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The quality standard of today’s automotive industry products is very high. Es-
pecially car manufacturers of the upper-class and premium market segments dif-
ferentiate their products from their competitors among other things by a perfect
appearance of the painted car hody. This is an important quality demand, as the
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Abstract

Surface quality analysis of exterior car body panels was still character-
ized by manual detection of local form deviations and subjective evaluation
by experts. The approach presented in this paper is based on 3-D image
processing. A major step towards automated quality control of produced
panels is the classification of the different kinds of surface form deviations.
In previous studies we compared the performance of different soft computing
techniques for the detection of surface defect types. Although the dataset
was rather small, high dimensional and unbalanced, we achieved promising
results with regard to classification accuracies and interpretability of rule
bases. In this paper we reconsider the collection of training examples and
their assignment to defect types by the quality experts. For improving the.
reliability of the defect classification we try to minimize the uncertainty of the
quality experts’ subjective and error-prone labelling. We build refined and
more accurate classification models on the basis of a preprocessed training
set that is more consistent. Improvements in classification accuracy using a
partially supervised learning strategy were achieved.

Introduction
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Class Linguistic Description

bulge rounded damage outward, distinctive feature,
relatively small radius

sink mark slight flat based depression inward

press mark local smoothing of (micro-)surface, heavier sink mark,
deep depression preceeded by a low peak

dent rounded damage inward, distinctive feature

flat area flat plane on curved cumber surface

uneven surface | several sink marks in series or adjoined

waviness several heavier wrinklings in series

uneven radius |visible distortion of radius geometry

Table 1: Surface form deviations.

outer panels are rather exposed and directly visible to the customer. In general,
the impression of a car is determined by an appealing design of its body, the color
and gloss of its paint, and the manufacturing and assembly accuracy of the exte-
rior body panels. The geometric complexity of these panels makes them difficult to
produce with metal forming technologies. Small surface form deviations like sink
marks always exist. Typical imperfections that are considered as distortions devi-
ate in normal direction by tens of microns. The surface paint does not cover such
imperfections. They result in inhomogeneous runs of light fringes on the highly
reflective paint, which visibly disturb the perfect appearance of the car body. The
manufacturing process is optimized in order to eliminate or at least to minimize
such surface defects at the end of the product development process. The position
and the kind of the remaining surface form deviations on each outer panel are doc-
umented in a surface quality protocol and physically in a so called master piece.
By definition the master piece represents the just acceptable geometric shape of
each local form deviation. This high quality level has to be kept after the start of
the series production. Therefore it is imperative to control the quality of the parts
directly in the first steps of the manufacturing process in the press shop.

Surface quality control in the press shop is currently a manual procedure. Dur-
ing series production an experienced worker checks the produced parts at the end
of the press line in constant intervals by treating their exterior surfaces with a
grindstone. From the resulting specific patterns of local grinding marks he is able
to detect form deviations, and derive their type and acceptance. The experts in-
troduced a. list of surface defects and characterizations, to that they conform more
or less in their daily quality work. The surface form deviations are characterized
by linguistic descriptions of their specific appearance, as shown in Table 1 for some
common defects. The geometry of the defects is specified by vague terms and
attributes.

However, the manual procedure has several disadvantages. It is cumbersome,
subjective, and thus error-prone. Furthermore it is time consuming, especially
when analyzing the surface of large parts totally. The assessed parts are often lost
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SURFACE DIGITIZATION:
Topometric measuring system;

3-D image (point cloud).

i
PRE-PROCESSING:
Masking area of interest;
Filtering of poiut cloud.
i

3-D IMAGE ANALYSIS:
Segmentation of difference data;

Feature extraction.

!
CLASSIFICATION:
Fuzzy rules and decision trees;

Defect Type Detection.

Figure 1: Automatic quality assessment based on 3-D image processing.

for the manufacturing process. Therefore it is desirable to have a more objective,
non-contact, faster and automatic estimation method.

Our approach, which is currently in development, is based on the digitization of
the exterior body panel surface with an optical measuring system (Figure 1). From
the resulting point cloud we try to characterize the form deviations by mathemat-
ical properties that are close to the subjective properties that the experts used in
their linguistic descriptions. The approach has two major aspects: the quality spe-
cialists need information about the type of defect detected, and additionally they
are interested in its severeness. Our studies focus on the first aspect. The charac-
teristics of the described problem - its uncertainty, fuzziness and the use of expert
knowledge - point to possible solutions in the field of soft-computing. Therefore,
we studied the performance of different soft-computing techniques to determine the
type of a defect from the extracted features. We achieved promising results with re-
gard to classification accuracies and interpretability of rule bases {12). In this paper
we reconsider the collection of training data. Since results of previous experiments
point out inconsistencies in the training data, we try to minimize the influence of
the experts’ subjective and error-prone labelling. In a partially supervised learning
approach we try to resolve problems due to uncertain class assignments for further
improving the reliability of the defect classification. We believe that refined and
more accurate classification models can be built on the basis of more consistent
training data.

2 Data Acquisition and Processing

Following the well known digital image processing chain (e.g. [1]), we try to imple-
ment a continuous 3-D image processing. Figure 1 provides a simplified overview
of the process, including digitization, image pre-processing and image analysis,

N
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and the application of soft-computing techniques for the classification of surface
defects. The digitization of the exterior body panels surface with a topometric
3-D measuring system is the basic step of our approach. The optical metrology
offers high accuracy and resolution in a large sized measurement volume as well
as fast and non-contact data acquisition. The operating principle of the sensor is
called Miniaturized Projection Technique (MPT') and is based on a combined Gray
code/phase shift technique [2]. Therefore, the MPT sensor projects a sequence of
gratings onto the surface of the object to be measured. Each grating is digitized
with a high resolution CCD camera under a defined angle. The superposition of
the single images of one sequence enables a unique correlation between every pixel
on the CCD chip and the position of each fringe in the projection plane, so that
the depth information can be obtained by triangulation. The resolution limit in
z-direction is about 5um and the noise in z-direction has a value of £10um . The
raw data is filtered in order to delete outliers and to reduce the noise to a minimum.
The outcome of this operation is an accurate 3-D point cloud, which contains the
required geometric information of the surface defects. From this point cloud, the
ideal geometric shape of the part is approximated by a rather inertial surface of
low polynomial degree. The local form deviations can then be determined as the
differences between the 3-D point cloud and the approximated surface. Condensed
visualizations of 4 typical form deviations are shown in Figures 2-5.

With respect to the linguistic description of the different defect classes it is
not obvious, which mathematical characteristics permit an efficient classification
process. For this reason a system of geometric features was developed. The goal
was to define features that are in a close connection with the linguistic descriptions.
The system is structured into four main categories:

features derived from orthogonal projections,

gradient analysis,

features calculated directly on the numerical basis of the extracted difference
data (e.g. volume or maximum depth of a defect), and

ratios between other features.

In all, 58 features have been defined that are the basis of the further analysis.

3 Data Characteristics and Previous Results

The handling of the 3-D measurement system and the data processing itself requires
a considerable amount of manual interaction due to its prototypical stage. We were
thus forced to restrict our analyses to a small, but hopefully representative set of
selected master pieces. Concretely, the basis of our analyses are 19 master pieces
with a total number of 273 defects recorded by the experts in the corresponding
quality protocols. From those protocols, we know the position and type of the
defects as they were determined by a quality expert. For each of these defects the
complete set of 58 features was calculated. Figure 6 shows the frequencies of the
defect types in the dataset. Obviously, the types are rather unbalanced, and the
less frequent types occur very rarely. Defect type uneven radius and flat area were
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observed only less than ten times. Some examples were labelled to be of defect
class uneven surface/pressmark in the dataset. This unexpected class name was
introduced by quality experts and indicates a mix of two defect types. In contrast
to the low number of examples, the number of features is extremely high. High
dimensionality is a general problem in data analysis, and not all of the classifiers
used in our studies were equally suited to learn from high dimensional data.

We expected the classification to be rather difficult: we have a low number of
examples, with many dimensions and highly unbalanced class frequencies. Regard-
ing the classification accuracy previous work sounds promising: in stratified 4-fold
cross validation decision trees correctly classified 82.42% of the test patterns [12].
The fuzzy rule bases which were induced from the described dataset were approx-
imately 7% less accurate. The classifiers performed fairly, but not equally well in
discriminating between the majority classes. However, reliable descriptions of the
minority classes could not be obtained. Decision trees and the fuzzy rule based
models misclassified many examples of class flat area and uneven radius. Both
types could not be separated from the other classes. The pruned rule bases often
did not contain rules for the small classes. The common approaches for handling
unbalanced class frequencies also did not seem promising in our previous studies:
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Figure 6: Occurrences of defect types

reducing the more frequent types would decrease our already small database, and
duplicating the rare cases would not increase their variance needed to learn a well
generalizing classifier. The small numbers of patterns of the types flat area and
uneven radius are not representative enough to reliably detect those types.

Another difficulty for classification has been posed by the defect type uneven
surface/ press mark. Most patterns of this type have been classified incorrectly as
being either of class uneven surface or of class press mark. Apparently, it cannot be
separated clearly as its own class. In the trained and pruned fuzzy rule bases there
were no rules for this defect type. This indicates inconsistencies in the dataset and
let us to question the way the data were collected and labelled.

4 Data Quality

In our application classification models are built based on training examples that
were labelled by experts in a manual, subjective procedure. Thus, the expert de-
cision on the defect type at hand is as error-prone as the manual surface quality
control. In the most severe situation our classifiers are trained on basis of too
many wrongly labelled or noisy examples. Then automated classification would
jeopardize any quality control efforts. In the other case, fairly good classifiers can
be generated with quite accurate training examples. Then the classifier decision
can doubt an expert opinion in case of misclassified test examples. These view-
points highlight the importance of consistent training data and the benefit of expert
involvement in classifier design for arriving at reliable defect type detection.

The examples which were labelled as defect type uneven surface/ press mark by
the expert could not be separated well by all classifiers in our previous experiments.
Instead, they were classified as press marks or uneven surfaces. We can assume
that the number of extracted features is sufficient to discriminate all classes. Thus,
we suspect that these examples are not of there own separate class. Possibly due
to the geometric characteristics of these defect examples which showed similarities
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to the shape properties of press marks or uneven surfaces (whiteout being clearly
of either type), experts invented this mixture class to have a new ‘bucket’ to collect
these defects. Consequently, we view these examples as noisy training data points
with highly uncertain class labels in our following study. We do this in attempt to
minimize the uncertainty introduced by the experts’ labelling of examples.

The low number of minority cases which were not representative enough to allow
detection of their types cases. This poses the second problem we face regarding the
quality of our training dataset. For ensuring comparability with previous results,
however, we do not omit these examples in the following study that focuses on
eliminating inconsistencies among majority classes.

5 Classifying Defect Types

The simplest way to reduce the inconsistencies introduced by the class of mixed
examples uneven surface/ press mark is to remove these defects from the dataset.
This, however, would reduce the size of our already small set of training examples.
Instead we only delete the class-label of these examples and use a partially super-
vised learning scheme. This way, we eliminate the uncertainty of this training data
label without throwing away data, that has been collected in a time-consuming
and expensive manner. The induction of classifiers in our following study is then
supported by these unlabelled cases in the hope not to compromise the classifi-
cation performance. We use a two step post-labelling approach [13]. In the fi
step we build a data model of the relevant data. Having obtained a cluster mod{
the labelled data is used for labelling the whole clusters by applying the majorlty
principle. That is, the label of the cluster is assigned to the class, which is repre-
sented in cluster with the largest number of data points. All unlabelled samples
are relabelled with the majority class name of the cluster they belong to. Given
the entire newly labelled dataset we construct the final classifiers in the second,
supervised learning phase. The first step of the approach should result in new class
assignments for unlabelled examples based on other data points in the training set
which are more representative of their true classes. In the second stcp we hope that
better decision boundaries can be constructed than those of the previous classifiers,
which were trained on examples with highly uncertain or wrong class labels.

For the clustering step and one of the final classifiers in this study we had to
perform an explicit feature selection, due to the high dimensionality of the data [4].
First of all, we found that some of the features were almost identical, i.e. their
linear correlation is very close to 1. As the vertical extension of defects is orders
of magnitude smaller than their size, features calculated on the 3-D shape of the
defects are very similar to those calculated on their 2-D projections. We therefore
discarded some of the extremely high correlated features. We then ranked the
remaining features by importance using forward-sequential feature selection. We
estimated the error by 1-nearest-neighbor-classification on the normalized features
with 1-leave-out.

‘When selecting suitable classification methods for a system that detects surface
faults we have to consider, that confidence into the system that predicts expert
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cluster 11213]14] ©
pressmark 0136]17] 0 53
unevensurface|44) 2 | 1 |15} 62
no label 14151{0]0( 19
P 58{43(181151134

Table 2: Result of the clustering step.

decisions is extremely important in responsible fields like quality control. The in-
volved experts are more confident in a defect detection system, if its decisions are
transparently and understandably given by rules or trees, Therefore we compared
the following approaches for the final classification: decision trees [9], neuro-fuzzy
classification with the well-known NEFCLASS, and a rather new fuzzy rule in-
duction algorithm. For the experiments with the final classifiers we used 4-fold
cross validation [4]. That is, the database was split into four parts using stratified
sampling to ensure that cvery split contains a similar distribution of defect types.
Especially, this procedure ensures that each part contains at least one instance of
each class.

After the description of the clustering step in this partially supervised learning
approach, we give a brief outline of NEFCLASS and the constructive training
algorithm for the induction of mixed fuzzy rules. Results of the final classification
are presented in section 6.

5.1 Unsupervised Classification Step

The questionable class label unevensurface/ pressmark has been removed from the
respective examples with the objective of finding more appropriate and reliable
class re-assignments than the expert grouping into a mixture class. The relabelling
with a cluster model is objective and purely based on similarity to data points which
are hopefully more representative for the classes. Assuming that the true class of
the unlabelled examples could not be judged between unevensurface and pressmark
by the experts, we comprised a dataset with all examples of these two classes and
those previously assigned to the mixture class. We clustered this set of data with
the EM algorithm as implemented in the WEKA package [5]. We therefore used
the subset of the 10 best features that resulted from forward-sequential feature
selection. The cluster model with the best data likelihood we obtained has 4
clusters. The distribution of the samples over the clusters is shown in Table 2.
Labelling according to the majority principle yielded the following class assign-
ments to the clusters: clusters 1 and 4 were labelled unevensurface while cluster
2 and 3 were assigned to class pressmark. 14 of the examples previously in the
mixture class were relabelled with class unevensurface, since they belong to cluster
1. Five of the unlabelled examples in cluster 2 consequently got the class label
pressmark. With this relabelling of the examples of the mixture class we obtained
the modified dataset, which now only contains 7 classes. It was used in the super-
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vised classification step with decision trees and the fuzzy rule classifiers that are
described in the following.

5.2 NEFCLASS: a hybrid neuro-fuzzy classifier

NEFCLASS is a well-known hybrid neuro-fuzzy classifier developed at the Univer-
sity of Magdeburg. It has been designed to overcome the limited interpretability of
neural networks. Although neural networks are popular data mining methods, the
"learnt” knowledge is stored in the numeric network connections, and thus they
do not provide human understandable information about the data. A remedy lies
in the combination of neural networks with fuzzy systems: we use a fuzzy system
to represent knowledge in an interpretable manner, and use the learning ability of
neural networks to determine membership values. The drawbacks of both of the
individual approaches - the black box behavior common to neural networks, and
the problem of finding suitable membership values for fuzzy systems - can thus be
avoided. NEFCLASS is such a hybrid approach [7]. Its structure is a three layer
feed-forward network with coupled fuzzy weights. The network can be interpreted
as fuzzy if-then rules of the form:

R,: if 2, is Al and ... and z, is A? then 7 is ¢,

where AL, ..., A" are lingnistic terms (like small, medium or large). They are
represented by fuzzy sets pi, ..., ué, , that build a fuzzy partition of the i — th
dimension. The patterns are vectors & = (x3,...,2,) that belong to k disjunct
classes ¢;. The network structure - i.e. the set of rules - is created by the procedure
suggested by Wang and Mendel [10]. The initial fuzzy partitions structure the
data space as a multidimensional fuzzy grid. The rule base is created by selecting
those grid cells that contain data. This can be efficiently done in a single pass
through the training data. After a rule base has been generated from an initial
fuzzy partitioning, the membership functions must usually be fine-tuned in order
to improve the performance. In the NEFCLASS model, the fuzzy sets are modified
by simple backpropagation-like heuristics, motivated by neural network learning,.
In the learning phase, constraints are used to ensure that the fuzzy sets still fit their
associated linguistic terms after learning. For example, membership functions of
adjacent linguistic terms must not change position, and must overlap to a certain
degree [7). The NEFCLASS model has been continuously improved and extended
over the last few years. Most of these extensions address the specific characteristics
and problems of real world data and their analysis. An important extension is the
integration of pruning techniques. When a rule base is induced from data it often
has too many rules to be easily readable, and thus only gives little insight into the
structure of the data. Therefore, to reduce the rule base, several pruning techniques
have been presented for NEFCLASS. These methods are effective in both reducing
the number of rules and the number of features in the antecedences for improving
generalization ability. Pruning is of great importance for practical applications
with higher numbers of dimensions. Details can be found in [8][6].

Y
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5.3 Constructive Induction of Fuzzy Rule Bases

The creation of fuzzy rules by globally partitioning the data space into a multidi-
mensional grid can be problematic. Then the extracted rules are constrained on all
features in the dataset. This leads to the limitations of NEFCLASS and numerous
other fuzzy rule induction algorithms: they often scale badly with higher dimen-
sions of the feature space. Extracted rule bases are hard to interpret although they
are meant to yield understandable descriptions. Thus, feature selection beforehand
and extensive pruning of initial rule bases are required. An alternative approach
presented in [11], called mixed fuzzy rule formation, tries to avoid these problems
with a sequential, constructive algorithm. The fuzzy rules are called mixed, since
they can handle different types of features: continuous, granulated, and nominal
features. A mixed rule on the feature space is defined through a fuzzy set which
assigns a degree of fulfilment for a data point = (x1,...,Zi,...,%n):

WR,Z) = min {u{c", ", 2.}} (1)

Each one-dimensional constraint ¢, defines a subset of the corresponding domain
D,. In case of numerical attributes intervals are used for the core region c{°"® and
the support region ¢]"#?. The trapezoidal membership functions y, are then defined
as follows: membership values of 1 are assigned one to patterns that fall inside
the core region (area of evidence). The membership degrees linearly decline until
they reach 0 for patterns with attribute values outside the support region (area of
support). The sets ¢;*P? can contain the entire domain of values (o0, —00), i.e.
the corresponding domain is not constrained at all. During a learning epoch each
training pattern is analyzed and the existing rules are modified or new rules are
inserted into the rule base. If a presented pattern is already covered by a rule
of the correct class, the core region of the rule is eventually widened in order to
increase the membership degree of the pattern to 1. If there is no rule that covers
the presented pattern, a new rule for the class of the pattern is created such that
the core region of the new rule only covers the pattern itself. The support area of
the new rule covers the entire feature space, i.e. ¢;*?* = (00, —00), Vi.

In any of the two cases above the algorithm ensures that no existing rule of
conflicting class covers the presented pattern. This is achieved by modifying the
constraints in the conflicting rules such that the pattern is not covered anymore.
The support region of the conflicting rule is reduced if the presented pattern Z
lies in the support region of that rule. Then among all available attributes one
dimension ¢ is chosen for which the constraint ¢;"” can be reduced such that the
specialization results in minimal loss of volume covered by the rule. This is a
heuristic for deciding on the most important attribute for class separation in the
rule’s local part of the feature space. If the presented pattern & lies in the core
region of a rule of a different class, both core and support region in one dimension
are modified accordingly. In this case the coverage of previously presented patterns
gets lost. However, new rules for these patterns are created in later epochs of this
pattern-by-pattern approach. Usually the algorithm terminates after only a few
presentations of the entire training set. Finally, all patterns are covered by fuzzy
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rules which only constrain a small individual subset of features that are relevant
for discriminating between classes in the particular parts of the feature space.

An extension of the algorithm for dealing with outliers and rare phenomena in
the data has been proposed [11]. It aims at building models on different levels of
detail. Rules that cover a small number of uninformative training patterns are used
as a filter. Training patterns covered by those irrelevant rules are removed from
the training set. Afterwards, the algorithm is executed again on the remaining
data only. This yields a coarser as well as more compact model. The resulting
rule bases are easier to interpret and describe the more relevant concepts in the
data. Repetitive filtering can be used to build hierarchical rule bases with the
most detailed model at the top and the more general rule bases on lower levels. A
very simple approach for dealing with potential outliers or irrelevant patterns is to
include all rules into the filter model that cover a number of patterns lower than
a given threshold. The construction of the hierarchy of rule bases stops if no more
rules fall under the threshold.

6 Application and Results

This section describes the application of the selected classifiers to our preprocessed
database. For each of them we tried to find a set of parameters that perform well on
specific training data and are still general enough that they can be applied to other
data. We therefore trained the classifiers with fixed settings to all four training
datasets and applied the results to the corresponding test datasets. We will describe
settings, classifier peculiarities, and steps to improve the classification. To measure
the performance of the classifiers we present classification accuracies on training
and test data (Table 7) and the confusion matrices on the test data (Table 3,
Table 5, Table 6). The accuracies, i.e. the averaged relative and absolute number
of misclassifications over the four datasets, give us an idea how well the classifier
performed in general. The differences of accuracy on learning data and validation
data show how well the classifier generalizes on unseen data. The confusion matrices
allow a detailed view into the classification. The entries on the main diagonal are
the correctly classified patterns. The remaining entries show, how many patterns
of a class have been wrongly classified as some other class. Although we tried a
large number of different parameter settings, here we only report the results that
we consider to be optimal.

6.1 Decision trees

For the induction of the decision trees we tried several attribute selection measures,
as described in [3]. Most of the measures yield reasonable results. However, the
Symmetric Gini Index maximized the tree accuracy over the training data set so
we employed it as split criteria. For the pruning we use confidence level pruning
[9] with a confidence of 50%. The classification accuracy is 95.6% on the training
and 87.20% on the test data.
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Decision Trees [1){2)[3){4)]5)16)}]7)
1) bulge 26]0]1]0]0]0]0
2) dent o]s0jojo]J1]01{0
3) flatarea 0]013]2]3(1]0
4) pressmark 210]0{s3[1{2]0
5) sinkmark 0joj3}jo]i2j9}o
6) unevensurface] 0] 0]0|1}4]70]1
7) unevenradius | 010[0{0[j0}4]4

Table 3: Confusion matrix for Decision Trecs

RO: IF sum.maxima >= 10,05 AND sum.minima >= 10,74 AND area.inner_circle
> 9274,46 AND volume.3_volume_allratio <~ 0 THEN Class = unevenra-
dus

R1: IF sum.maxima >= 10,05 AND sum.minima = 3,62 AND area.inner.circle >~
9274,46 AND volume.3.volume.all_ratic <= 0 THEN Class = flatarea

R2: IF sum.maxima <= 1,36 AND area.innercircle <z 86,6 AND vol-
ume.3.volume.all_ratio >= 0,47 THEN Class = dent

R3: IF sum.maxima <= 1,36 AND sum.minima = 3,62 AND area.inner.circle <z
86,6 AND volume.3.volume.all.ratio <~ 0 THEN Class = pressmark

R4: IF sum.maxima>= 10,05 AND sum.ninima =~ 1,74 AND area.inner.circle <~
86,6 AND volume.3.volume.allratio <~ 0 THEN Class = sinkmark

R5: IF sum._minima <=~ 0,5 AND volume3.volume_all.ratio <= 0 THEN Class =
bulge

R6: IF sum.minima >= 10,74 AND area.inner.circle <=~ 86,6 AND vol-
ume.3.volume.all.ratio <~ 0 THEN Class == unevensurface

RT: IF sum.maxima >~ 10,05 AND sum.minima = 3,62 AND area.innercircle <=
86,6 AND volume.3.volume.all.ratio <=~ 0 THEN Class = unevensurface

Table 4: NEFCLASS Rules.

6.2 NEFCLASS

When we tried to train a classifier with NEFCLASS we encountered some problems
due to the high dimensionality of the dataset. In such cases, the structure-oriented
approach by Wang and Mendel tends to produce too many, too specialized rules.
Fuzzy set optimization gets unstable on such neuro-fuzzy networks, and as the
pruning methods rely on an initial rule base, they might fail too. We therefore
used the subset of the 15 best features which were determined by explicit feature
selection (see section 5). This made it easier to find good and general parameter
settings for NEFCLASS. After extensive pruning the best classification accuracy
was 90.11% in average on the training sets and 81.32% on the test sets. The rules
of the obtained neuro-fuzzy classifier are shown in table 4.
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NEFCLASS 1)12)13)14)15)16)17)
1) bulge 4710101010101 0
2) dent 0[a6[ 05 000
3) flatarea 0111015137010
4) pressmark of1fo]s5]1]1]0
5) sinkmark 0{0]0]6]9]9]0
6) unevensurface] 0|0 ]|1]7]21]65]1
7) unevenradius |0]0J0f1]0]7]0

Table 5: Confusion matrix for NEFCLASS

Mixed Fuzzy Rules|1)12)13)]4)[5)]6)[7)
1) bulge 47lojofolojolo
2) dent 0§51{0]0]J0J0O1]0
3) flatares 010]0}5141010
4) pressmark 0jojolsoj1|7]0
5) sinkmark 0]0]0]5]7]12]0
6) unevensurface [0]0J0J4]1]71{0
7) unevenradius [ 0]0]0[0]0]4]4

Table 6: Confusion matrix for the mixed fuzzy rules

6.3 Mixed Fuzzy Rule Formation

‘We applied the constructive fuzzy rule induction algorithm on the entire dataset
with all features, since it is suited to learn from high dimensional data. Neither
feature selection nor an initial fuzzy partitioning of the attribute scales is needed.
In the first run the induction algorithm always constructs a rule base that classifies
all training patterns correctly. Pruning is required in order to avoid over-fitting,.
Ideally, some relevance mcasure should be used to identify irrelevant rules. How-
ever, in our experiments we applied a very simple pruning strategy: As the weight
of a rule we consider the number of covered training patterns. Qutliers are likely to
be covered by rules with very low weight. Thus, we removed all patterns from the
training set which were covered by rules with lower weight than a threshold t. We
repeated experiments with a range of thresholds from 1 to 10 to obtain more general
rule bases in a second run of the algorithm on the remaining training data. In-
stead of constructing an entire hierarchy of rules we determined training and test
accuracy on basis of the less detailed rule bases after only one filtering/pruning
step. For t = 4 the average training error of 93.17% was obtained. The average
classification accuracy of the rule bases for this threshold on the test data sets was
84.20%.
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Average Accuracies | Decision Trees | NEFCLASS | Mixed Fuzzy Rules
Training Set 95.6% 90.11% 93.17%
Test Set 87.2% 81.32% 84.20%

Table 7: Classification Accuracy on the Training and Test Cases

7 Discussion

Overall classification accuracy improved compared to the results in our previous
work [12]. The average test accuracy of decision trees is enhanced by 4.78%,
NEFCLASS improved by 5.88%, and the mixed fuzzy rules by 8.38%. Looking
at the confusion matrices tells us about the relations of the majority classes. From
the lower number of errors we can see, that bulge and dent are better separated
from the other classes than sinkmark and unevensurface. The unsatisfactory de-
tection of sinkmarks countersigns our preliminary results, since the classification
of this defect in the experiments nighter improved nor got worse. Decision trees
and the fuzzy rule bases had problems to distinguish sinkmarks from the class
unevensurface.

Comparing the confusion matrices with those yielded from previous experi-
ments, we see that a higher number of examples of the types unevensurface and
pressmark were correctly classified. In the defect class unevensurface decision trees
were in 18 cases more accurate than before, NEFCLASS in 7, and mixed fuzzy
rules in 11 cases. The respective numbers of additionally correct classifications for
the defect type pressmark are 7 in decision trees, and 8 and 6 in the fuzzy rule
approaches. Furthermore, the two classes are unchanging well separated by the
classifiers as in the previous experiments. Thus, we see our suspicion underpinned,
that the examples in the defect type unevensurface/ pressmark were indeed either
of type pressmark or unevensurface. Otherwise the relabelling of these examples
would not have resulted in improved classification accuracy. The similarity of the
defects to the two distinctive classes in the clustering model resulted in reasonable
class assignments such that both classes are still well separated by the classifiers.

8 Conclusions and Outlook

The presented 3-D image processing approach from surface digitization to defect
type classification yields promising results. The achieved accuracy improvements in
our study clearly showed that training set consistency and revising expert decisions
during classifier design are of high importance when class labels are uncertain
and likely to have errors. The relabelling of examples helped to minimize the
uncertainty that was contained in the class label unevensurface/ pressmark. It
results in a more consistent training set with which we obtained more accurate
classifiers than in previous experiments.

Currently, we still have not obtained reliable descriptions of all classes, yet. In
the next step of the project, we will generate a larger database to solve another data
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quality issue. That is, more representative examples of the rare classes are needed.
This might enable us to further improve the defect type prediction. However, the
qualitative analysis - the prediction of defect types - is only a first step. Our future
work will be directed towards a more quantitative analysis, to tell how severe a
form deviation is and what actions should thus be initiated.

References

{1] B. Jéhne. Digital Image Processing. 5th rev. ed., Springer Verlag, Berlin, 2001.

[2] B. Breuckmann. Topometric Sensors for Prototyping and Manufacturing.
Proc. SPIE, Vol. 2787, p. 2-11, 1996.

[3] C. Borgelt, J. Gebhardt, and R. Kruse. Concept for Probabilistic and Possi-
bilistic Induction of Decision Trees on Real World Data. Proc. 4th EUFIT’96,
Vol 3:1556-1560. Verlag Mainz, Aachen, Germany, 1996.

[4] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
USA, 2001.

{5] Ian H. Witten, and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann, San
Francisco, 2000.

[6] A. Kiose, A. Niirnberger, and D. Nauck. Some Approaches to Improve the
Interpretability of Neuro-Fuzzy Classifiers. In Proc. 6th EUFIT98, pages 620-
633. Aachen, 1998.

[7] D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems.
John Wiley & Sons Inc., New York, 1997.

[8] D. Nauck, U. Nauck, and R. Kruse. NEFCLASS for JAVA - New Learning
Algorithms. In Proc. 18th Intl. Conf. of the North American Fuzzy Information
Processing Society (NAFIPS’99), pages 472-476. IEEE, New York, NY, 1999.

[9] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, USA, 1993.

{10} L. Wang and J. Mendel. Generating Fuzzy Rules by Learning from Examples,
IEEE Trans. System, Man, and Cybernetics, 22(6):1414-1427, 1992.

{11} Michael R. Berthold, Mixed Fuzzy Rule Formation, International Journal of
Approximate Reasoning (IJAR), Volume 32, Issue 2-3, pages 67-84, 2003.

{12] Andreas Eichhorn, Christian Déring, Aljoscha Klose, and Rudolf Kruse. Clas-
sification of surface form deviations for quality analysis. In Proc. of the Euro-
pean Symposium on Intelligent Technologies, Hybrid Systems and their Im-
plementation on Smart Adaptive Systems (EUNITE 2003), pages 121 - 129,
Ouly, Finnland, July 10 - July 11 2003.

{13] Bogdan Gabrys und Lina Petrakieva. Combining labelled and unlabelled data
in the design of pattern classifcation systems. Proc. of the European Sympo-

sium on Intelligent Technologies, Hybid Systems and Their Implementation
on Smart Adaptive Systems (EUNITE 2002), Albufeira, Portugal, 2002





