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Abstract

We establish a necessary and su±cient condition for a func-
tion de¯ned on a subset of an algebra of sets to be extendable to
a positive additive function on the algebra. It is also shown that
this condition is necessary and su±cient for a regular function
de¯ned on a regular subset of the Borel algebra of subsets of a
given compact Hausdor® space to be extendable to a measure.
1991 Mathematics Subject Classi¯cation: 28A60

1 Introduction
A standard method of constructing a measure in a given set X is to
de¯ne ¯rst an additive function on an algebra A of subsets of X and
then extend this function to a measure on the ¾{algebra generated
by A. This `extension problem' is an important part of the classical
measure theory. Standard examples include Hahn's extension theorem
and the Borel measure in [0; 1] (cf. [3, III.5]).

In the paper, we are concerned with the following problem: Let
X be a set and A be an algebra of subsets of X. Given a subset S
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of A and a real valued function ® on S , ¯nd necessary and su±cient
conditions for ® to be extendable to a positive additive function ¹ on
A.

The following condition is instrumental in our treatment of the
extension problem:

X

A2F
n(A)ÂA(s) ¸ 0; 8s 2 X )

X

A2F
n(A)®(A) ¸ 0; [R]

for any ¯nite family F µ S , where coe±cients n(A)'s are arbitrary
integers and ÂA stands for the characteristic function of a set A µ X.

We show that condition [R] is necessary (Section 2) and su±cient
(Section 3) for ® to be extendable to a positive additive set function.
In the case when X is a ¯nite set, a stronger result is also established
in Section 3. To obtain these results, we only assume that X is a ¯nite
union of elements of S (this assumption is dropped in the case of a
¯nite set X).

We make additional assumptions about the quadruple (X;A;S ; ®)
when treating the extension problem for measures in sections 4 and
5. In both sections, X is a compact Hausdor® space. In Section 4,
A is the Borel algebra B of subsets of X , whereas in Section 5, A is
the ¾{algebra generated by S . Assuming, in addition, that S and ®
satisfy some `regularity' conditions, we show that [R] is a necessary
and su±cient condition for ® to be extendable to a positive regular
measure on A.

Our approach to the extension problem comes close to that of
Bruno de Finetti in his \Probability Theory" [4] (Sections 9 and 10).
In particular, his \convexity condition" (Section 15 in Appendix) is
equivalent to condition [R], although de Finetti formulates it in rather
di®erent terms.

2 Condition [R]
The following lemma establishes a useful equivalent form of condition
[R].
Lemma 1. [R] is equivalent to the following condition

X

A2F
c(A)ÂA(s) ¸ 0; 8s 2 X )

X

A2F
c(A)®(A) ¸ 0; (1)
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for any ¯nite family F µ S, where coe±cients c(A)'s are arbitrary real
numbers.

Proof. It su±ces to show that [R] implies (1). Suppose that for some
real coe±cients c(A)'s such that

P
A2F c(A)ÂA ¸ 0 we haveP

A2F c(A)®(A) < 0. There are rational numbers p(A)'s such thatP
A2F p(A)®(A) < 0 and p(A) ¸ c(A) for all A 2 F . Clearly,

X

A2F
p(A)ÂA ¸

X

A2F
c(A)ÂA ¸ 0:

Multiplying both inequalities
P

A2F p(A)ÂA ¸ 0 and
P

A2F p(A)®(A) <
0 by a common multiple of the denominators of nonzero coe±cients
p(A)'s, we obtain a contradiction to [R].

Suppose that ® is a restriction of a positive additive set function
¹ on A. Note that the ¯rst sum in (1) is, by de¯nition, a simple
function on X. Then condition (1) states that the integral of a positive
simple function is positive ([3, III.2.14]). Thus we have the following
proposition.

Proposition 1. [R] is a necessary condition for a function ® on S to
be extendable to a positive additive set function on A.

3 Extensions to positive additive set func-
tions

We denote by B0 the vector space of all simple functions (with respect
to A) on X and denote by B#

0 { the algebraic dual space. The space
B#

0 is isomorphic to the vector space of all additive set functions ¹ on
A. The isomorphism is given by

¹ 7! f¹ where f¹(x) =
Z
x(s) ¹(ds): (2)

The set C of all positive simple functions on X is a convex cone
in B0. Thus B0 is an ordered vector space. A functional f 2 B#

0 is
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monotone if x ¸ y implies f(x) ¸ f (y). A functional f is monotone if
and only if it is positive, i.e., x ¸ 0 implies f(x) ¸ 0.

We shall use the following general fact about monotone linear ex-
tensions of linear functionals on ordered vector spaces ([1, Theorem 1,
x6, ch. 2]).

Theorem 1. Let L be a vector space with a cone C . Let L0 be a
subspace of L such that for each x in L, x + L0 meets C if and only
if ¡x+L0 meets C. Let f0 in L#

0 be monotone. Then there exists an
extension f of f0 which is monotone and in L#.

Now we prove the main theorem of this section.

Theorem 2. Let S be a subset of A such that X is a ¯nite union of
sets in S and let ® be a function on S. Then ® can be extended to a
positive additive function ¹ on A if and only if it satis¯es condition
[R].

Proof. Necessity was established in Proposition 1.
Su±ciency. Let L0 be the subspace of B0 generated by the charac-

teristic functions of sets in S . For x =
P

A2F c(A)ÂA 2 L0 where F is
a ¯nite subset of S , we de¯ne

f0(x) =
X

A2F
c(A)®(A):

It follows immediately from (1) that f0 is well{de¯ned and is a positive
linear functional on L0.

Note that for any x 2 B0 the set x + L0 meets the cone C of
positive functions in B0. Indeed, let X = [ni=1Ai; Ai 2 S and de¯ne
x0 =

Pn
i=1 ÂAi 2 L0. Then, for m = sups2X jx(s)j, x+mx0 2 C .

By Theorem 1, f0 admits an extension to a positive linear functional
f on B0. By de¯ning ¹(A) = f (ÂA) for A 2 A, we obtain an extension
of ® to a positive additive function on A.

Note that the assumption that X is a ¯nite union of sets in S is
essential in the theorem. Indeed, let X be an in¯nite set, A = 2X ,
and let S be the family of all singletons in A. Let us de¯ne ®(fsg) =
1; 8s 2 X . Thus de¯ned ® satis¯es condition [R] but cannot be
extended to a monotone additive function on A.
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On the other hand, in the case of a ¯nite set X we have a stronger
result.

Theorem 3. Let X be a ¯nite set, S µ A, and ® be a function on
S. Then ® can be extended to a positive additive function ¹ on A if
and only if it satis¯es condition [R] with coe±cients from a ¯nite set
of integers.

Proof. Again, we need to prove su±ciency only. Let X 0 = [S and
A0 be the algebra of subsets of X 0 consisting of sets in A that are
subsets of X 0. By Theorem 2, ® can be extended to a positive additive
set function ¹0 on A0. For an A 2 A, we de¯ne ¹(A) = ¹0(A \ X 0).
Clearly, ¹ is a positive additive set function on A.

Let us consider characteristic functions of sets in S as integral vec-
tors in RjXj and let C be the intersection of the subspace generated by
these vectors with the positive cone in RjXj. The cone C is a rational
polyhedral cone and therefore has an integral Hilbert basis (Theo-
rem 16.4 in [5]). Thus we can use only vectors from this basis in the
right side of the implication in [R]. It follows that in the case of ¯nite
set X coe±cients in [R] can be taken from a ¯nite set of integers.

Remark. It was noted by Jean{Paul Doignon (personal communi-
cation) that su±ciency of condition [R] in the ¯nite case is a direct
consequence of Farkas' lemma [5, Corollary 7.1d].

4 Extensions to measures I

The following example shows that, in general, condition [R] is not
su±cient for a function ® to be extendable to a positive measure (¾{
additive set{function) on a ¾{algebra A.

Example 1. Let X = [0; 1] and S = f[0; t) : t 2 (0; 1]g [ f[0; t] : t 2
[0; 1]g. Note that X 2 S . We de¯ne ®(f0g) = 0 and ®(A) = 1 if A
is [0; t) or [0; t] for 0 < t · 1. It is easy to verify that thus de¯ned ®
satis¯es condition [R].
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Let ¹ be a ¾{additive extension of ® to the ¾{algebra B of Borel
subsets of [0; 1]. We have

¹((t; 1]) = 1¡ ®([0; t]) = 0; for t > 0,
¹((0; 1]) = 1¡ ®(f0g) = 1;
¹((s; t]) = 1¡ ®([0; s]) ¡ ¹((t; 1]) = 0; for 0 < s < t:

By ¾{additivity of ¹,

1 = ¹((0; 1]) = ¹

Ã1[

1

µ
1

k + 1
; 1
k

¸!
=

1X

1

¹
µµ

1
k + 1

; 1
k

¸¶
= 0;

a contradiction. On the other hand, by condition [R], there is an
additive extension of ® to B.

This example suggests that in order to keep [R] as a necessary
and su±cient condition for extendibility of a set function to a mea-
sure, some constrains should be imposed on the quadruple (X;A;S ; ®).
Namely, we assume that X is a compact Hausdor® space and introduce
the following `regularity' conditions on S and ®.

De¯nition 1. (i) A family S of subsets of X is said to be regular if

(a) For each E 2 S and a closed set F µ E there is E 0 2 S such
that

F µ E0 µ clE 0 µ E:

(b) For each E 2 S and an open set G ¶ E there is E00 2 S such
that

E µ intE00 µ E 00 µ G:

(ii) A function ® on a family S is said to be regular if for each E 2 S
and " > 0 there is a set F in S whose closure is contained in E and a
set G whose interior contains E such that j®(G)¡ ®(F )j< ".

In this section, A is the Borel algebra B of subsets of X.

Example 2. Since X is a normal space, the families of all open sets
and of all closed sets in X are examples of regular families of Borel
sets (cf. [2, VII.3.2(2)]).
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Example 3. Let X = [0; 1] and S be the family of all intervals in the
form [a; b). Clearly, S is a regular family of Borel sets.

Example 4. Let S = B and let ® = ¹ { a regular positive additive set
function on B in the usual sense (cf. [3, III.5.11]). Then ® is a regular
function in the sense of De¯nition 1.

Lemma 2. Let ¹ be a regular positive measure on the Borel algebra B
and let S be a regular family of Borel sets. Then the restriction of ¹
to S is a regular function on S.

Proof. Let E 2 S and " > 0. Since ¹ is regular and positive, there is a
closed set F µ E and an open set G ¶ E such that ¹(G) ¡ ¹(F ) < ".
Since S is regular, there are E0; E 00 2 S such that F µ E0 µ clE0 µ
E µ intE00 µ E00 µ G. Since ¹ is positive, ¹(E 00) ¡ ¹(E0) < ".
Therefore the restriction of ¹ to S is a regular set function on S .

Lemma 3. Let S be a regular family of Borel sets such that X is a
¯nite union of sets in S and let ® be a regular function on S satisfying
condition [R]. Then ® is extendable to a regular positive measure on
B.

Proof. By Theorem 2, ® admits an extension to a positive additive set
function ¹ on B. Since ¹ is bounded, it de¯nes a bounded positive
linear functional f on the Banach space B of all uniform limits of
functions in B0 endowed with the norm k ¢k1. This functional is given
by [3, IV.5.1]

f (x) =
Z
x(s)¹(ds); x 2 B0:

By the Riesz representation theorem [3, IV.6.3] the restriction of this
functional (which we denote by the same symbol f ) to the space C(X)
of continuous functions on S is given by

f(x) =
Z
x(s) ¹¤(ds); x 2 C(X);

where ¹¤ is a regular positive measure on B.
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Now it su±ces to show that ¹¤(E) = ¹(E) on S . Let E 2 S and
" > 0. Since ¹¤ is positive and regular there is a closed set F and an
open set G such that

F µ E µ G; ¹¤(F ) · ¹¤(E) · ¹¤(G); and ¹¤(G) ¡ ¹¤(F ) < ":

Since S is regular, there are E 0; E00 2 S such that

F µ E 0 µ clE0 µ E µ intE00 µ E 00 µ G and ¹(E00) ¡ ¹(E 0) < ":

We denote F 0 = clE 0 and G0 = intE00. Since ¹ and ¹¤ are positive,

¹(G0)¡ ¹(F 0) < " and ¹¤(G0) ¡ ¹¤(F 0) < ": (3)

Since X is a normal space, by Urysohn's lemma, there is a contin-
uous function x such that

0 · x(s) · 1; for all s 2 X;
x(s) = 1; for all s 2 F 0;
x(s) = 0; for all s =2 G0:

For a natural number n, we de¯ne a family of n + 1 intervals in [0; 1]
by

Ik =

(£
k¡1
n ; kn

¢
; for 1 · k · n;

f1g; for k = n+ 1.

The family of Borel sets Ek = x¡1(Ik); 1 · k · n+1, forms a partition
of X. Clearly,

Sn
k=2Ek µ G0 n F 0. Therefore, by the ¯rst inequality in

(3),
nX

k=2

¹(Ek) · ¹(G0) ¡ ¹(F 0) < ": (4)

Let xn be a function de¯ned by xn(s) = k¡1
n for s 2 Ek; 1 · k · n+1.

Thus

jf(x) ¡ f(xn)j · kfk ¢ kx ¡ xnk <
1
n
kfk (5)
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Further,

xn =
n+1X

k=1

k¡1
n ÂEk =

nX

k=2

k¡1
n ÂEk + ÂEk+1

:

Thus

f(xn) =
nX

k=2

k¡1
n ¹(Ek) + ¹(Ek+1);

which implies, by (4),

f(xn)¡ ¹(Ek+1) =
nX

k=2

k¡1
n ¹(Ek) < ":

This inequality together with one in (5) imply

jf(x) ¡ ¹(En+1)j< " +
1
nkfk: (6)

Clearly, F 0 µ En+1 µ G0, and F 0 µ E µ G0. Thus, by (3),

j¹(En+1) ¡ ¹(E)j < ": (7)

Since f (x) =
R
x(s)¹¤(ds), we have ¹¤(F 0) · f (x) · ¹¤(G0). On the

other hand, ¹¤(F 0) · ¹¤(E) · ¹¤(G0). By the second inequality in (3),

j¹¤(E)¡ f (x)j < ": (8)

Combining inequalities (6), (7), and (8), we have

j¹¤(E)¡ ¹(E)j < 3" +
1
n
kfk:

Hence, ¹¤(E) = ¹(E) = ®(E).

Combining the results of Lemma 2 and Lemma 3, we have the
following theorem.

Theorem 4. Let S be a regular family of Borel sets such that X is a
¯nite union of sets in S. A function ® on S is extendable to a regular
positive measure on B if and only if it is regular and satis¯es condition
[R].
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5 Extensions to measures II

In this section we make a di®erent assumption about components of the
quadruple (X;A;S ;®). Namely, let X again be a compact Hausdor®
space, S be a family of subsets of X , and let A be the ¾{algebra
generated by S.

Lemma 4. Let S be a regular family of subsets of X . The restriction
of a regular positive measure ¹ on A to S is a regular function on S.

Proof. Let E 2 S and " > 0. Since ¹ is regular and positive, there is
F 2 A such that clF µ E and G 2 A such that intG ¶ E such that
¹(G)¡ ¹(F ) < ". Since S is regular, there are E 0; E 00 2 S such that

F µ clF µ E0 µ clE0 µ E µ intE 00 µ E00 µ intG µ G:

Since ¹ is positive, ¹(E 00) ¡ ¹(E0) < ". Therefore the restriction of ¹
to S is a regular set function on S .

Lemma 5. Let S be a regular family of subsets of X such that X is a
¯nite union of sets in S and let ® be a regular function on S satisfying
condition [R]. Then ® is extendable to a regular positive measure ¹ on
the ¾{algebra A generated by S.

Proof. Let A0 be the algebra generated by S . By Theorem 2, ® admits
an extension to a positive additive set function ¹ on A0. It su±ces to
show that ¹ is a regular function on A0. Indeed, by Theorem 14
in [3, III.5], a regular function on A0 admits an extension to a positive
measure on A.

Let " > 0 and A and B be two sets in S . Since S is a regular family
and ® is a regular function, there are A1; A2 2 S and B1; B2 2 S such
that

A1 µ clA1 µ A µ intA2 µ A2; ®(A2) ¡ ®(A1) < "=2;

and

B1 µ clB1 µ B µ intB2 µ B2; ®(B2) ¡ ®(B1) < "=2;
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We have

¹(A1 [B1) + ¹(A1 \B1) = ¹(A1) + ¹(B1) = ®(A1) + ®(B1)

and

¹(A2 [B2) +¹(A2\ B2) = ¹(A2) + ¹(B2) = ®(A2) + ®(B2):

Hence,

[¹(A2 [B2) ¡ ¹(A1 [B1)] + [¹(A2 \B2) ¡ ¹(A1 \B1)] =
= [®(A2)¡ ®(A1)] + [®(B2)¡ ®(B1)]< ";

implying

¹(A2 [B2) ¡ ¹(A1 [B1) < " and ¹(A2 \B2) ¡ ¹(A1 \B1) < ":

Clearly,

cl(A1 [B1) µ A [B µ int(A1 [B1) and
cl(A1 \B1) µ A \B µ int(A1 \B1):

Thus the regularity condition for ¹ is satis¯ed for unions and intersec-
tions of sets in S . Hence, ¹ is a regular function on A0.

Combining the results of Lemma 4 and Lemma 5, we have the
following theorem.

Theorem 5. Let A be the ¾{algebra generated by a regular family S
of subsets of X such that X is a ¯nite union of sets in S. A function
® on S is extendable to a regular positive measure on A if and only if
it is regular and satis¯es condition [R].
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