Extensions of Set Functions*

S. Ovchinnikov ${ }^{1}$ and J.C. Falmagne ${ }^{2}$
${ }^{1}$ Mathematics Dept. San Francisco State Univ. San Francisco, CA 94132
${ }^{2}$ Dept. of Cognitive Sciences. Univ. of California
Irvine, CA 92697
sergei@sfsu.edu, jcf@uci.edu

Abstract

We establish a necessary and sufficient condition for a function defined on a subset of an algebra of sets to be extendable to a positive additive function on the algebra. It is also shown that this condition is necessary and sufficient for a regular function defined on a regular subset of the Borel algebra of subsets of a given compact Hausdorff space to be extendable to a measure. 1991 Mathematics Subject Classification: 28A60

1 Introduction

A standard method of constructing a measure in a given set X is to define first an additive function on an algebra \mathcal{A} of subsets of X and then extend this function to a measure on the σ-algebra generated by \mathcal{A}. This 'extension problem' is an important part of the classical measure theory. Standard examples include Hahn's extension theorem and the Borel measure in $[0,1]$ (cf. [3, III.5]).

In the paper, we are concerned with the following problem: Let X be a set and \mathcal{A} be an algebra of subsets of X. Given a subset \mathcal{S}

[^0]of \mathcal{A} and a real valued function α on \mathcal{S}, find necessary and sufficient conditions for α to be extendable to a positive additive function μ on \mathcal{A}.

The following condition is instrumental in our treatment of the extension problem:

$$
\begin{equation*}
\sum_{A \in \mathcal{F}} n(A) \chi_{A}(s) \geq 0, \forall s \in X \quad \Rightarrow \quad \sum_{A \in \mathcal{F}} n(A) \alpha(A) \geq 0 \tag{R}
\end{equation*}
$$

for any finite family $\mathcal{F} \subseteq \mathcal{S}$, where coefficients $n(A)$'s are arbitrary integers and χ_{A} stands for the characteristic function of a set $A \subseteq X$.

We show that condition $[R]$ is necessary (Section 2) and sufficient (Section 3) for α to be extendable to a positive additive set function. In the case when X is a finite set, a stronger result is also established in Section 3. To obtain these results, we only assume that X is a finite union of elements of \mathcal{S} (this assumption is dropped in the case of a finite set X).

We make additional assumptions about the quadruple $(X, \mathcal{A}, \mathcal{S}, \alpha)$ when treating the extension problem for measures in sections 4 and 5. In both sections, X is a compact Hausdorff space. In Section 4, \mathcal{A} is the Borel algebra \mathcal{B} of subsets of X, whereas in Section $5, \mathcal{A}$ is the σ-algebra generated by \mathcal{S}. Assuming, in addition, that \mathcal{S} and α satisfy some 'regularity' conditions, we show that $[R]$ is a necessary and sufficient condition for α to be extendable to a positive regular measure on \mathcal{A}.

Our approach to the extension problem comes close to that of Bruno de Finetti in his "Probability Theory" [4] (Sections 9 and 10). In particular, his "convexity condition" (Section 15 in Appendix) is equivalent to condition $[R]$, although de Finetti formulates it in rather different terms.

2 Condition [R]

The following lemma establishes a useful equivalent form of condition [R].
Lemma 1. $[\mathrm{R}]$ is equivalent to the following condition

$$
\begin{equation*}
\sum_{A \in \mathcal{F}} c(A) \chi_{A}(s) \geq 0, \forall s \in X \quad \Rightarrow \quad \sum_{A \in \mathcal{F}} c(A) \alpha(A) \geq 0 \tag{1}
\end{equation*}
$$

for any finite family $\mathcal{F} \subseteq \mathcal{S}$, where coefficients $c(A)$'s are arbitrary real numbers.

Proof. It suffices to show that $[\mathrm{R}]$ implies (1). Suppose that for some real coefficients $c(A)$'s such that $\sum_{A \in \mathcal{F}} c(A) \chi_{A} \geq 0$ we have $\sum_{A \in \mathcal{F}} c(A) \alpha(A)<0$. There are rational numbers $p(A)$'s such that $\sum_{A \in \mathcal{F}} p(A) \alpha(A)<0$ and $p(A) \geq c(A)$ for all $A \in \mathcal{F}$. Clearly,

$$
\sum_{A \in \mathcal{F}} p(A) \chi_{A} \geq \sum_{A \in \mathcal{F}} c(A) \chi_{A} \geq 0
$$

Multiplying both inequalities $\sum_{A \in \mathcal{F}} p(A) \chi_{A} \geq 0$ and $\sum_{A \in \mathcal{F}} p(A) \alpha(A)<$ 0 by a common multiple of the denominators of nonzero coefficients $p(A)$'s, we obtain a contradiction to $[\mathrm{R}]$.

Suppose that α is a restriction of a positive additive set function μ on \mathcal{A}. Note that the first sum in (1) is, by definition, a simple function on X. Then condition (1) states that the integral of a positive simple function is positive ([3, III.2.14]). Thus we have the following proposition.

Proposition 1. $[\mathrm{R}]$ is a necessary condition for a function α on \mathcal{S} to be extendable to a positive additive set function on \mathcal{A}.

3 Extensions to positive additive set functions

We denote by B_{0} the vector space of all simple functions (with respect to \mathcal{A}) on X and denote by $B_{0}^{\#}$ - the algebraic dual space. The space $B_{0}^{\#}$ is isomorphic to the vector space of all additive set functions μ on \mathcal{A}. The isomorphism is given by

$$
\begin{equation*}
\mu \mapsto f_{\mu} \quad \text { where } \quad f_{\mu}(x)=\int x(s) \mu(d s) \tag{2}
\end{equation*}
$$

The set C of all positive simple functions on X is a convex cone in B_{0}. Thus B_{0} is an ordered vector space. A functional $f \in B_{0}^{\#}$ is
monotone if $x \geq y$ implies $f(x) \geq f(y)$. A functional f is monotone if and only if it is positive, i.e., $x \geq 0$ implies $f(x) \geq 0$.

We shall use the following general fact about monotone linear extensions of linear functionals on ordered vector spaces ([1, Theorem 1, §6, ch. 2]).

Theorem 1. Let L be a vector space with a cone C. Let L_{0} be a subspace of L such that for each x in $L, x+L_{0}$ meets C if and only if $-x+L_{0}$ meets C. Let f_{0} in $L_{0}^{\#}$ be monotone. Then there exists an extension f of f_{0} which is monotone and in $L^{\#}$.

Now we prove the main theorem of this section.
Theorem 2. Let \mathcal{S} be a subset of \mathcal{A} such that X is a finite union of sets in \mathcal{S} and let α be a function on \mathcal{S}. Then α can be extended to a positive additive function μ on \mathcal{A} if and only if it satisfies condition [R].

Proof. Necessity was established in Proposition 1.
Sufficiency. Let L_{0} be the subspace of B_{0} generated by the characteristic functions of sets in \mathcal{S}. For $x=\sum_{A \in \mathcal{F}} c(A) \chi_{A} \in L_{0}$ where \mathcal{F} is a finite subset of \mathcal{S}, we define

$$
f_{0}(x)=\sum_{A \in \mathcal{F}} c(A) \alpha(A)
$$

It follows immediately from (1) that f_{0} is well-defined and is a positive linear functional on L_{0}.

Note that for any $x \in B_{0}$ the set $x+L_{0}$ meets the cone C of positive functions in B_{0}. Indeed, let $X=\cup_{i=1}^{n} A_{i}, A_{i} \in \mathcal{S}$ and define $x_{0}=\sum_{i=1}^{n} \chi_{A_{i}} \in L_{0}$. Then, for $m=\sup _{s \in X}|x(s)|, x+m x_{0} \in C$.

By Theorem 1, f_{0} admits an extension to a positive linear functional f on B_{0}. By defining $\mu(A)=f\left(\chi_{A}\right)$ for $A \in \mathcal{A}$, we obtain an extension of α to a positive additive function on \mathcal{A}.

Note that the assumption that X is a finite union of sets in \mathcal{S} is essential in the theorem. Indeed, let X be an infinite set, $\mathcal{A}=2^{X}$, and let \mathcal{S} be the family of all singletons in \mathcal{A}. Let us define $\alpha(\{s\})=$ $1, \forall s \in X$. Thus defined α satisfies condition [R$]$ but cannot be extended to a monotone additive function on \mathcal{A}.

On the other hand, in the case of a finite set X we have a stronger result.

Theorem 3. Let X be a finite set, $\mathcal{S} \subseteq \mathcal{A}$, and α be a function on \mathcal{S}. Then α can be extended to a positive additive function μ on \mathcal{A} if and only if it satisfies condition $[\mathrm{R}]$ with coefficients from a finite set of integers.

Proof. Again, we need to prove sufficiency only. Let $X^{\prime}=\cup \mathcal{S}$ and \mathcal{A}^{\prime} be the algebra of subsets of X^{\prime} consisting of sets in \mathcal{A} that are subsets of X^{\prime}. By Theorem 2, α can be extended to a positive additive set function μ^{\prime} on \mathcal{A}^{\prime}. For an $A \in \mathcal{A}$, we define $\mu(A)=\mu^{\prime}\left(A \cap X^{\prime}\right)$. Clearly, μ is a positive additive set function on \mathcal{A}.

Let us consider characteristic functions of sets in \mathcal{S} as integral vectors in $\mathbb{R}^{|X|}$ and let C be the intersection of the subspace generated by these vectors with the positive cone in $\mathbb{R}^{|X|}$. The cone C is a rational polyhedral cone and therefore has an integral Hilbert basis (Theorem 16.4 in [5]). Thus we can use only vectors from this basis in the right side of the implication in $[R]$. It follows that in the case of finite set X coefficients in $[\mathrm{R}]$ can be taken from a finite set of integers.

Remark. It was noted by Jean-Paul Doignon (personal communication) that sufficiency of condition $[R]$ in the finite case is a direct consequence of Farkas' lemma [5, Corollary 7.1d].

4 Extensions to measures I

The following example shows that, in general, condition $[R]$ is not sufficient for a function α to be extendable to a positive measure ($\sigma-$ additive set-function) on a σ-algebra \mathcal{A}.

Example 1. Let $X=[0,1]$ and $\mathcal{S}=\{[0, t): t \in(0,1]\} \cup\{[0, t]: t \in$ $[0,1]\}$. Note that $X \in \mathcal{S}$. We define $\alpha(\{0\})=0$ and $\alpha(A)=1$ if A is $[0, t)$ or $[0, t]$ for $0<t$. 1. It is easy to verify that thus defined α satisfies condition $[\mathrm{R}]$.

Let μ be a σ-additive extension of α to the σ-algebra \mathcal{B} of Borel subsets of $[0,1]$. We have

$$
\begin{aligned}
& \mu((t, 1])=1-\alpha([0, t])=0, \quad \text { for } t>0 \\
& \mu((0,1])=1-\alpha(\{0\})=1, \\
& \mu((s, t])=1-\alpha([0, s])-\mu((t, 1])=0, \quad \text { for } 0<s<t
\end{aligned}
$$

By σ-additivity of μ,

$$
1=\mu((0,1])=\mu\left(\bigcup_{1}^{\infty}\left(\frac{1}{k+1}, \frac{1}{k}\right]\right)=\sum_{1}^{\infty} \mu\left(\left(\frac{1}{k+1}, \frac{1}{k}\right]\right)=0
$$

a contradiction. On the other hand, by condition $[\mathrm{R}]$, there is an additive extension of α to \mathcal{B}.

This example suggests that in order to keep $[\mathrm{R}]$ as a necessary and sufficient condition for extendibility of a set function to a measure, some constrains should be imposed on the quadruple $(X, \mathcal{A}, \mathcal{S}, \alpha)$. Namely, we assume that X is a compact Hausdorff space and introduce the following 'regularity' conditions on \mathcal{S} and α.

Definition 1. (i) A family \mathcal{S} of subsets of X is said to be regular if
(a) For each $E \in \mathcal{S}$ and a closed set $F \subseteq E$ there is $E^{\prime} \in \mathcal{S}$ such that

$$
F \subseteq E^{\prime} \subseteq \mathrm{cl}^{\prime} \subseteq E
$$

(b) For each $E \in \mathcal{S}$ and an open set $G \supseteq E$ there is $E^{\prime \prime} \in \mathcal{S}$ such that

$$
E \subseteq \operatorname{int} E^{\prime \prime} \subseteq E^{\prime \prime} \subseteq G
$$

(ii) A function α on a family \mathcal{S} is said to be regular if for each $E \in \mathcal{S}$ and $\varepsilon>0$ there is a set F in \mathcal{S} whose closure is contained in E and a set G whose interior contains E such that $|\alpha(G)-\alpha(F)|<\varepsilon$.

In this section, \mathcal{A} is the Borel algebra \mathcal{B} of subsets of X.
Example 2. Since X is a normal space, the families of all open sets and of all closed sets in X are examples of regular families of Borel sets (cf. [2, VII.3.2(2)]).

Example 3. Let $X=[0,1]$ and S be the family of all intervals in the form $[a, b)$. Clearly, S is a regular family of Borel sets.

Example 4. Let $\mathcal{S}=\mathcal{B}$ and let $\alpha=\mu$ - a regular positive additive set function on \mathcal{B} in the usual sense (cf. [3, III.5.11]). Then α is a regular function in the sense of Definition 1 .

Lemma 2. Let μ be a regular positive measure on the Borel algebra \mathcal{B} and let \mathcal{S} be a regular family of Borel sets. Then the restriction of μ to \mathcal{S} is a regular function on \mathcal{S}.

Proof. Let $E \in \mathcal{S}$ and $\varepsilon>0$. Since μ is regular and positive, there is a closed set $F \subseteq E$ and an open set $G \supseteq E$ such that $\mu(G)-\mu(F)<\varepsilon$. Since \mathcal{S} is regular, there are $E^{\prime}, E^{\prime \prime} \in \mathcal{S}$ such that $F \subseteq E^{\prime} \subseteq \mathrm{cl} E^{\prime} \subseteq$ $E \subseteq \operatorname{int} E^{\prime \prime} \subseteq E^{\prime \prime} \subseteq G$. Since μ is positive, $\mu\left(E^{\prime \prime}\right)-\mu\left(E^{\prime}\right)<\varepsilon$. Therefore the restriction of μ to \mathcal{S} is a regular set function on \mathcal{S}.

Lemma 3. Let S be a regular family of Borel sets such that X is a finite union of sets in \mathcal{S} and let α be a regular function on \mathcal{S} satisfying condition $[\mathrm{R}]$. Then α is extendable to a regular positive measure on \mathcal{B}.

Proof. By Theorem 2, α admits an extension to a positive additive set function μ on \mathcal{B}. Since μ is bounded, it defines a bounded positive linear functional f on the Banach space B of all uniform limits of functions in B_{0} endowed with the norm $\|\cdot\|_{\infty}$. This functional is given by [3, IV.5.1]

$$
f(x)=\int x(s) \mu(d s), \quad x \in B_{0}
$$

By the Riesz representation theorem [3, IV.6.3] the restriction of this functional (which we denote by the same symbol f) to the space $C(X)$ of continuous functions on S is given by

$$
f(x)=\int x(s) \mu^{*}(d s), \quad x \in C(X)
$$

where μ^{*} is a regular positive measure on \mathcal{B}.

Now it suffices to show that $\mu^{*}(E)=\mu(E)$ on \mathcal{S}. Let $E \in \mathcal{S}$ and $\varepsilon>0$. Since μ^{*} is positive and regular there is a closed set F and an open set G such that

$$
F \subseteq E \subseteq G, \quad \mu^{*}(F) \cdot \quad \mu^{*}(E) \cdot \quad \mu^{*}(G), \quad \text { and } \quad \mu^{*}(G)-\mu^{*}(F)<\varepsilon
$$

Since \mathcal{S} is regular, there are $E^{\prime}, E^{\prime \prime} \in \mathcal{S}$ such that

$$
F \subseteq E^{\prime} \subseteq \operatorname{cl} E^{\prime} \subseteq E \subseteq \operatorname{int} E^{\prime \prime} \subseteq E^{\prime \prime} \subseteq G \quad \text { and } \quad \mu\left(E^{\prime \prime}\right)-\mu\left(E^{\prime}\right)<\varepsilon
$$

We denote $F^{\prime}=\operatorname{cl} E^{\prime}$ and $G^{\prime}=\operatorname{int} E^{\prime \prime}$. Since μ and μ^{*} are positive,

$$
\begin{equation*}
\mu\left(G^{\prime}\right)-\mu\left(F^{\prime}\right)<\varepsilon \quad \text { and } \quad \mu^{*}\left(G^{\prime}\right)-\mu^{*}\left(F^{\prime}\right)<\varepsilon \tag{3}
\end{equation*}
$$

Since X is a normal space, by Urysohn's lemma, there is a continuous function x such that

$$
\begin{array}{ll}
0 \cdot x(s) \cdot 1, & \text { for all } s \in X \\
x(s)=1, & \text { for all } s \in F^{\prime} \\
x(s)=0, & \text { for all } s \notin G^{\prime}
\end{array}
$$

For a natural number n, we define a family of $n+1$ intervals in $[0,1]$ by

$$
I_{k}= \begin{cases}{\left[\frac{k-1}{n}, \frac{k}{n}\right),} & \text { for } 1 \cdot k \cdot n \\ \{1\}, & \text { for } k=n+1\end{cases}
$$

The family of Borel sets $E_{k}=x^{-1}\left(I_{k}\right), 1 \cdot k \cdot n+1$, forms a partition of X. Clearly, $\bigcup_{k=2}^{n} E_{k} \subseteq G^{\prime} \backslash F^{\prime}$. Therefore, by the first inequality in (3),

$$
\begin{equation*}
\sum_{k=2}^{n} \mu\left(E_{k}\right) \cdot \mu\left(G^{\prime}\right)-\mu\left(F^{\prime}\right)<\varepsilon \tag{4}
\end{equation*}
$$

Let x_{n} be a function defined by $x_{n}(s)=\frac{k-1}{n}$ for $s \in E_{k}, 1 \cdot k \cdot n+1$. Thus

$$
\begin{equation*}
\left|f(x)-f\left(x_{n}\right)\right| \cdot\|f\| \cdot\left\|x-x_{n}\right\|<\frac{1}{n}\|f\| \tag{5}
\end{equation*}
$$

Further,

$$
x_{n}=\sum_{k=1}^{n+1} \frac{k-1}{n} \chi_{E_{k}}=\sum_{k=2}^{n} \frac{k-1}{n} \chi_{E_{k}}+\chi_{E_{k+1}} .
$$

Thus

$$
f\left(x_{n}\right)=\sum_{k=2}^{n} \frac{k-1}{n} \mu\left(E_{k}\right)+\mu\left(E_{k+1}\right),
$$

which implies, by (4),

$$
f\left(x_{n}\right)-\mu\left(E_{k+1}\right)=\sum_{k=2}^{n} \frac{k-1}{n} \mu\left(E_{k}\right)<\varepsilon
$$

This inequality together with one in (5) imply

$$
\begin{equation*}
\left|f(x)-\mu\left(E_{n+1}\right)\right|<\varepsilon+\frac{1}{n}\|f\| \tag{6}
\end{equation*}
$$

Clearly, $F^{\prime} \subseteq E_{n+1} \subseteq G^{\prime}$, and $F^{\prime} \subseteq E \subseteq G^{\prime}$. Thus, by (3),

$$
\begin{equation*}
\left|\mu\left(E_{n+1}\right)-\mu(E)\right|<\varepsilon . \tag{7}
\end{equation*}
$$

Since $f(x)=\int x(s) \mu^{*}(d s)$, we have $\mu^{*}\left(F^{\prime}\right) \cdot f(x) \cdot \mu^{*}\left(G^{\prime}\right)$. On the other hand, $\mu^{*}\left(F^{\prime}\right) \cdot \mu^{*}(E) \cdot \mu^{*}\left(G^{\prime}\right)$. By the second inequality in (3),

$$
\begin{equation*}
\left|\mu^{*}(E)-f(x)\right|<\varepsilon . \tag{8}
\end{equation*}
$$

Combining inequalities (6), (7), and (8), we have

$$
\left|\mu^{*}(E)-\mu(E)\right|<3 \varepsilon+\frac{1}{n}\|f\|
$$

Hence, $\mu^{*}(E)=\mu(E)=\alpha(E)$.

Combining the results of Lemma 2 and Lemma 3, we have the following theorem.

Theorem 4. Let \mathcal{S} be a regular family of Borel sets such that X is a finite union of sets in \mathcal{S}. A function α on \mathcal{S} is extendable to a regular positive measure on \mathcal{B} if and only if it is regular and satisfies condition [R].

5 Extensions to measures II

In this section we make a different assumption about components of the quadruple $(X, \mathcal{A}, \mathcal{S}, \alpha)$. Namely, let X again be a compact Hausdorff space, \mathcal{S} be a family of subsets of X, and let \mathcal{A} be the σ-algebra generated by \mathcal{S}.

Lemma 4. Let \mathcal{S} be a regular family of subsets of X. The restriction of a regular positive measure μ on \mathcal{A} to \mathcal{S} is a regular function on \mathcal{S}.

Proof. Let $E \in \mathcal{S}$ and $\varepsilon>0$. Since μ is regular and positive, there is $F \in \mathcal{A}$ such that $\mathrm{cl} F \subseteq E$ and $G \in \mathcal{A}$ such that int $G \supseteq E$ such that $\mu(G)-\mu(F)<\varepsilon$. Since \mathcal{S} is regular, there are $E^{\prime}, E^{\prime \prime} \in \mathcal{S}$ such that

$$
F \subseteq \mathrm{cl} F \subseteq E^{\prime} \subseteq \mathrm{cl} E^{\prime} \subseteq E \subseteq \operatorname{int} E^{\prime \prime} \subseteq E^{\prime \prime} \subseteq \operatorname{int} G \subseteq G
$$

Since μ is positive, $\mu\left(E^{\prime \prime}\right)-\mu\left(E^{\prime}\right)<\varepsilon$. Therefore the restriction of μ to \mathcal{S} is a regular set function on \mathcal{S}.

Lemma 5. Let S be a regular family of subsets of X such that X is a finite union of sets in \mathcal{S} and let α be a regular function on \mathcal{S} satisfying condition $[\mathrm{R}]$. Then α is extendable to a regular positive measure μ on the σ-algebra \mathcal{A} generated by \mathcal{S}.

Proof. Let \mathcal{A}_{0} be the algebra generated by \mathcal{S}. By Theorem $2, \alpha$ admits an extension to a positive additive set function μ on \mathcal{A}_{0}. It suffices to show that μ is a regular function on \mathcal{A}_{0}. Indeed, by Theorem 14 in [3, III.5], a regular function on \mathcal{A}_{0} admits an extension to a positive measure on \mathcal{A}.

Let $\varepsilon>0$ and A and B be two sets in \mathcal{S}. Since \mathcal{S} is a regular family and α is a regular function, there are $A_{1}, A_{2} \in \mathcal{S}$ and $B_{1}, B_{2} \in \mathcal{S}$ such that

$$
A_{1} \subseteq \operatorname{cl} A_{1} \subseteq A \subseteq \operatorname{int} A_{2} \subseteq A_{2}, \quad \alpha\left(A_{2}\right)-\alpha\left(A_{1}\right)<\varepsilon / 2
$$

and

$$
B_{1} \subseteq \operatorname{cl} B_{1} \subseteq B \subseteq \operatorname{int} B_{2} \subseteq B_{2}, \quad \alpha\left(B_{2}\right)-\alpha\left(B_{1}\right)<\varepsilon / 2
$$

We have

$$
\mu\left(A_{1} \cup B_{1}\right)+\mu\left(A_{1} \cap B_{1}\right)=\mu\left(A_{1}\right)+\mu\left(B_{1}\right)=\alpha\left(A_{1}\right)+\alpha\left(B_{1}\right)
$$

and

$$
\mu\left(A_{2} \cup B_{2}\right)+\mu\left(A_{2} \cap B_{2}\right)=\mu\left(A_{2}\right)+\mu\left(B_{2}\right)=\alpha\left(A_{2}\right)+\alpha\left(B_{2}\right) .
$$

Hence,

$$
\begin{aligned}
{\left[\mu\left(A_{2} \cup B_{2}\right)-\mu\left(A_{1} \cup B_{1}\right)\right] } & +\left[\mu\left(A_{2} \cap B_{2}\right)-\mu\left(A_{1} \cap B_{1}\right)\right]= \\
& =\left[\alpha\left(A_{2}\right)-\alpha\left(A_{1}\right)\right]+\left[\alpha\left(B_{2}\right)-\alpha\left(B_{1}\right)\right]<\varepsilon
\end{aligned}
$$

implying

$$
\mu\left(A_{2} \cup B_{2}\right)-\mu\left(A_{1} \cup B_{1}\right)<\varepsilon \quad \text { and } \quad \mu\left(A_{2} \cap B_{2}\right)-\mu\left(A_{1} \cap B_{1}\right)<\varepsilon
$$

Clearly,

$$
\begin{aligned}
& \operatorname{cl}\left(A_{1} \cup B_{1}\right) \subseteq A \cup B \subseteq \operatorname{int}\left(A_{1} \cup B_{1}\right) \quad \text { and } \\
& \operatorname{cl}\left(A_{1} \cap B_{1}\right) \subseteq A \cap B \subseteq \operatorname{int}\left(A_{1} \cap B_{1}\right)
\end{aligned}
$$

Thus the regularity condition for μ is satisfied for unions and intersections of sets in \mathcal{S}. Hence, μ is a regular function on \mathcal{A}_{0}.

Combining the results of Lemma 4 and Lemma 5, we have the following theorem.

Theorem 5. Let \mathcal{A} be the σ-algebra generated by a regular family \mathcal{S} of subsets of X such that X is a finite union of sets in \mathcal{S}. A function α on \mathcal{S} is extendable to a regular positive measure on \mathcal{A} if and only if it is regular and satisfies condition $[\mathrm{R}]$.

6 Acknowledgments

We thank Lester Dubins for attracting the attention of the first author to the treatment of the extension problem in de Finetti's book [4] and pointing out to the example that we use at the beginning of Section 4.

References

[1] M. Day, "Normed Linear Spaces", Third Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[2] J. Dugungji, "Topology", Wm.C. Brown Publishers, Dubuque, Iowa, 1989.
[3] N. Dunford and J. Schwartz, "Linear Operators", Part I, Interscience Publishers, New York, London, 1958.
[4] B. de Finetti, "Theory of Probability", vol. 1 and 2, John Wiley \& Sons, London, New York, Sydney, Toronto, 1974, 1975.
[5] A. Schrijver, "Theory of Linear and Integer Programming", John Wiley \& Sons, Chichester, New York, 1986.

[^0]: *This work is supported by NSF grant SES-9986269 to J.-Cl. Falmagne.

