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Abstract

We show in this paper that almost all results proved in many papers about
fuzzy algebras can be proved uniformly and immediately by using so-called
“Transfer Principle”.

1 Introduction

There are many papers about fuzzification of algebras so far. Those proved many
results which were extentions of some results in the theory of crisp algebras ([1, 2,
3,4,5,9, 10, 11]). But almost all such results are divided into the following four
types, which are extensions of those of the crisp theory.

type O : A subset A has a property P;

type 1 : If a subset A has a property P, then it has a property Q;

type 2 : Let f: X — Y be a homomorphism. If a subset B of Y has
a property @, then a subset f~!(B) of X has a property P;

type 3 : Let f: X — Y be a surjective homomorphism. If a subset A
of X has a property P, then a subset f(A) of Y has a property Q.

We now explain these four types with examples.
type O : This type is used to define subalgebras, ideals, and so on. Let G be
a group. A non-empty subset A of G is called a subgroup when it satisfies the

condition
ryc A = zy e A

Then A fuzzy subgroup p of the group G is defined ([10]) by
p(0) = p(z), ply™) = p(@) A puly)
type 1: Let X be a BCK-algebra. A subset A of X is called ideal and positive

implicative ideal when
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A:ddeal <= (1)0€ A and (2) z*y,y€ Aimply z € A
A : positive implicative ideal <= (1) 0 € A and

(2) (zxy)*z,y*xz € Aimply x*xz € A
In this case, the following is proved
If A is a positive implicative ideal then it is an ideal.

To extend the result to the fuzzy theory, those definitions are extended in the
fuzzy theory as follows: A fuzzy subset p of X is called fuzzy ideal, fuzzy positive
implicative ideal when

b fuszy ideal = (1) 4(0) > p(z) and (2) p(e*y) A ply) < ()
W o fuzzy positive implicative ideal <= (1) u(0) > p(x) and

(2) p(zxy)*2) Ap(y*2) <
(@ * 2)

As to these fuzzy ideals, it is proved that
If p is a fuzzy positive implicative ideal then it is a fuzzy ideal.

type 2 : Let X,Y be BCK-algebras and f : X — Y be a homomorphism. It
is well-known that

If B is an ideal of Y, then f~1(B) is an ideal of X
The result can be extended to the fuzzy theory of BC'K-algebras as follows:
If v is a fuzzy ideal of Y, then f~1(v) is a fuzzy ideal of X

type 3 : Let X,Y be BCK-algebras and f : X — Y be a surjective homomor-
phism. The next is familiar:

If A is an ideal of X, then f(A) is an ideal of YV’
The result is extended to one in the fuzzy theory of BC K-algebras:
If p is a fuzzy ideal of X, then f[u] is a fuzzy ideal of Y
Those results divided into four types are obtained uniformly and immediately
by using the transfer principle ([6]). The area the principle can be applied to is
restricted to the property which are denoted by a certain formula, but almost all

results obtained so far can be represented by a certain formula described below.
Thus, our principle is a powerful tool to investigate the fuzzy theory of algebras.
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2 Algebras and Terms

To present our theorem accurately, we at first define algebras and terms on the
algebras. A structure (X;w;);<y, is called an algebra if X is a non-empty set and w;
is an n;-ary operation on X. A non-negative interger n; called an arity corresponds
to each operation w;. A sequence (ny,na,---,ni) of arities (ny > ng > -+ > nyg)
is called a type of the algebra X. For two algebras (X;w;)i<k and (Y;§;) <, they
said to be similar if their types are identical.

Next we shall define terms. Let 2 be a class of similar algebras and V =
{z,y, -} be a countable set of variables. A term on an algebra (X;w;);<; € U is
defined as follows:

(t1) Each variable z € V' is a term on X;

(t2) If uy,- -+ ,up, are terms on X and w; is an n;-ary operation, then
wi(ug, -+ ,up,) is a term on X.
A term ¢(x,--- ,y) is interpreted on an algebra (X;w;);<y as follows:

(Int1) Each variable x is interpreted as an element of X, e.g., a € X.
(Int2) If terms wuy,- - ,up, are interpreted as aq,--- ,a,, € X respec-
tively, then a term w;(ug,- - ,up,) is done by w;(ai, - ,an,) € X.

For the sake of simplicity, we identify a term with the term which is interpreted on
some algebra X.
Let (X;w;)i<k € A. For every subset A C X, we define a formula Py:

PA:Vw"'vy(tl(xa"'7y)€A/\"'/\tn(‘rv"'7y)€A_>t(‘T7"'vy)€A)7

where t1(z, - ,y), - ,tn(z, -+ ,y) and t(z, -+ ,y) are terms on X which are con-
structed by variables z,---,y. We say that a subset A satisfies the formula P4
when t1(a, - ,b), -+, ty(a,---,b) € A imply t(a,---,b) € A for every element

a,-+-,b € X. The formula P4 represents a property of A. In the rest of the paper,
we use two statements "property P4” and ”formula P4” with the same meaning.
Let (X;0, %, e) be a group. For every non-empty subset A C X, the formula

Pa: VaVy(zr € ANy€ A—xzoy ! € A)

means that A is a subgroup of X. We note that non-emptyness is equivalent to a

formula
Ve(r € A—0¢€ A).

Thus we can redefine the concept of subgroup by
Vo(r€ A—0€ A) and VaVy(r € ANy € A—zoy € A).

For every subset A C X, it is called a P-set if it satisfies the formula P4.

Next we define an algebraic system 2 called a fuzzy theory of 2A. For every
algebra (X;w; )<k of A, amap p: X — [0,1] is called a fuzzy subset of (X;w;)i<k-
The class of all fuzzy subsets of (X;w;)i<x € U is said to be a fuzzy theory of 2

and denoted by 2.
For every fuzzy subset p of X € 2, we define a formula P, by:
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Plt : Vx--~Vy(u(t1(x,-~~ ay))/\"'/\ﬂ(tn(xv"' 7y)) < ‘LL(t(l‘,“' 7y))

Similarly to the case of crisp theory, the formula P, represents a property of fuzzy
subset p. We say that u satisfies P, whenever

u(tl(av"' 7b))/\"'/\:u‘(tn(a7"' vb)) < /J’(t(af" ’b))

for all elements a,--- ,b € X.
In the theory of groups, for example, this means that, for every fuzzy subset
of X, a fuzzy subgroup p of X is defined by

pu(x) < p(0) and p(z) A p(y) < p(zoy™).

For every fuzzy subset p of X, we call u a fuzzy P-set if it satisfies the formula
Pu. For 0 < a <1, we put

U(p; a) = {a € X[u(a) > a}.

In the following section, we describe a transfer principle accurately and prove im-
portant and general theorems using the principle.

3 Transfer Principle

In this section we give an accurate definition of transfer principle and prove the
general and fundamental theorems by use of that principle. At first we consider
the basic form of a transfer principle. Since this type is basic to develop our theory,
we call it type 0. In the rest of the paper, let 2 be an arbitrary algebraic system.

Theorem 1 (Transfer Principle (type 0)). Let (X;w;) € 2. For every fuzzy
subset p of X,

W is a fuzzy P-set <= For all a € [0,1], if U(p; ) # 0 then U(u; ) is a P-set

Proof. (=) Suppose that U(u; «) is not a P-set for some « € [0,1]. There exist
elements a,--- ,b € X such that

ti(a, -+ ,b) € U(u;a) (i <n) but t(a,---,b) ¢ U(p; ).
Since,
plti(a, - ,B) > a but p(tla, - b)) # o,

we have

M(t(a7"' 7b)) z /\M(ti(a7"' ’b))

This means that p is not the fuzzy P-set.
(«<=) Conversely, assume that p is not a fuzzy P-set. There exist a,--- ,b € X

such that
:u(t(av e 7b)) z /\M(ti(aa e ’b))
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If we take o = A\, p(ti(a,--- , b)), then we have o € [0,1] CU(y; ) # ¢ and
ti(a,---,b) € U(w; ), but t(a,---,b) ¢ U(y; a).

This indicates that U(y; «) is not the P-set.
Thus we can prove the theorem completely.
O

Remark : In the fuzzy theory of sets, a similar result called an extentension
property is well-known:

A={JaU(na;a)

This is a property concering only a set. This does not show the property of op-
erations on the set. In other words, this does not represent the property of a
mathematical structure. But our transfer principle does represent the property of
the mathematical structure.

The transfer principle means that it is sufficient to ckeck whether a set U (u; o) #
() satisfies the property P for all a € [0, 1] if we want to know whether a fuzzy subset
w satisfies a property fuzzy P. Hence we can show the property fuzzy P of a fuzzy
subset p in the crisp theory of algebras.

We shall prove in the following sections that the transfer principle can be ex-
tended to other types (type 1, type 2, type 3).

4 Application to type 1

In this section we apply the transfer principle to statements of type 1 and prove
a general theorem of that type. The statement of type 1 has a form: Let X € &
be an arbitrary algebra.

For every subset A of X, if A has a property P (or A is a P-set), then
it has a property Q (or it is a Q set).

We denote the statement simply by
A= (X:A):P=(X:A4):Q.

If the statement A = (X : A) : P = (X : A) : Q holds for every X € A and
A C X, we denote it by
AEP = Q.

Hence the two formal statements
Forevery X e dand ACX, AE(X:A):P= (X:A):Q holds.
and

AEP = Q
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have the same meaning.
The statement can be extended to the following in the fuzzy theory of algebras:

For every fuzzy subset p of X, if p has a property P,, (or p is a fuzzy
P-set) , then it has a property Q,, (or it is a fuzzy Q-set).

We also denote the statement simply by
A (X 1) fuzzyP = (X : p) : fuzzy Q.

If the statement A |= (X : p) : fuzzyP = (X : p) : fuzzyQ holds for every
X € A and fuzzy subset p of X, then we denote it by

A = fuzzyP = fuzzy Q.

Thus as in the case of above there is no difference between the statement

For every X € 2 and y, we have 2 = (X : u) : fuzzyP = (X : p) :
fuzzy Q

and the statement
2 |= fuzzyP = fuzzy Q.

We have two examples of the statements of type 1.

In the theory of BC K-algebras, if A is an positive implicative ideal then it is an
ideal, and in the theory of groups, if A is a normal subgroup then it is a subgroup.

A general theorem concerning to the statements of type 1 is represented as
follows:

Theorem 2. IfA =P = Q then A |= fuzzyP = fuzzyQ

Proof. Suppose A = P = Q. Let (X;w;) be an arbitrary algebra in 2 and u
a fuzzy subset of X. If 4 has a property P, (ie., p is a fuzzy P-set), then it
follows from transfer principle that U(u; o) C X is a P-set for all « € [0, 1] such
that U(u; ) # 0. Hence U(p; ) is a Q-set from assumption. This yields that if
U(u; ) # (0 then U(p; ) is the Q-set for all o € [0,1]. It follows from transfer
principle that p is the fuzzy O-set. That is,

A = fuzzyP = fuzzy Q
O

Example@Let 2 be a class of groups and (X;o, ! e) € 2. For every non-
empty subset A of X, we take two formulas P4, Q4 defined by

Pa:VaVylr € A —yoxoy l € A);
Qu:VaVylr e ANy A—xzoy teA).

These formulas indicate respectively that
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A is a normal subgroup of X;

A is a subgroup of X.

It is well-known that every normal subgroup is a subgroup. This fact can be
represented accurately by

Let X be an arbitrary group. For every non-empty subset A of X, if A
is a normal subgroup of X then it is a subgroup of X.

Thus the fact is denoted by
AEP= 0.

Hence it follows from the above that
A = fuzzyP = fuzzy Q.

The statement represents that

Let X be an arbitrary group (i.e., X € 2). For every fuzzy subset y of
X, if p is a fuzzy normal subgroup then it is a fuzzy subgroup. That
is, every normal fuzzy group is a fuzzy group.

It is clear that this statement is an extension of a statement above in the theory
of groups to that of the fuzzy theory of groups. Of course any other property of
the theory groups can be extended to the fuzzy theory of groups if the property is
denoted by the form of this paper.

5 Application to type 2

In this section we apply the transfer principle to the statement of type 2 which
has a follwing form:

Let X, Y € 2 be algebras and f be a homomorphism from X to Y. For
every subset B of Y, if B is a Q-set then f~1(B) is a P-set.

We denote it formally by
AE=(Y:B): Q= (X : f74B)): P,

If the statement holds for every algebra X,Y € 2, every homomorphism
f: X — Y, and every subset B of Y, then we describe it by

AEB: Q= f1(B):P.
We extend the statement to the case of the fuzzy theory of algebras:

Let X, Y € 2 be algebras and f be a homomorphism from X to Y. For
every fuzzy subset v of Y, if v is a fuzzy Q-set then f~1(v) is a fuzzy
P-set.
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We denote formally the statement by
A= (Y :v):fuzzy Q = (X : f1(v)) : fuzzy P,

and if it holds for every algebra X,Y € 2, every homomorphism f : X — Y, and
every fuzzy subset v of Y, then we do by

A= v: fuzzy Q = f1(v) : fuzzy P.

The statements of type 2 have a new concept. It is an inverse image of a fuzzy
subset by a homomorphism. To extend the concept to fuzzy theory, we have to
define an inverse image of a fuzzy subset by a homomorphism. This is defined as
follows: Let X,Y be algebras and f be a homomorphism from X to Y. For every
fuzzy subset v of Y, we define an inverse image f~!(v) of v by

FH ) (@) = v(f(2)) (z€ X).

where a map f: X — Y is called a homomorphism when

f(wi(a’l" o 7am)) = wi(f(a’l)a"' 7f(a7h))

for every n;-ary operation w; and for all aq,--- ,a,, € X.
It follows from transfer principle that

Theorem 3. Let X,Y € 2 be algebras and f : X — Y be a homomorphism. Then,
if AEB: Q= f~YB):P then Av:fuzzy Q= f~(v): fuzzy P.

Proof. Let A= B: Q= f~1(B): P, Y € 2. Suppose that v is a fuzzy Q-set of
Y. It is sufficient from the transfer principle to show that if U(f~1(v); ) # () then
U(f~1(v);a) is a P-set for every a € [0, 1].

Take any « € [0, 1] such that U(f~(v);a) # 0. Since v is the fuzzy Q-set and

U(f~ (v)ie) = f7H(U(v50)),

U(v;a) # 0 and hence U(v;a) is a Q-set. From the assumption, f~1(U(v;a)) =
U(f~'(v);a) is the P-set. This means that f~'(v) is the fuzzy P-set.
Thus we have 2 = v : fuzzy Q = f~1(v) : fuzzy P. O

Example@We explain the power of our theorem by the following example in
the theory of BCK-algebras. By BCK-algebra, we mean an algebra (X;x*,0) of
type (2,0) satisfying the axioms:

(Bl) ((x*xy)*(z*x2))*(zxy)=0
(B2) (zx(zxy))*xy=0

(B3) zxxz=0

(B4) 0xx=0

(B5) zxy=yrz=0=uxz=y
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Let 2 be a class of BOK-algebras and (X;*,0) € 2. For every non-empty subset
A of X, it is called an ideal if it satisfies the conditions:

(1H)oe A
(2) VaVy(zrxy e ANye A—xze A

At first glance the condition (1) does not have the form to which the transfer
principle can be applied. But we can see easily that the condition is equivalent to
the formula:

Ve(r € X — 0€ A).

Thus we can redefine A to be an ideal by
(1) Ve(re A—0€ A)
(2) VaVy(zrxy e ANye A—xz e A).

Clearly we can apply the transfer principle to the formulas. So we define a fuzzy
subset p of X to be a fuzzy ideal of X by

(F1) Va(u(z) < n(0))
(F2) YaVy(u(z * y) A p(y) < p(x)).
As an example of type 2 in the theory of BC K-algebras, we have

Let X,Y be BCK-algebras and f : X — Y be a BCK-homomorphism.
If B is an ideal of Y, then f~1(B) is an ideal of X.

It is well-known ([11]) that the result can be extended to the fuzzy theory of BCK-
algebras:

Let X,Y be BC'K-algebras and f : X — Y be a BC'K-homomorphism.
If v is a fuzzy ideal of Y, then f~!(u) is a fuzzy ideal of X D

The statements can be represented formally as follows: Let 21 be a class of
BCK-algebras, X,Y € A, and f be a BCK-homomorphism from X to Y. If we
denote that B is an ideal of Y by Qp and that f~!(B) is an ideal of X by Ps-1(B)
then the original theorem means that

A (V:iB): Qs — (X: [ 1(B)): Prorgn)
holds for every X,Y € 2, BC K-homomorphism f: X — Y, and B C Y. That is,
AEB: Q= f1(B):P.
Then an extended theorem to the fuzzy theory is represented by
AEv:fuzzy Q = f(v) : fuzzy P.

This is exactly the statement of type 2 and hence immediately from our general
theorem.
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6 Application to type 3

We define a statement of type 3 through an example in the theory of BCK-
algebras. The statement of type 3 has a following form:

Let X,Y be BCK-algebras and f : X — Y be a surjective homomor-
phism. If A is an ideal of X, then f(A) is an ideal of Y.

The statement can be extended to the fuzzy theory of BC K-algebras:

Let X,Y be BCK-algebras and f: X — Y be a surjective homomor-
phism. If p is a fuzzy ideal of X, then f[u] is a fuzzy ideal of Y.

A statement of type 3 is defined accurately as follows:

Let X,Y be algebras, f : X — Y be a homomorphism and A be a
subset of X. If A is a P-set, then f(A) is a O-set.

We formally denote the above by
A= (X:A):P=(Y:[f(A):Q.

If the representation holds for all algebras X,Y € 2, homomorphism f : X — Y
and A C X, we denote simply

AEA:P = f(A): Q.

The statement of type 3 can be generalized to the fuzzy theory. It has the
following representation:

Let X,Y be algebras, f : X — Y be a homomorphism and p be a fuzzy
subset of X. If u is a fuzzy P-set, then f[u] is a fuzzy Q-set.

The above can be represented formally as
A= (X o p): fuzzy P = (Y : fu]) : fuzzy P

and if the representation holds for all algebras X,Y € 2, homomorphism
f: X — Y and fuzzy subset of X, then we denote it by

A= p: fuzzy P = f[u] : fuzzy P.

There is also a new concept called an image f[u] of a fuzzy subset p by a
(surjective) homomorphism f. We have to define f[u] for a homomorphism f and
a fuzzy subset . Let 2 be a class of algebras with similar type, X,Y € 2 and
f:X — Y be amap from X to Y. For every fuzzy subset p of X, we define an
image f[u] of u as

fllw) = \/ wl@), yev.

u€f~1(y)

If f~1(y) = 0, then we put f[u](y) = 0. We note that the image f[u] is also a fuzzy
subset of Y. For images of fuzzy subsets we have the fundamental result which
plays an important role in the theory of type 3.
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Lemma 1. Let f : X — Y be a surjective homomorphism. For every o € [0,1],
we have

U(flul;e) = () f(U (s = €))

e>0

Proof. We can see the result from

y € U(flp) ) <= flul(y) = o

= \/ plz) >«
zef~1(y)

= Ve>0Tr e f(y) st pulz) >a—e
= Ve>0Tr e fHy) stz € U(usa —e)
= Ve>0y=f(z) € f(U(ya —¢))

e=ye [ fUpa-e).

e>0

O

We note that it is need to consider the intersection of sets when we use the
lemma. In general it arises a problem from considering the intersections of sets.
For example, the intersection of non-empty sets is not always a non-empty set.
That is, the intersection (1, Ax of {Ax}xea does not always have a property P
even if each set Ay has the property P. So in order to develop our theory to wider
classes of algebras, we need to consider a property whcih is carried over from sets
to the intersection of those sets. A property P is called to have an intersection
property if the intersection (7], Ay has a property P for every set Ay with the
property P. This means that if each set Ay has a property P then the intersection
A =, Ax has the property P, that is,

Vo -Vy(ti(z, - ,y) € Ax A+ Atp(z, - ,y) € Ay — t(z, -+ ,y) € A)) for
every A € A imply
Vo -Vy(ti(z, - y) € AN Atp(z, -+ y) € A—t(x, -+ ,y) € A).

As examples of those properties (formulas), there are properties of ideals, of
subalgebras, of closed sets, and so on.

Using the intersection property we can show the general theorem about the
statements of type 3.

Theorem 4. Let X,Y € A and f be a surjective homomorphism from X to Y.
IfA = A:P = f(A): Q and Q has an intersection property, then A |= u :
fuzzy P = f[u] : fuzzy QD

Proof. Suppose that A = A : P = f(A) : Q and Q has an intersection property.
Let X € A. We assume that p is a fuzzy P-set of X. It is sufficient from transfer
principle to show that if U(f[u]; @) # 0 then U(f[p]; o) is a O-set for all « € [0, 1].
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Let « € [0,1] such that U(f[u]; «) # 0. It follows from the lemma above that

we have
U(flulsa) = () F(U (s — e)).

>0

Since U (f[u]; a) # 0, we have (.o f(U(p; a—€)) # 0 and hence f(U(u;a—e€)) # 0
for all € > 0. This implies U(u; — €) # 0. From assumption, U(u; — €) is a

P-set for all € > 0 and hence f(U(u;a — €)) is the Q-set. Moreover, since Q has
the intersection property, (. f(U(y; a —€)) is also the Q-set, that is, U(f[u]; )
is the O-set.

O

As conctrete examples there are the results in the theories of groups and of
BC K-algebras. In the theory of groups, it is well-known that

Let G,G’ be groups and f : G — G’ be a surjective homomorphism.
If A is a (normal) subgroup of G, then f(A) is a (normal) subgroup of
G

We also have a result ([9, 10]) which is a generalization to the fuzzy theory of
groups.

Let G,G be groups and f : G — G’ be a surjective homomorphism.
If A is a fuzzy (normal) subgroup of G, then f(A) is a fuzzy (normal)
subgroup of G'.

If we consider the properties P, Q as (normal) subgroups, then the result is
obtained immediately by the theorem above.
We have another example in the theory of BC K-algebras:

Let X,Y be BC'K-algebras and f : X — Y be a surjective homomor-
phism. If A is an ideal of X, then f(A) is an ideal of Y.

The result can be extended to the fuzzy theory of BCK-algebras ([4]):

Let X,Y be BC'K-algebras and f : X — Y be a surjective homomor-
phism. If y is a fuzzy ideal of X, then f[u] is a fuzzy ideal of Y.

7 Other Properties

Let X be a group. A subset A of X is not always a subgroup of X. In this case
we often consider the subgroup (A) generated by A, that is, the least subgroup
containing A. In this case there is a question whether we can extend such concept
to the fuzzy theory of groups. Or more generally, how do we extend the concept
to the fuzzy theory of algebras? In this section we think about the question and
give a certain solution by use of the transfer principle.

Let X € 2 be an arbitrary algebra and A be a subset of X. For a formula P
with an intersection property, a P-set (A) generated by A is defined as the least
P-set which contains A. It can also be represented by
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(A) =, {Bx | AC By, By : P-set}

Hence we can extend the P-set (A) generated by A to the fuzzy subset p of X

as follows:
(4) = Aslon | 1 < va, va - fuzzy Pset),
where (u) is a fuzzy subset of X defined by
(u)(z) = infx{vy(z) | p <wr, vy : fuzzy P-set } (€ X).
It has another representation: For every a € [0, 1],
U{);0) = My {U (w5 ) | 1 < va, vy : fuzay Poset }

Using the representation we can get all facts obtained so far by transfer principle
and of course we can get new results.

At last we consider a direct product of fuzzy subsets of X. Let u; be a fuzzy
subset of X; (i € I). A map
o Mier X; — [0,1)
of IL;c; X; satisfying the condition

w(a)(yg) = pj(a(i)), (a€llicrXi, jel)
is called a direct product of p; and denoted by p = I;crp;:
As the direct product IT;cyp; of fuzzy subsets p;, we have the following.
Lemma 2. For all a € [0,1]%,
IL; Upy; a(d) = UL o)
Proof. Tt is easy to show the lemma from the fact that for every = € II; X;
@ € T Uzs ) <= (j) € Uz a(j)) for Vj € T

= p;(2(j)) > a(j) forvjel

— (ILip)(2) = o

— 2z e U(Il;ui; @)

O

Now we are ready to present a general theorem about the direct product of
fuzzy subsets. At first a property P is said to have a direct product property if for
every subset X; with a property P the direct product II; X; also has the property
P. Thus, we can get a general theorem about direct product of fuzzy subsets by
transfer principle.

Theorem 5. If P has a direct product property and 2 EAy:P = IILA): P,
then A = py : fuzzy P = A = \py : fuzzy P.

Proof. 1t is obvious from the lemma above. O
It follows from the theorem that if a class of crisp algebras is closed under the

direct product then a class of extended fuzzy subsets of those algebras is also closed
under the direct product.
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8 Conclusion

We prove the fundamental and general results that any property about crisp subsets
expressed by special formulas can be extended to that of the fuzzy subsets. Thus the
direction of the research of fuzzy theory of algebras aims to consider other properties
which are not expressed by our formulas. It is also important to investigate the
properties H,S,P of a class of fuzzy algebras. Of course, these mean that a class of
algebras is closed under the operation of homomorphic images, subalgebras, direct
product, respectively. In this paper we consider the properties S and P. The rest
of ones H is very important to consider the quotient algebras. Because to consider
the quotient algebras are correspond to do congruences. As to fuzzy congruences,
their fundamental results are obtained in [7, 8], which are restricted to the case
of BCI-algebras and groups but they can be developped to the general case of
algebras.
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