Mathware & Soft Computing 7 (2002)

An Approach Based on the Use of the Ant System
to Design Combinational Logic Circuits

Benito Mendoza Garcia
MTA, Universidad Veracruzana
Sebastian Camacho 5
Xalapa, Veracruz 91090, MEXICO
bmendoza@uv.mx

Carlos A. Coello Coello
CINVESTAV-IPN Evolutionary Computation Group
Depto. de Ingenieria Eléctrica
Seccion de Computacion
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México, D. F. 07300, MEXICO

ccoello@cs.cinvestav.mx

September 6, 2002

Abstract

In this paper we report the first attempt to design combinational logic
circuits using the ant system. In order to design circuits, a measure of quality
improvement in partially built circuits is introduced and a cost metric (based
on the number of gates) is adopted in order to optimize the feasible circuits
generated. The approach is compared to a genetic algorithm and to a human
designer using several examples and the sensitivity of the algorithm to its
parameters is studied using analysis of variance. The results indicate that
the ant system is a viable alternative to design combinational logic circuits.

1 Introduction

Design is a task that normally requires creativity and it is therefore traditionally
difficult to automate. In this paper, we deal with a domain well-known by humans:
the design of combinational logic circuits. Despite the existence of several standard
aids and methodologies for designing combinational circuits, no method exists that
allows to produce optimal designs for any arbitrary truth table given.

2 Coello & Mendoza

-]
- n

Input Output

Figure 1: Matrix used to represent a circuit to be processed by an agent (i.e., an
ant). Each gate gets its inputs from either of the gates at the previous column.

Several heuristics have been used in the past to design combinational circuits
(see for example [9, 2]. However, so far, no one had attempted to use the ant system
in this domain. This is perhaps because circuit design is a task that does not have
much resemblance with the traveling salesperson problem (TSP) and therefore the
application of the ant system algorithm is not straightforward. In this paper we
present a methodology that allows to restate the circuit design problem in such a
way that the ant system can be applied to its solution. Our results indicate the
suitability of the approach, since it produces competitive results (with respect to
other heuristics and with respect to human designers), in a resonable amount of
time.

2 Description of the Approach

In this section, we will describe the way in which the circuit design problem had to
be reformulated in order to be able to use the AS to solve it.! The main problem
that we faced was how to make an analogy (as much as possible) between circuit
design and the TSP. The main issues are: the representation to be adopted, the
notion of state in that representation, the way in which a path would be built, and
the way of updating the trails of each ant. Each of these issues will be discussed
in this section

2.1 Representation

Since we need to view the circuit optimization problem as one in which we want to
find the optimal path of a graph, we will use a matrix representation for the circuit
as shown in Figure 1. This matrix is encoded as a fixed-length string of integers
from 0 to N — 1, where N refers to the number of rows allowed in the matrix.

IWe did not use the ant colony system because the problem to be solved does not present all
the properties normally associated with the application of such algorithm [5]. In particular, we
do know how many states remain to be visited from a certain point in the path that leads to a
certain circuit. We do, however, use the exploration mechanism of the ant colony system (i.e., a
proportional selection procedure to choose the next state).

AS for Circuit Design 3

Inputl | Input2 | Gate Type

Figure 2: Encoding used for each of the matrix elements that represent a circuit.

More formally, we can say that any circuit can be represented as a bidimensional
array of gates S; ;, where j indicates the level of a gate, so that those gates closer
to the inputs have lower values of j. (Level values are incremented from left to
right in Figure 1). For a fixed j, the index i varies with respect to the gates that
are “next” to each other in the circuit, but without being necessarily connected.
Each matrix element is a gate (five types of gates were considered in our work:
AND, NOT, OR, XOR and WIRE?) that receives its 2 inputs from any gate at the
previous column as shown in Figure 1. We have used this representation before
with a genetic algorithm (GA) [1, 2].

A chromosomic string encodes the matrix shown in Figure 1 by using triplets
in which the 2 first elements refer to each of the inputs used, and the third is
the corresponding gate as shown in Figure 2 (only 2-input gates were used in this
work).

2.2 Building a path

The path of an ant in our case is a full circuit. In other words, each ant traverses
a path and, in the process, it builds a circuit. In the TSP, the ants also traverse a
path and try to find the shortest way to the goal. In our case, “shortest” relates
to “less gates”. However, in the TSP, any permutation is a valid solution, whereas
in our case, an arbitrary string encodes a circuit that may or may not be feasible.
We only try to minimize the number of gates of feasible circuits.

The aim is to maximize a certain payoff function. Since our code was built
upon our previous GA implementation [2], we adopted the use of fixed matrix sizes
for all the agents, but this needs not be the case (in fact, we could represent the
Boolean expressions directly rather than using a matrix, and other representations
are currently a matter of further research). The matrix containing the solution to
the problem is built in a column-order fashion as indicated next.

Each state is, in our case, a column of the matrix, which is composed of several
elements. A certain state is selected element by element (gate by gate). Each of
these column elements is called a substate. A substate is a triplet in which the
first two elements refer to each of the inputs used (taken from the previous level or
column of the matrix) and the third is the corresponding gate (chosen from AND,
OR, NOT, XOR, WIRE) as shown in Figure 2. For the gates at the first level (or
column), the possible inputs for each gate were those defined by the truth table
given by the user (a modulo function was implemented to allow more rows than
available inputs). The gate and inputs to be used for each element of the matrix

2WIRE basically indicates a null operation, or in other words, the absence of gate.

4 Coello & Mendoza

are chosen randomly from the set of possible gates and inputs (a modulo function
is used when the relationship between inputs and matrix rows is not one-to-one).

The distance (between cities or states), which we denote by h, is measured in
our case as the increment or decrement in the fitness value of the circuit when we
move from one level to the next. By level, we refer to a column in the matrix.
Since our algorithm builds the circuit progressively (starting from the leftmost
column), as we move to the right, levels increase and fitness values change. Fitness
in this domain is measured according to the amount of hits achieved (i.e., matches
between the outputs of the circuit and the outputs defined in the truth table).
Feasible circuits get an extra increase in their fitness measured as the amount of
WIREs that they contain. This allows us to perform a fair comparison between
feasible and infeasible designs (i.e., feasible designs always get a higher reward than
infeasible designs).

One important difference between the statement of this problem and the TSP
is that in our case not all the states within the path have to be visited, but both
problems share the property that the same state is not to be visited more than
once (this property is also present in some routing applications [4]).

When we move from one substate to another in the path, a value is assigned
to all the substates that have not been visited yet and the next substate (i.e., the
next triplet) is randomly selected using a certain selection factor p*. This selection
factor determines the chance of going from state i to state j at the iteration ¢, and
is computed using the following formula that combines the pheromone trail with
the heuristic information used by the algorithm:

Pij = Fia X hiji (1)

where k refers to the ant whose pheromone we are evaluating (the ant that is
building the path), f;, is the amount of pheromone at state j at row [(this value is
initialized to zero), and h; ;; is the score increment between substate i and substate
j for row [(each row is associated with an output in the truth table). This score
is measured according to the number of matches between the output produced by
the current circuit and the output desired according to the truth table given by
the user. The value of h; ;; is given by the number of hits that the partially-built
circuit produces so far with respect to the [outputs of the truth table provided
by the user. This value is therefore a score increment analogous to the distance
between nodes used in the TSP. Note that the previous transition rule is the same
normally adopted with the ant system, but in our case « = § = 1. Obviously,
changing « and 8 would affect the behaviour of the algorithm, but so far we have
not experimented with different values for these parameters.

Once every combination has been assigned a selection factor, we choose one
of them. At this point, we apply roulette-wheel selection. We do this for every
substate that belongs to one of the rows representing an output of the circuit. The
other substates are randomly chosen.

The previous process is repeated until we finish a path (i.e., until we reach the
last state of the circuit, or the last column of the matrix).

AS for Circuit Design)

2.3 Updating the trails

The amount of pheromone is updated each time an agent builds an entire path
(i.e., once the whole circuit is built). This is done in two steps:

1. First, we simulate the evaporation of the pheromone trails in all substates,
such as they occur with real ants (over time). For the simulation, we adopt
the following formula:

fir=px fii (2)
where 0 < p < 1 (p = 0.5 was used in all the experiments reported in this
paper) is the trail persistence and its use avoids the unlimited accumulation
of pheromone in any path, and f;; is the amount of pheromone at state ¢ at

row [.

2. Then, we deposit the pheromone in the substates through which the ants
passed, using the following formula:

fir=Fia+ > fh (3)
k=1

where m refers to the number of agents (or ants), fi’fl corresponds to the
amount of pheromone deposited by ant k at state ¢ at row [. This value is
obtained in the following way:

e If the circuit is not feasible (i.e., if not all of its outputs match the truth
table), then:

£ = payoff (4)

e If the circuit is feasible (i.e., all of its outputs match the truth table),
then:

fi’fl = payoff x 2 (5)

e If it is the circuit with the highest fitness (i.e., the best path found):

fi’fl = payoff x 3 (6)

e If the ant k did not pass through substate i of row [:

fik:l =0 (7)

6 Coello & Mendoza

The value of payoff is given by the following expression:

payoff = hits + ((Cols x Rows) — TotC'irc) (8)

where: hits is the number of matches produced between the outputs gener-
ated by the circuit produced by the AS and the truth table given by the user;
Cols is the number of columns in the matrix; Rows is the number of rows in
the matrix, and TotC'irc is the number of gates used by the circuit generated
by the AS.

To build a circuit, we start by placing a gate (randomly chosen) at a certain
matrix position and we fill up the rest of the matrix using WIREs. This tries to
compute the effect produced by a gate used at a certain position (we compute the
score corresponding to any partially built circuit). The distance is computed by
subtracting the hits obtained at the current level (with respect to the truth table)
minus the hits obtained up to the previous level (or column). When we are at the
first level, we assume a value of zero for the previous level.

3 Comparison of Results

We used several examples taken from the literature to test our AS implementation.
Our results were compared to those obtained by a human designer (using Karnaugh
maps plus simplification using Boolean rules) and by a genetic algorithm using
binary representation (BGA). In all the examples presented, the matrix used was
of size 5 x 5, and the length of each string representing a circuit was 75. Since
5 gates were allowed in each matrix position, then the size of the intrinsic search
space (i-e., the maximum size allowed as a consequence of the representation used)
for all of the examples is 5', where [refers to the length required to represent
a circuit (I = 75 in our case). Thefore, the size of the intrinsic search space
is 5 ~ 2.6 x 10°2. Also, the parameters of the BGA were chosen so that they
approximated the total number of fitness function evaluations required by the AS3.
For each of the following examples, we performed 20 runs with each technique.

The experiments described next were performed on a PC with a Pentium IIT
processor (running at 550 Mhz), with 128 Mbytes in RAM and a 13 Gbytes hard
disk. Although the original version of our ant system implementation was developed
using Borland C++ Builder 4, to allow a direct comparison with the binary genetic
algorithm, we migrated the code to GNU C under Red Hat Linux (version 7).
Thus, both programs were run on the same hardware and software platform (a
single computer with identical workload was used for all the experiments rather
than a distributed system, so that time could be measured more accurately).

AS for Circuit Design 7

Table 1: Truth table for the circuit of the first example.

A B|W X Y Z
0O 00 0 0 1
0o 17,0 0 1 O
1 010 1T 0 O
1 111 0 0 O

Table 2: Comparison of the Boolean expressions produced by the AS, a GA with
binary representation (BGA), and a human designer for the circuit of the first
example.

Human Designer
X=A'B,Y=AB,Z=AB',W = AB

6 gates

4 ANDs, 2 NOTs
BGA

W=(AB)A, X =A®(4AB),Y =((A®B)+A) 2 A, Z=((AaB)+ A)
7 gates
3 XORs, 1 OR, 2 ANDs, 1 NOT
Ant System
X=AB® A Y=BA',Z=A®BA',W = AB
o gates
2 XORs, 2 ANDs, 1 NOT

8 Coello & Mendoza

3.1 Example 1

Our first example has 2 inputs and 4 outputs (it is a decoder 2-4) as shown in
Table 1. Our AS algorithm used the following parameters: population size = 30,
maximum number of iterations = 30, p=0.5. The BGA used the following param-
eters: population size = 200, maximum number of generations = 1000, crossover
rate = 0.5, mutation rate = 0.5/L, chromosomic length = 225 bits. In this case, the
BGA performed 200,000 fitness function evaluations per run, and the AS performed
185,400 fitness function evaluations per run.

The results for the AS were the following: best and worst fitness = 36, average
fitness = 36, standard deviation = 0.0, CPU time = 13 seconds. The results for
the BGA are the following: best fitness = 34, worst fitness = 15, average fitness
= 28.45, standard deviation = 5.072889, CPU time = 30 seconds. The AS was
able to find a solution with a fitness of 36 (i.e., a circuit with 5 gates) in all the
runs performed. The best solution that the BGA could find had a fitness of 34
(i.e., a feasible circuit with 7 gates). In 10% of the runs, the BGA converged to an
infeasible solution.

The comparison of the Boolean expressions produced by the AS, the BGA, and a
human designer are shown in Table 2. It can be clearly seen that the AS produced
better solutions than both the human designer and the BGA for this example.
However, note in Table 2, that some of the Boolean expressions generated by the
BGA can be easily simplified (e.g., W = (AB)A = AB). Nevertheless, we were
interested in comparing the solutions generated by the AS and the BGA without
any extra human intervention.

3.2 Example 2

Our second example has 4 inputs and 1 output, as shown in Table 3. The parame-
ters used by the Ant System and the BGA are the same adopted for the previous
example. Again, the BGA performed 200,000 fitness function evaluations per run,
and the AS performed 185,400 fitness function evaluations per run.

The results for the AS were the following: best fitness = 34, worst fitness = 32,
average fitness = 33.15, standard deviation = 0.5871429, CPU time = 13 seconds.
The results for the BGA are the following: best fitness = 34, worst fitness = 13,
average fitness = 21.3, standard deviation = 8.3986214, CPU time = 30 seconds.
The best solution that the AS could find had a fitness of 34 (i.e., a circuit with 7
gates). In all cases, the AS converged to a feasible circuit and 25% of the time a
fitness value of 34 was achieved. The best solution that the BGA could find had a
fitness of 34 (i.e., a feasible circuit with 7 gates), but it appeared only once in the
20 runs performed. The BGA converged to an infeasible solution 60% of the time.
The comparison of the Boolean expressions produced by the AS, the BGA, and a
human designer are shown in Table 4.

3In this work, the term “fitness function evaluation” refers to a unit used to compare the
performance of our algorithm against others. In terms of computational effort, a fitness function
evaluation is the amount of time required to evaluate a solution (i.e., a circuit).

AS for Circuit Design 9

Table 3: Truth table for the circuit of the second example.

>
os]
Q
w
=

HF R R R HPRRFHOOOOOOOO

- O OO O OO OO
—_—_ O OR HF OO EFEOOMEMEOO
— O R OFROFHOFRORFROMREORO
O R O FR FHF OKFMFMEMEME M OO

Table 4: Comparison of the Boolean expressions produced by the AS, a GA with
binary representation (BGA), and a human designer for the circuit of the second
example.

Human Designer BGA Ant System
F=D+(A®B)) | F=(AC+(B+ D))+ | F=(AC+ D)+
((AC) + (Be D)) (AD @ B) (Ao B)® D’
8 gates 7 gates 7 gates
2 XORs, 2 ANDs, 2 ANDs, 3 ORs, 2 XORs, 1 AND,
2 ORs, 2 NOTs 1 XOR, 1 NOT 2 ORs, 2 NOTs

10 Coello & Mendoza

Table 5: Truth table for the 2-bit multiplier of the third example.

A1 B1 CQ

»—A»—n»—u—noooor—w—u—w—loooog
HOI—‘O)—‘O)—‘O)—‘O)—‘O)—‘O)—‘O?
»—Aoooooooooooooooo@
O»—tHO»—AO»—AO»—Al—lOOOOOOQ
»—Ao»—looooo»—no»—nooooog)

[B B M el Bl Rl Bl =) E==l B sl N s] Hew) Henl Hean) Nen)
RO O RHOIOIH OO -—OoOO

(=)o Renl el Bg B Beo) Heo) Hew] Hen] Ren) Neo) Hev] Jan) Neo) Nen]

3.3 Example 3

Our third example is the 2-bit multiplier (4 inputs and 4 outputs) whose truth
table is shown in Table 5. Our AS algorithm used the following parameters: pop-
ulation size = 30, maximum number of iterations = 30, p=0.5. The BGA used the
following parameters: population size = 800, maximum number of generations =
1000, crossover rate = 0.5, mutation rate = 0.5/L, chromosomic length = 225 bits.
In this case, the BGA performed 800,000 fitness function evaluations per run, and
the AS performed 725,400 fitness function evaluations per run.

The results for the AS were the following: best fitness = 82, worst fitness = 81,
average fitness = 81.4, standard deviation = 0.50262469, CPU time = 55 seconds.
The results for the BGA are the following: best fitness = 80, worst fitness = 62,
average fitness = 68.25, standard deviation = 7.731544, CPU time = 253 seconds.
The best solution that the AS could find had a fitness of 82 (i.e., a feasible circuit
with 7 gates). In all cases, the AS converged to a feasible circuit and 40% of the
time a fitness value of 82 was achieved. The best solution that the BGA could find
had a fitness of 80 (i.e., a feasible circuit with 9 gates), and it appeared only once
in the 20 runs performed. For 55% of the runs, the BGA converged to an infeasible
solution. The comparison of the Boolean expressions produced by the AS, the
BGA, and a human designer are shown in Table 6. The solution produced by the
AS is better (i.e., it uses less gates) than those produced by the human designer
and the BGA. In fact, these last two solutions are really the same, although the
BGA was not able to eliminate a double NOT in the Boolean expression.

AS for Circuit Design

11

Table 6: Comparison of the Boolean expressions produced by the AS, a GA with
binary representation (BGA), and a human designer for the circuit of the third

example (a 2-bit multiplier).

Human Designer

BGA

Ant System

C() = A()BO
01 = A()Bl © A1B0
02 = AlBl (AOBO),

Co = ((AoBo)")’
01 = A()Bl D A1B0
02 = AlBl(AOBO)I

C() = A()BO
Cy = A1 By @ Ao By
02 - AleBlB[) ©® AlBl

03 - AlA()BlBO
8 gates
6 ANDs, 1 XORs, 1 NOT

03 - A1 A()Bl BO
9 gates
1 XOR, 6 ANDs, 2 NOTs

Cs = A1 AoB1 By
7 gates
2 XORs, 5 ANDs

Despite the good results reported here, it is important to clarify that our algo-
rithm presents problems when trying to solve larger circuits. Our current results
indicate that there is an important increase in the computational cost when solving
larger circuits (mainly because the size of the matrix has to be increased). Also,
the quality of the solutions produced tends to decrease as the size of the circuit
increases, and our algorithm tends to present solutions with more gates than a
genetic algorithm.

4 Sensitivity Analysis

Our approach uses several parameters and, ideally, we would like to know how to
setup their values such that we can solve any arbitrary circuit. Trying to deal with
this problem, we performed a sensitivity analysis of the most significant parameters
adopted designing a factorial experiment which is described next.

4.1 Statement of the Problem

Our application combines several sub-circuits (either gates or portions of circuits)
built by the ants. From this, it is obvious that at a larger population size, we will
have more opportunities to recombine sub-circuits at each iteration, and therefore
we would expect a higher convergence rate. However, a higher population size also
implies higher running time for the algorithm. Something similar happens with
the number of cycles. A higher number of cycles allows more recombination of
sub-circuits, but also requires more running time.

The matrix represents the space where the sub-circuits built are placed. There-
fore, if the size of the matrix is increased, we will have more space to place sub-
circuits which we hope to be benefitial (i.e., this should increase our convergence
rate). However, a larger matrix size also requires that an ant takes longer to build
a path. Thus, larger matrix size also implies larger running time for the algorithm.

We can determine, beforehand, that the evaporation factor does not have any

12 Coello & Mendoza

Table 7: Values adopted for the parameters of our algorithm in the sensitivity
analysis conducted.

Parameter Alias Value 1 | Value 2 | Value 3
Matrix Size Matrix 8x8 10 x 10 12 x 12

Evap. Factor Evap 0.10 0.5 0.75
Pop. Size PopSize 10 30 50
of Tterations | Max_Cic 10 30 50

impact on the running time of the algorithm. However, we consider its effect on
the convergence rate of the algorithm.
Based on the previous analysis, we formulated the eight following hypothesis:

1. The size of the matrix has an impact on the convergence rate.

The size of the matrix has an impact on the running time of the algorithm.
The size of the population has an impact on the convergence rate.

The size of the population has an impact on the running time of the algorithm.
The number of cycles has an impact on the convergence rate.

The number of cycles has an impact on the running time of the algorithm.

The evaporation factor has an impact on the convergence rate.

® N o ool WD

The evaporation factor does not have an impact on the running time of the
algorithm.

Note that in the analysis proposed, the values of a and § used in the transition
rule are not included. This was done to reduce the number of runs to be performed,
but their incorporation in the sensitivity analysis of the algorithm is part of our
future work.

4.2 Choosing Factors and Levels

The factors are in this case the parameters used by our algorithm. We decided to
adopt three sets of values which represent the variability that each parameter may
have. The values chosen are shown in Table 7 (the selection was based on our own
experience using the algorithm).

4.3 Selection of the Response Variables

In our case, we were interested in knowing how often would our algorithm converge
to a feasible solution when adopting a certain combination of parameter values.
Additionally, we were interested in the time taken by the algorithm to finish a run.

AS for Circuit Design 13

Furthermore, we also tried to determine the combination of parameters that
provided the best convergence rate and the lowest computational cost. Therefore,
our response variables are the convergence rate and the average time required to
finish a run.

4.4 Experimental Design

Our experimental design consisted in choosing the circuits with which we would
perform our analysis. We chose five circuits that have been adopted by other
authors to validate their own algorithms and that are representative of the type
of circuits solved with heuristics in the literature. The circuits are the following:
Sasao’s circuit [11], Katz’s circuit with one output [6], a full two-bit adder a full two-
bit multiplier, Katz’s circuit with three outputs [6]. For each circuit, we performed
40 runs for each combination of parameters (from those indicated in Table 7).
Since we have four parameters and three values for each of them, there are 3% = 81
possible combinations of values. Therefore, we have 3240 runs for each circuit
(81 x 40). Since we have five circuits and 3240 runs for each of them, we have a
total of 16200 runs (or experiments) to be performed. Since the output of each run
depends of the random numbers seed, we adopted a table of random numbers to
setup these seeds properly. From each run, we obtained the best solution (or path)
found, plus the following: fitness, number of gates if the circuit was feasible or —1 if
not, iteration or cycle in which the solution was found, number of violations if the
circuit found was infeasible or zero otherwise, time needed to finish a run. Once
all the runs were finished, we computed the following: average time required to
finish a run, convergence rate (i.e., the percentage of runs that produced a feasible
circuit), number of gates of the best solution found after performing 40 runs.

4.5 Statistical Analysis of the Results

In order to study the effect of the values of the parameters on our response variables,
we implemented an analysis of variance (ANOVA) [10]. The rationale of the method
is that the response variables are modified by the variation of the independent
variables (in this case: Matrix, Evap, PopSize and Max_Cic) and their possible
interaction or combination.

The behavior of the variable “time” was affected by any increase in Max_Cic,
Matrix or PopSize, whereas Evap did not influenced it. Therefore, we calculated
the average time for each value of Max_Cic, and for each combination of PopSize
and Matrix. Table 8 shows the average time for each of the combinations tried.
In general, as the number of cycles increased, the average time required by the
algorithm also increased (see Table 8). The same can be observed within each
cycle: as the size of the matrix or the size of the population increases, the average
time increases as well.

The conclusions of the analysis regarding time are then very clear:

e The evaporation factor DOES NOT affect the time required by the algorithm
to finish a run, such as we expected from our hypothesis 8 previously stated

14

Coello & Mendoza

Table 8: Average time (in seconds) for each of the circuits used in our experiments,
using the different combinations of parameters chosen.

Parameter Time
Comb. No. | PopSize | Matrix | Max_Cic = 10 | Max_Cic = 30 | Max_Cic = 50
1 10 8 x 8 16.00 45.33 76.00
2 10 10 x 10 45.67 138.00 228.33
3 10 12 x 12 112.33 337.67 562.33
4 30 8 x 8 45.67 137.33 228.00
5 30 10 x 10 137.00 411.33 685.33
6 30 12 x 12 337.33 1012.33 1687.33
7 50 8 x 8 76.33 228.67 380.00
9 50 12 x 12 562.67 1688.33 2813.00
Max_Cic Avg 173.52 520.44 866.93
Tirme behavior with the Sasao circuit
2000
o 2500 /
sl
§ 2000
L
& 1500 A, 7 A
2 1000 // . /./
=0 S — T
==t e o
10, 10, 10, a, 3o, a, a0, a1, a0,
Bx8 (10410 |12x12] 8x3 | 1010 2x12 | 8x8 [10x10 [12x12
—s—Max Cic=10| 16 | 4667 11233 4667 | 137 (337337633 | 2867 (56267
—s—Max_Cic=30|4533 | 138 |33767 |137.33|411.353|1012.3|228 67 | B35 (16683
—a—Max_Cic=580| 76 |22833|56233| 228 |6B5.33|1657.3 380 | 1142 | 2313
Combination Mumber

Figure 3: Plot that shows the running times required by our algorithm for different
combinations of parameters when using Sasao’s circuit.

AS for Circuit Design 15

(see Section 4.1).

e An increase in the population size of the algorithm increases the time required
to finish a run. This increase is practically the same produced if the number
of iterations is increased. This is what we expected from our hypothesis 6
and 4 previously stated.

e The matriz size adopted has an impact on the time required by the algorithm
to finish a run as expected from our hypothesis 2 previously stated.

To analyze the effect of the parameters over the convergence rate of the algo-
rithm, we also performed a variance analysis for each level or value of the variable
Max_Cic (10, 30, 50) for the dependent variable convergence rate with the inde-
pendent variables Matrix, PopSize and Evap. Thus, we obtained three analysis per
circuit (one for each value of Max_Cic) such that: a) we could prove if the values
or levels of the parameters involved and their combination really impacted the av-
erage convergence rate, and b) if from the previous point we could find results with
an statistical significance, then we would proceed to identify the combination of
parameters that provided the highest average convergence rate in the lowest time
possible. In other words, we wanted to find the combination of parameters capa-
ble of making the algorithm to reach the feasible region with the lowest possible
computational cost.

Regarding convergence, the conclusions were the following:

e The matrix size impacts convergence rate as expected from hypothesis 1 (see
Section 4.1). This impact was observed both when considered combined with
other factors and when considered independently.

e The population size impacts convergence rate. Within the analysis, this factor
indicated that an increase in its value was reflected by a higher convergence
rate. This was expected from our hypothesis 3 previously stated.

e Asexpected from hypothesis 5 (Section 4.1), the number of cycles or iterations
impacts convergence rate. If this parameter is increased we obtain a higher
convergence rate.

e Although not observed in all circuits, the evaporation factor impacts the con-
vergence rate as stated in our hypothesis 7 from Section 4.1. In some circuits,
this parameter had a significant impact on convergence independently, but
in others only when used with certain matrix sizes.

From our experiments we concluded that the following parameters provided
the most consistent results are are, therefore, recommended for any given circuit
(with similar characteristics to those presented here) if no further information is
available: matrix size = 10 x 10, Evap = 0.50, Max_Cic = 30, PopSize = 30.

16 Coello & Mendoza

5 Conclusions and Future Work

We have proposed an algorithm based on the ant system which was found effective
in the design of combinational logic circuits at a gate-level. Our results indicate that
our algorithm is competitive with respect to those produced by human designers
and with respect to a genetic algorithm. It should be indicated, however, that
the genetic algorithm tends to produce better circuits (i.e., with less gates) in a
shorter time than the ant system when dealing with larger combinational circuits
(see for example [3, 8]). This indicates that our implementation requires further
refinements. One of the possible research paths considered in our current work
involves the use of a tree-encoding such as that adopted in genetic programming
[7].

We are also considering the introduction of @ and 8 (from the transition rule
transition adopted with the ant system) in our sensitivity analysis. Another inter-
esting aspect to analyze in our future work is the role of the heuristic information
in the performance of the algorithm.

Acknowledgements

We thank the anonymous reviewers for their comments that greatly helped us
to improve the contents of this paper. The second author acknowledges support
from the Consejo Nacional de Ciencia y Tecnologia (CONACyT) through project
number 32999-A.

References

[1] Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Herndndez Aguirre.
Automated Design of Combinational Logic Circuits using Genetic Algorithms.
In D. G. Smith, N. C. Steele, and R. F. Albrecht, editors, Proceedings of the
International Conference on Artificial Neural Nets and Genetic Algorithms,
pages 335-338. Springer-Verlag, University of East Anglia, England, April
1997.

[2] Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Herndndez Aguirre.
Use of Evolutionary Techniques to Automate the Design of Combinational Cir-
cuits. International Journal of Smart Engineering System Design, 2(4):299—
314, June 2000.

[3] Carlos A. Coello Coello, Rosa L. Zavala Gutiérrez, Benito Mendoza Garcia,
and Arturo Herndndez Aguirre. Ant Colony System for the Design of Combi-
national Logic Circuits. In Julian Miller, Adrian Thompson, Peter Thomson,
and Terence C. Fogarty, editors, Evolvable Systems: From Biology to Hard-
ware, pages 21-30, Edinburgh, Scotland, April 2000. Springer-Verlag.

AS for Circuit Design 17

[4]

[5]

[6]

[7]

G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for
Communications Networks. Journal of Artificial Intelligence Research, 9:317—
365, 1998.

Marco Dorigo and Luca M. Gambardella. Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem. IEEE Transactions
on Evolutionary Computation, 1(1):53-66, 1997.

Randy H. Katz. Contemporary logic design. Benjamin/Cummings Publishing
Co., Redwood City, California, 1994.

John R. Koza. Genetic Programming. On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, Massachusetts, 1992.

Benito Mendoza Garcia and Carlos A. Coello Coello. Uso del Sistema de la
Colonia de Hormigas para el Diseno de Circuitos Légicos Combinatorios. In
E. Alba, F. Fernandez, J.A. Gémez, F. Herrera, J.I. Hidalgo, J. Lanchares, J.J.
Merelo, and J.M. Sanchez, editors, Primer Congreso Espanol de Algoritmos
Evolutivos y Bioinspirados (AEB’02), pages 294-301, Mérida, Esparia, 2002.
Universidad de la Extramadura.

Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. Principles in the
Evolutionary Design of Digital Circuits—Part I. Genetic Programming and
Evolvable Machines, 1(1/2):7-35, April 2000.

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, New York, fifth edition, 2000.

Tsutomu Sasao, editor. Logic Synthesis and Optimization. Kluwer Academic
Press, 1993.

