
 

 
Table 3. Results from Original Crisp Solution Method – Test Problem 1 
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Table 4. Results from Fuzzy COMSOAL – Test Problem 1 

 
When comparing the two solutions based on the performance criteria of line 
efficiency and idle percentage, the most likely value for the fuzzy values of these two 
metrics was used.  The most likely value for the fuzzy line efficiency for the fuzzy 
COMSOAL method is 0.789063 or 78.9%.  This is the same value that was 
calculated for the line efficiency of the original method.  The most likely value for 
the fuzzy line percentage was determined to be 27.85714 percent.  This directly 
coincides with the line percentage value calculated in Askin and Standridge [2].   
  
The second test problem used for validation of the new fuzzy method was taken from 
the study by Lee et. al [11].  Again, the original problem contained crisp time values, 
so the variables were again transformed to be represented as triangular fuzzy 
numbers.  The solution generated in the original study is shown in Table 5, along 
with the values for the line efficiency and idle percentage calculations.  The results 
obtained using the new fuzzy COMSOAL method are shown in Table 6.  The fuzzy 
line efficiency and idle percentage values are also given.       
 
The fuzzy COMSOAL generated a slightly different solution for task assignments 
when compared to the original method.  However, the values for the line efficiencies 
and idle percentages are the same.   
 
The third example problem used to validate the fuzzy COMSOAL procedure was 
taken from a study by Tsujimura et. al [15].  Unlike the previous two examples, the 
processing times were already represented by triangular fuzzy numbers.   
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Table 5. Results from Original Crisp Solution Method – Test Problem 2 

 
 

 
 

Table 6. Results from Fuzzy COMSOAL – Test Problem 2 
 
 

 
Table 7. Results from Original Solution Method – Test Problem 3 
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However, the cycle time was originally crisp, so, it had to be adapted to the fuzzy 
domain.  The task assignments and performance criteria generated in the Tsujimura 
et. al’s [15] study are shown in Table 7.  The results from solving this example 
problem using the new fuzzy COMSOAL method are shown in Table 8. 
 

 
Table 8. Results from Fuzzy COMSOAL – Test Problem 3 

 
The result tables show two very different solutions for the test data set.  The task 
assignments are different for the two models, and the fuzzy procedure produced one 
less workstation when compared to the original model.  This point alone shows that 
the fuzzy COMSOAL has generated a more efficient solution than the previous 
method.  Since the original solution was contained in the fuzzy domain, a direct 
comparison of the performance metrics can be performed.  When examining the 
values for the two models’ line efficiencies, it is clear that the fuzzy COMSOAL 
procedure has generated a more efficient line balance.  The calculations for the idle 
percentages are also lower in the new method.  This shows that there is less idle time 
contained at each workstation when the problem is solved with the fuzzy 
COMSOAL.   
 
5.3 Validation of the Fuzzy RPWT  
The validation phase for the fuzzy RPWT heuristic was performed in a similar 
manner to that of the COMSOAL method.  The same three example problems were 
solved using the new RPWT technique. 
  
As mentioned earlier, the first test problem was drawn from Askin and Standridge 
[2]. The time variables were transformed so that they could be represented as 
triangular fuzzy numbers.  The results from the original solution method can be seen 
in Table 3 (same as the one generated by COMSOAL).  The results from solving the 
test problem through the new RPWT method are shown in Table 9. 
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Table 9. Results from Fuzzy RPWT – Test Problem 1 

 
It seems that the two methods arrived at different solutions to the problem.  The 
fuzzy RPWT method generated a solution that requires one less workstation than that 
of the original method.  The most likely value for the fuzzy line efficiency is greater 
than the crisp efficiency in the original solution.  Also, the idle percentage for the 
fuzzy method is smaller than that of the current line balance.   
  
The second example problem was drawn from the study by Lee et. al [11].  The 
processing and cycle times were transformed into the same fuzzy numbers as in the 
validation of the COMSOAL technique.  The original solution for this problem can 
be seen in Table 5.  When the problem was solved using the fuzzy RPWT, the 
obtained results were as shown in Table 10.  
 
 

 
Table 10 Results from Fuzzy RPWT – Test Problem 2 

 
By comparing the most likely value of the fuzzy idle percentage to that of the 
original solution, it is seen that these values are also identical.  This shows that the 
fuzzy RPWT has produced a solution that is equivalent to that arrived at by the 
original study, with respect to the selected performance metrics.   
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The last test data set used to validate the fuzzy RPWT method also came from the 
work by Tsujimura et. al [15].  The solution for this problem from the original study 
can be seen in Table 7.  When the problem is solved by the fuzzy RPWT method, the 
results obtained were as follows (Table 11): 
 

 
 

Table 11. Results from Fuzzy RPWT – Test Problem 3 
 
The fuzzy RPWT method requires only 3 workstations while the original crisp 
technique called for 4.  The fuzzy line efficiency is higher in the RPWT, while the 
fuzzy idle percentage is lower. 
  
After testing the new fuzzy COMSOAL and RPWT methods with data sets from the 
available literature, it was shown that these heuristics are very capable of solving the 
assembly line balancing problem.  In all cases, the fuzzy methods generated solutions 
that were equally as efficient as the results drawn from the original procedures.   
 
 

5. Conclusions  
 
Two existing heuristics were successfully modified to model the variability and 
ambiguity imbedded in the stochastic ALBP.  Time variables were represented by 
triangular fuzzy numbers, which allows the practitioner to account for the ambiguity 
in assigning processing and cycle times, while still maintaining the variability of the 
stochastic environment.  The COMSOAL and Ranked Positional Weighting 
Technique solution methods were then transformed to solve the ALBP with fuzzy 
operating times.  The fuzzy heuristics were then automated via Visual Basic. Three 
test example problems from the available literature were used to successfully validate 
the constructed fuzzy techniques.  Thus, a viable alternative approach to solving the 
stochastic assembly line balancing problem was developed. 
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