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Abstract

This paper presents the comparative study for fuzzy regression model us-
ing linear programming, fuzzy regression model using genetic algorithms and
standard regression model. The fuzzy and standard models were developed
for estimation of electric power losses in electrical networks. Simulation was
carried out with a tool developed in MATLAB.
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Introduction

The problem of estimating of electric power losses in electrical networks is a major
aspect of power systems research.
The main tasks in analyzing electric power losses are the following:

Detecting and estimating the reserves of the power system divisions for de-
creasing the power losses.

Ranking the main factors affecting the level of power losses.

Developing measures for decreasing power losses and determining the effec-
tiveness of these measures.

Determining the main causes of commercial losses of electric power.

Assessing the operation of the power system as a whole and its divisions with
respect to power loss.

Preparation and basis for decisions for the development of electric power
systems and for the implementation of measures for decreasing power losses.
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A series of methods are now used which allow an exact account of electric power
losses (deterministic methods), and an estimation of losses (probabilistic-statistical
methods).

Deterministic methods are based on replacing the real process of load modifi-
cation in an electrical network with the most typical calculated state. The process
of load modification is actually a set of realizations of casual processes, making it
practically impossible to receive full information about state parameters. There-
fore, it is necessary to use estimated statistical methods in accounting for electric
power losses. They allow the determination of losses with a defined confidence
interval.

The most widespread probabilistic methods of electric power loss estimation in
electrical networks are regression analysis, factor analysis, the sampling method,
experimental design, and other methods. Regression analysis, based on the method
of least-squares, is a very convenient method to develop models for determining the
dependence of a parameter on certain factors. However, exact numerical statistical
information is necessary for deriving regression models.

In order to determine how power losses depend on the factors that affect them,
information must be used which is intended for different purposes, such as oper-
ational control, equipment overload control, etc. For power loss estimation, this
data is biased and incomplete, which necessitates various assumptions in order to
formalize the decision algorithm.

For this reason, and also as a result of the absence of a reliable probabilistic-
statistical description of the initial information, it frequently becomes difficult to
use probabilistic-statistical methods to analyze power losses. Since a significant
part of the initial information can have substantial uncertainty (first of all, this
applies to mode parameters), it is necessary to use new methods in loss analysis.
These methods combine the merits of probabilistic-statistical methods of loss anal-
ysis, and also formalize fuzzy initial information with the help of fuzzy sets. Lotfi
Zadeh suggested this theory, whose main idea is the linguistic variable.

For the development of models with fuzzy initial information, Tanaka, Chang
and others suggested and developed fuzzy regression analysis. In usual regression
analysis, an error between values obtained by the regression model and observable
data is considered an error of observation, which is a random variable {with a
normal distribution and an average distribution which equal to zero). In fuzzy
regression analysis the same errors are considered caused by the fuzziness of the
model.

2 Models of fuzzy regression analysis

2.1. Symmetrical triangular membership function of the LR-type

Since the most common type of membership function in fuzzy regression mod-
els is the triangular type, it makes sense to examine it more closely. Triangular
membership functions are divided into symmetrical and asymmetrical. Here, the
symmetrical triangular function is the most interesting.
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With an increase in z, a triangular function grows evenly, reaches its maximum,
and then evenly falls in the same way [1].

This membership function has the following main features, graphically repre-
sented on Fig. 1.
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As stated earlier, it is worth noting that this membership function has a sym-
metrical appearance, since the deviation along the X-axis to the left (L) from the
centre m is equal to the deviation to the right (R). As a whole, this type of mem-
bership function is called an LR-image.

The value of the membership function of fuzzy set A in the main interval fo,
B] can be determined using Eq. (2). For this, it is necessary to first determine the
value of the centre m of the main interval using Eq. (1).

m=qu-+ ﬂ;a (1)
_J L(m—2z)_forz € o,
pa(z) = { R(Z:_ m) _ffm € [m,Tg]] @

In addition, it is clear that the value of L(z) and R(z)at the point m is equal
to zero.

Having found the value of the deviation, and then by placing it on the mem-
bership function graph, it is possible to find the value of membership at the exact
point . The same can be done directly, that is, without first finding the deviation,
by using Eq. (3).

T

-forz € [a, m]

palz) = { B2 forzs € (m, ®)
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The types of membership functions can differ depending on the initial informa-
tion that the researcher has at his disposal, that is, depending on their uncertainty
and the way they are formalized.

2.2. Fuzzy regression analysis using the criterion of minimal fuzziness

In fuzzy regression analysis the deviation between observable values and esti-
mated values is due to the fuzziness of the system or the fuzziness of the coefficients
of regression [2]. This assumption is shared by the methods of fuzzy regression
which are described in this work. The goal of fuzzy regression analysis is to find
a regression model that satisfies all observable fuzzy data within the indicated cri-
terion of optimality. Various fuzzy regression models differ depending precisely on
the optimality criterion used.

Tanaka first proposed fuzzy linear regression analysis (3, 4]. According to this
method, coefficients of regression are fuzzy numbers that can be expressed as inter-
val numbers with values of membership. Since coefficients of regression are fuzzy
numbers, the estimated output variable Y is also a fuzzy number. Fuzzy regres-
sion analysis with only one independent variableX has the following two-coefficient
regression model:

? = Bo + B1X, (4)

where By is the fuzzy coefficient of intersection, and Biis a fuzzy number that
characterizes the slope of the line of regression. The fuzzy parameter Bj = (m,,c,)
is expressed as a symmetrical triangular membership function, which consists of a
fuzzy centre m, and half of the fuzzy base ¢,. In these models, other membership
function forms can also be used such as asymmetrical and trapezoidal.

According to this approach, the fuzzy coefficients B, (§=0,1) are determined
in such a way that the estimated fuzzy output Y has a minimal fuzzy deviation,
while satisfying the assigned degree of reliability h. The term h is a measure
of compatibility between the initial data and the regression model. Each of the
observable samples of data, which can have a fuzzy value Y,, as well as an exact

value Y;, must fall within the estimated Y at level h.

Determining the fuzzy coefficientsB, = (m,,c,), Tanaka and others formulated

the fuzzy criterion function of regression as the following linear programming prob-
lem [2, 5, 6]:

Minimize
n
S = necg + CIZ | X ] (5)
=1
With limits ¢g > 0, ¢; >0,
1 1
> om Xy, +(1-h)> ¢lX,| 2, + (1-h)e, withi=1...m, (6)

=0 J==0
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1 1
> omX, — (1~ h)> ¢ Xy| <Y, — (1 - h)e, with i =1...n, (7)
=0 3=0

where S is the level of fuzziness of the regression model. Eq. (6) and (7) can use,
as initial data, the fuzzy observable valueY, = (Y;, e,), where Y, is the fuzzy centre,
and e, is half of the fuzzy base. If the observable value is given exactly, then e is
zero. Therefore, a usual exact number is a particular case of a fuzzy number.

Eq. (5) and (7) can also be applied to the model of plural regression. If it
is necessary to build a fuzzy regression model of the dependence of the output
parameter on k of the influencing factors ,x, then the criterion function of the
linear programming problem will have the following form:

n
S =mnco+ Y _ (c1|Xu| + ...Acx| Xox|) — min. (8)
2e=1
With limits g > 0,7 >0,...,x >0,
k k
D om Xy +(1=h)> 6| Xyl > Y+ (1 - h)e, withi=1...n, (9)
=0 7=0
k k
> my Xy, —(1- W)Y Xyl <Y~ (1—h)e, withi=1...n,  (10)
=0 7=0

where j = 0...k is the number of the coefficient of regression, and n is the volume
of the sample of initial data.

For varying degrees of reliability, the fuzzy centre values remain unchanged,
while the fuzziness of the fuzzy regression model grows with increases in the degree
of reliability. Therefore, when h is equal to 0, the fuzzy regression model has the
narrowest fuzzy deviation among all the values of h between 0.0 and 1.0.

2.8. Fuzzy regression analysis using the genetic algorithm

As mentioned above, the determining of fuzzy coefficients consist in solution of
linear programming problem.

Linear programming is used for optimization problems when the objective func-
tion and constraints are linear. In this paper the linear programming was im-
plemented using the OPTIMIZATION toolbox of MATLAB which contains the
variation of well known simplex method.

Authors propose to use the genetic algorithms as an alternative approach for
optimization problem Eq. (5) - (7).

The genetic algorithms are the powerful stochastic optimization technique which
determines the global optimal solution and it is not sensitive to the convexity of
the solution surface [7, 8].

The genetic algorithms search for an optimal solution using the principles of
evolution and heredity. They operate on population which consists of a number of
individuals, each representing a particular selection of the values of the variables.
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Such population is able to evolve in a given environment by application of the
processes of selection, crossover and mutation. As an evolutionary theory, genetic
algorithms perform the mechanisms of crossover and mutation to recombine the
genetic material.

The first step is to generate the initial population. Then genetic algorithms
perform the mechanisms of crossover and mutation as genetic operators to recom-
bine the genetic material. This process that starts from the present population and
leads to the new population is named a generation. The degree of optimality of
each of the candidate solutions or individuals is measured by their fitness, which
can be defined as the objective function of the problem. The individuals compete
with each other. The winning ones form the next generation. Normally the aver-
age quality of the next population is greater than the previous one. The genetic
algorithms are iterative and the process is terminated by stopping rule. The rule
widely used is stop after specified number of generations.

Some alternative fussy regression models using genetic algorithms were consid-
ered in [9].

3 Applied power engineering problem

The problem of estimation and prediction of electric power losses in electrical net-
works is used to illustrate considered methods.

It is well known, that total power flows are depend on system load. But load is
one of the major factors affecting the level of power losses in electrical networks.
Therefore the determining of the functional dependence between power losses and
total power generation is actual.

Thus, in this case the independent variable X is the total power flows, thousand
kw-hr. The output parameter Y is the total power losses, thousand kw-hr. The
sampling is 40 points.

3.1. Resulis

Two fuzzy regression models were developed to illustrate the characteristics of
the proposed methods. The fuzzy coefficients were determined by linear program-
ming (simplex method) and by genetic algorithm. The level of compatibility h for
considered fuzzy models (see 2.2) was zero, because there were no sufficient reasons
for its definition. Also the standard regression model with confidence interval with
probability 0.95 was developed for the results comparison.

Fuzzy regression model using simplex method have the following form:

¥ = (mo; co) + (ma;e1)X = (4,33;4,19) + (0,06;0,01)X. (11)

Fig. 2 shows the distribution of deviations at sampling points by fuzzy regres-
sion model. The fuzzy regression between power losses and total flows is shown in
Fig. 3.

Table 1 demonstrates the absolute values of deviations of centre line for fuzzy
regression model. The total value is 315.2.
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Fig. 2. The distribution of deviations at sampling points by fuzzy regression

model.
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Fig. 3. Fuzzy regression model

Fuzzy regression model using genetic algorithm have the following form:

Y = (mo;co) + (ma;e1) X = (3,05;3,20) + (0,06;0,01)X.

1

(12)
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It is shown in Fig. 4 the distribution of deviations at sampling points by fuzzy
regression model using genetic algorithm. The fuzzy regression between power
losses and total flows is shown in Fig. 5. Table 1 shows the absolute values of
deviations of center line for fuzzy regression model using genetic algorithm. The
total value is 310.8.
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Fig. 5. Fuzzy regression model using the genetic algorithm.
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Standard regression model using least squares have the following form:

Y =By+B1 X

= —14,35 + 0, 08X.

(13)

Fig. 6 illustrates the distribution of deviations at sampling points by standard
regression model. The standard regression between power losses and total flows is

shown in Fig. 7.
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Table 1 demonstrates the absolute values of deviations of standard regression
line. The total value is 267.8.

2

Table 1. Observed and obtained values of the output variable by fuzzy regression

models
No. Y ‘YSR—-YI IYFR—-Yl |?FRUGA_Yl
w/m
1 79.8 0.8 4.5 4.0
2 58.5 7.0 6.5 6.8
3 86.9 9.9 13.1 12.7
4 56 7 1.3 2.6 2.7
5 33.1 6.5 123 12.0
6 34.8 2.8 91 8.8
7 43.6 6.4 0.1 0.4
8 324 6.8 12.6 12.4
9 36.0 10.7 14.7 14.6
10 54.6 5.2 6.1 6.3
11 64.0 6.8 5.1 5.4
12 88.6 9.7 13.3 12.9
13 87.9 0.2 5.9 5.3
14 91.8 169 19.6 19.2
15 86.7 14.4 16 5 16.1
16 47.2 8.3 103 10.3
17 42.3 6.9 10.3 10.3
18 35.0 5.3 10.8 10.6
19 33.1 6.8 12.5 12.2
20 54.5 10.7 5.9 6.1
21 60.5 9.6 6.6 6.6
22 69.2 1.0 0.6 0.3
23 797 1.3 4.9 4.4
24 879 1.1 6.6 6.0
25 61 2 28.4 22.2 22.8
26 65.2 11.0 8.0 8.4
27 71.9 1.4 1.0 0.6
28 56.5 2.9 3.9 4.0
29 42.2 3.7 8.0 7.8
30 40.4 0.5 5.2 4.9
31 48.8 6.2 1.2 1.4
32 46.1 3.8 1.3 1.0
33 68.0 . 18.6 15.2 15.3
34 75.0 9.1 9.7 9.4
35 67.3 1.5 02 0.5
36 93.5 8.8 13.8 . 13.2
37 69.3 6.0 3.2 ~3.6
38 68.9 3.1 3.6 3.4
39 70.6 2.8 3.8 3.6
40 57.2 3.6 4.3 4.5

The simulation of the considered functions was realized in MATLAB.
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4 Classical mathematical problem

Another numeric example is presented to illustrate proposed method. In this case
it is the classical mathematical example from {2].

The size of sampling n = 8. The values of independent variable are 2, 4, 6,
8, 10, 12, 14 and 16. The values of dependent variable Y are 14, 16, 14, 18, 18,
22, 18 and 22. Furthermore, the case when Y is fuzzy was considered, so the level
of fuzziness was 1 at each point of sampling.The fuzzy regression models were
developed in the cases with A = 0.0 and h = 0.5.

In the case of using fuzzy data it is possible to estimate the average value ¥
with the help of fuzzy math as an exact value. And then it is possible to determine
the standard deviation Sj with the help of Eq. (14).

I Ko 3
Sg=\in_12(m-—¥)2 (14)

2=1

The value Sj is the measure of dispersion or uncertainty of the initial fuzzy
data.

As one of the indicators of reliability of fuzzy regression models, the hybrid
coefficient of correlation (HR) is used to evaluate the assumption of the linearity
of the hybrid linear model of regression. )

Another indicator of reliability is the hybrid standard error of estimation (HS),
used to measure the similarity of data obtained with the fuzzy regression model
with observable fuzzy data. In determining HR and HS with the help of fuzzy
math, Eq. (15) and (16) can be recorded.

(HR)y = 2= 2 V) 7, - 1_:/)2 (15)
Yoy (Y- Y)?
HSe = \J ’I—'L—:%Z (?z - ?’L)Z, (16)
=1

where n — p - 1 is the number of degrees of freedom. For a regression model with
one influencing factor X, the value p is equal to one.

The values of HS are located in the interval from 0 to Sy. The lower the value
of HS, the better the perfection of the data obtained with the model, that is,
the better the accuracy of the predictions. If HS is near or more than Sy, then
regression analysis did not achieve successful results. In this case, it is necessary
to use other methods of regression analysis in order to provide more accurate data
obtained using the model.

In that case when S; is constant and independent of the regression method
used, the relationship HS /Sy is the standardized measure for improving the data
obtained with the model. Therefore the values HS and HS /Sy can be used to
assess the effectiveness of various fuzzy regression methods.
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4.1. Results ( and Y are crisp)

The following regults were obtained in the case of crisp initial data. Table 2
shows fuzzy regression equations at h = 0.0 and h = 0.5. Also Table 2 contains
values of HR, HS.;, HS./S,, which allows estimating the adeqiacy of developed
models.

Table 2. Reliability measures for regression models.

n

Regression| Regression equation HR | HSe | HS:/S8y | ¥ ’1;, — Y,l
method =1
crisp X —crisp Y

FR Y= (12.00, 1.00) + (0 63,0 13)7? 103 | 213 | 069 10.50
ath=00

FRUGA | Y =(1355,165)+ (046,011)? | 0.81 | 224 | 0.72 10.35
at h =0.0

FR Y= (12.00, 2.00) + (0.63,0.25)? 116 | 2.79 | 0.90 10.50
at h=0.5

FRUGA Y= (13.55,2.48) + (0.46,0.19)? | 0.94 | 2.72 | 0.88 10.35
ath=0.5

crisp X — fuzzy Y

FR Y= (12.00, 2.00) + (0 63,0.13)7 1.08 | 2.37 | 076 10.50
at h=0.0

FRUGA Y= {13.55,2.00) + (0.46,014)? | 0.86 | 242 | 0.8 10.35
at h=0.0

FR Y= (12.00, 3.00) + (0.63, 0.25)? 1.24 | 3.12 | 1.00 10.50
at h=0.5

FRUGA Y= (13.55, 2.95) -+ (0.46, 0.21)? 1.00 | 2.97 | 0.96 10.35
ath=05

In addition, in order to compare fuzzy regression model with fuzzy regression
o~
model based on genetic algorithm the total deviations ) |Yz - Y,l were calculated,
=
where 17, - values of center line of fuzzy regression model, Y, - initial data. The
total deviation by this approach is 10.35 that is smaller (1.4 % ) than the deviation
for fuzzy regression model based on linear programming,.

Fig. 8 shows fuzzy regression at h = 0.0, and Fig. 10 - fuzzy regression at h =
0.5.
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Fig. 8. Fuzzy regression model for crisp X , crisp Y and h = 0.0.
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Fig. 9. Fuzzy regression model using the genetic algorithm for crisp X , crisp Y
) and h = 0.0.

J
Fig. 9 demonstrates fuzzy regression using genetic algorithm at A = 0.0, and
Fig. 11 - this regression at A = 0.5.
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Fig. 11. Fuzzy regression model using the genetic algorithm for crisp X , crisp ¥
and h = 0.5.

Analyzing results, we can draw a conclusion that regressions are similar and
differ slightly. It is necessary to note, that fuzzy regression based on genetic algo-
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rithm has center line which is more fitting to initial data. It provides more accurate
estimations with practically the same bounds of fuzzy models.

As it is shown in Table 2, fuzzy regression models using genetic algorithm
are more adequate at h not equal to 0, because then HS./S, smaller, than for
fuzzy regression models using simplex-method. Although at h=0 the situation is
opposite.

4.2. Results ( is crisp, Y is fuzzy)

The following results were obtained at fuzzy initial data. Table 2 shows fuzzy
regression equations at h = 0.0, h = 0.5 and values of HR, HS., HS./Sy, as it was
for crisp data, which allows estimating the adequacy of developed models

To compare fuzzy regression model with fuzzy regression model based on genetic

no ~
algorithm the total deviations > ]Y, - Y;‘ were calculated, where Y, - values of
g=1

center line of fuzzy regression model, ¥; - initial data. The total deviation by this
approach is 10.35 that is smaller (1.4 % ) than the deviation for fuzzy regression
model based on linear programming.

In Fig. 12 fuzzy regression at h = 0.0 and in Fig. 14 fuzzy regression at h =
0.5 are shown.
1
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[

1¢ 12 14 1&

Fig. 12. Fuzzy regression model for crisp X, fuzzy Y and h = 0.0.

Fig. 13 and Fig. 15 show fuzzy regression using genetic algorithm at h = 0.0,
and at h = 0.5.
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The figures show, that regressions with fuzzy initial data are also very similar.
In comparison with crisp data the bounds of regression are extended proportionate
coefficient h.

It necessary to point that fuzzy regression using genetic algorithm has better
fitting. It provides more accurate estimations with practically the same bounds of
fuzzy models.
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Fig. 13. Fuzzy regression model using the genetic algorithm for crisp X , fuzzy Y

and A = 0.0.
. Fuy regresd on noaciudng e genetde algotihe
e T T T T T
1 1 1 [}
i ) ] 1
I 1 1 1

i

1 I
1 1
i 1

25"-"'_'-_"""-_"'_---|""""'|-""—‘l-':_=o-'

] ¥
1 1
1 1
1

20
}-
15h e T ! -
! i +' I i
t_ T~ 1 i 1
- = 7 1 1 1 1 1
1 1 1 1 1 I
ettt i el iy Py 7y 7
1 1 ) 1 — 3 e
! ! ! ! — cumat I
1 1 1 ! W obeened dad
5 1 i L 1 v o X
2 4 3 4 1¢ 12 14 16

Fig. 14. Fuzzy regression model for crisp X , fuzzy Y and A = 0.5.
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Also as it is shown in Table 2, fuzzy regression models using genetic algorithm
are more adequate at h not equal to 0, because then HS./S, smaller, than for fuzzy
regression models using simplex-method. Although at h=0 as it was mentioned the
situation is opposite, that is traditional models are more adequate.
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Fig. 15. Fuzzy regression model using the genetic algorithm for crisp X , fuzzy Y
and h = 0.5.

5 Conclusions

1. All the observed data are within the lines determined by the considered fuzzy
regression model but the confidence interval of standard regression model doesn’t
cover almost the half of observed values of electric power losses.

2. Fuzzy regression analysis based on genetic algorithms determines more ac-
curate center regression line using the same minimum and maximum lines of the
model. The total deviation by this approach is smaller (1.4 % ) in comparison with
fuzzy regression model based on linear programming.

3. Fuzzy regression analysis using genetic algorithm allows to estimate and
predict the level of power losses in electrical networks. The minimum and maximum
lines of the proposed model can be considered as pessimistic and optimistic plans
of events.

4. The observed values of power losses in this paper are crisp. However the
proposed method unlike the standard regression can use the fuzzy observed data.

In authors’ opinion, these conclusions confirm the possibility and effectiveness
of fuzzy regression analysis using genetic algorithms in estimation and prediction
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of electric power losses in electrical networks and also in any other technical appli-
cations.

References

1.

Boehme, Fuzzy-Logik. Finfuehrung in die algebraischen und logischen Grund-
lagen, (Berlin, Springer-Verlag, 1993).

Yun-Hsi O. Chang, Bilal M. Ayyub, “Fuzzy regression methods - a compar-
ative assessment”, Fuzzy Sets and Systems, 119 (2001), 187 - 203.

H. Tanaka, S. Uejima, K. Asai, “Linear Regression Analysis with Fuzzy
Model”, IEEE Transactions on Systems, Man and Cybernetics, 6 (1982),
903 — 906.

. H. Tanaka, “Fuzzy data analysis by possibilistic linear models”, Fuzzy Sets

and Systems, 24 (1987), 363 — 375.

. J. Nazarko, W. Zalewski, “The Fuzzy Regression Approach to Peak Load

Estimation in Power Distribution Systems”, IEEE Transactions on Power
Systems, 3 (1999), 809 - 814.

. S.A. Soliman, Mansour H. Abdel Rahman, M.E. El-Hawary, “Application of

fuzzy linear regression algorithm to power system voltage measurements”,
Electric Power Systems Research, 42 (2000), 195 - 200.

. A.V. Mogilenko, D.A. Pavlyuchenko, V.Z. Manusov, “Development of fuzzy

regression models using genetic algorithms”, International journal of uncer-
tainty, fuzzyness and knowledge-based systems, 4 (2003), 429-444

D.E. Goldberg, Genetic Algorsthms in Search, Optimazation and Machine
Learning. (Reading, MA, Addison-Wesley, 1989).

J. Kacprzyk, M. Fedrizzi, Fuzzy Regression Analysis. (Physica-Verlag, Hei-
delberg, 1992).



