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Abstract
The Liar paradox, or the sentence
What I am now saying is false.

and its various guises have been attracting the attention of logicians and
linguists since ancient times. A commonly accepted treatment of the Liar
paradox [7, 8] is by means of Situation semantics, a powerful approach to
natural language analysis. It is based on the machinery of non-well-founded
sets developed in [1]. In this paper we show how to generalize these results
including elements of fuzzy and intuitionistic fuzzy logic [3, 4]. Basing on
the results, a way is proposed towards solving the problem of modelling the
two levels of Situation theory — infons and propositions — with a single one
retaining the specific features of the two-levels logics.

1 Models and propositions

Theorem. Let A be a Liar sentence =True(thish), where
Following [7], we prefer not to deal with the actual ’liar’ sentence cited above
but rather with a slightly revised version of it:

The proposition expressed by this sentence is false.

It is however a purely technical device and not a matter of principle, as it is
easier to talk about truth values of propositions arising from the logical analysis of
natural language utterances than of utterances themselves.

Any proposition p expressed by the liar sentence must satisfy

p e p (1)

If there is a classical first-order logic proposition satisfying (1) then it is neces-
sarily neither true nor false, since assuming it is the one we obtain that it is the



other, too. But this contradicts a fundamental property of the classical logic of
being able to qualify any given proposition as either true or false.

Barwise and Moss [8] have shown the conditions necessary for the existence
of a model of (1). First, some necessary definitions from [8] (or parts of them
appropriate for our needs).

Given disjoint sets Rel of relation symbols, Const of constants, and Var of
variables, a partial model M is a tuple

(Dary Lt Extar, Anting, dar, ear)
where
e D, is a non-empty set called the domain of M;
e Ly C Rel U Const is called the language of M,

o Extyr and Antiy are functions with domain Ljs N Rel such that for each
n-ary symbol R € Ly, Exty (R) and Antip(R) are disjoint n-ary relations
on Dy, called the extension and anti-extension of R in M, respectively.

e a function dyr : Las N Const — Dy if dy(c) = b then b is called the
denotation of ¢ in M;

e a function c¢ps : Var — Djy, called the context of M.

We will call denotation of t dps(t) if ¢ is a constant, or cpr(t) if ¢ is a variable.

Sentences are built up in Ljs using the usual connectives —,V, and A. We say
that a sentence ¢ of Ly is defined in M if every constant and variable of ¢ has a
denotation in M; the set of sentences defined in M will be denoted by Def(M).

A crucial feature of the above definition is the presence of the concepts of
extension and anti-extension of a relation. There may be relations R such that
Extpy(R) U Antipr(R) may not exhaust the whole domain; thus we obtain a way
to develop partial models.

For any model M and sentence ¢ defined in M, we define M = p and M E~ ¢
as follows:
i) (atomic sentences) if p = R(by ..., b,) then:

MEg iff (bi,...,bn) € Exty(R)
ME=¢ iff (bi,...,bs) € Antir(R)

ii) (compound sentences)

M = —p iff ME ¢

M=~ —p iff MEe

M= @1 A s iff M@ and M = @
ME"p1ANpy it ME"pror ME" @

We assume that the language L contains a truth predicate T'(x,y): the sentence
denoted by z is true in the model denoted by y (so, it will be possible for domains



to include models, among other things). When a model M is fixed, True(z,y) will
mean that (x,y) € Exty (T) and False(z,y) will mean that (z,y) € Antir (T).
A model is truth-correct if the following conditions are satisfied:

(T1) If True(yp,N), then N is a model, ¢ € Def(N) and N [ ¢.
(T2) If N is a model, ¢ € Def(N) and False(p, N), then N = .

We are now in a position to quote the result of Barwise and Moss:
Theorem. Let A be a Liar sentence =True(thish). If M is a truth-correct model
then at least one of the following conditions must fail:

1. this denotes A\ in M.
2. h denotes M in M.
3. M |: AV =

The question we are interested in here is, can a truth-correct model support to
some degrees of truth and falsity the Liar sentence A7

To study the problem, we introduce in the above definitions fuzzy logic, i. e.,
taking truth values from the set [0, 1] instead of {0,1}.

Given disjoint sets Rel of relation symbols, Const of constants, and Var of
variables, a fuzzy model M is a tuple

<DM7LM7Ext]f\/[7dMacM>

where Emtﬁ/‘, is a fuzzy relation on D/ i. e., VR € Rel : Ewt{/[(R) : Dy — [0, 1],
and all the other components are as above, where Extf stands for fuzzy extension.
We need no more the separate notions of extension and anti-extension of a
relation, since the fuzzy relation above combines their features. The concept of
anti-extension was useful when we wanted to leave some relations partially defined
on the domain. Now this role is played by the fuzzy relation — we may model the
extension by assigning 1 to E:Utfw for the corresponding elements of the domain,
anti-extension by assigning 0, and the complement of their union by assigning some
third value, say %
For any models M and sentence ¢ defined in M, we define M |=, ¢, ¢ is true
in M to the degree of u, as follows:
i) (atomic sentences) if p = R(by ..., b,) then:

M =, ¢ ift Exty(R)((b1,-..,bn)) = p.

ii) (compound sentences)

M=y —p iff M
ME, eiNp2 M M, o1 and M [y, @2,
p=min(p1, p2).

Fuzzy degree of truth:
(FTO0) True(p, N, ) iff N is a model, ¢ € Def(N),N =, ¢.



Let us consider what happens with the analysis of the paradox in this case.
Assume that for a given model M and a Liar sentence A\ M |=, X. This leads
us to conclude that M =, -\ and following the definition of evaluation we have
M =1, A Thus we arrived at the result p=1—p, p = % which comes to show
that on the fuzzy account of the Liar sentence no paradox arises — it just turns out
to be false to exactly the same degree as it is true.

Taking the valuation function range to be the [0,1]x[0,1] we can build intuition-
istic fuzzy logic [3, 4, 6, 15]. An intuitionistic fuzzy degree is not just a number
in the interval [0,1] but a pair (u,v) where p > 0,v > 0,u+ v < 1. As in the
fuzzy case, p is called the degree of truth, v the degree of falsity. The difference is
that now their sum does not necessarily amount to 1. The diference 1 — py — v is
regarded as the degree of uncertainty of the considered object.

Various versions of IF logic and IF relations have been proposed [2, 4, 5, 9, 10,
11, 12, 13, 17, 18]. To finish this section, we perform the above analysis for the
case of intuitionistic fuzzy logic. The only differences are:

e the definition of an intuitionistic fuzzy extension Extil’ — an intuitionistic
fuzzy relation on Dys: VR € Rel : ExtiF(R) : Dy — [0,1)%

e For any model M and sentence ¢ defined in M, we define M |=(, ,y ¢ (the
degree of truth of ¢ in M is u and the degree of falsity of ¢ in M is v) as
follows:

i) (atomic sentences) if ¢ = R(b; ..., b,) then:

M &gy o iff Extyr(R)((b1,- .-, 00)) = (1, v).
ii) (compound sentences)

M=y~ iff M= ¢

M =y o1 Apa it 3y, pe, v, v such that py + vy <1, s +vp <1
M |:(,U«.1,V1) ¢1 and M ':(,ul,l/l) ¥2,
p=min(py, p2),v = maz(vi, va).

Assume that for a given model M and a Liar sentence A\: M |=¢,,y A. This
leads us to conclude that M |=(, ,y =\ and following the definition of evaluation
we have M |=(, ,, A. Thus we arrived at the result 4 = v: an even more interesting
result which shows that the intuitionistic fuzzy treatment of the Liar sentence is
more powerful than the pure fuzzy one — not only the paradox disappears, as in
the fuzzy case, and its truth degree turns out again to be equal to its falsity degree,

but now we have the opportunity of modelling various Liars of differing degrees of
belief:

This sentence is to some extent false.
This sentence can be modelled by
A = —True(this,h),

1
M |:u7u )\,/J/ < 5



2 Situation semantics and the Liar

One of Situation semantics’ main assumptions is that simple assertive statements
do not yield any truth value; rather, they give rise to objects of a special kind
called infons [14, 16]. Infons are intended to carry the information conveyed by
the statement rather than to make some declaration about its being true or false.
If there is a situation' that ’supports’ the factuality of an infon, we may speak of
a proposition (having an ordinary truth value) stating that a given infon is a fact
in a given situation:
p=(sko)

For example, the infon (loves, john, mary), despite its similarity to a Prolog
database fact, does not state in terms of truth or falsity anything about John and
Mary’s affair; it is just an item of information which may be true in some situations
and false in other — either because things are not just the way they are described
or simply because there are no John or Mary at all in some situation. Thus an
infon needs a situation to start having a truth value.

Failing to support an infon does not mean that some form of negation of the
infon is supported. Partiality is another important aspect of situations and infons.
Unlike infons, propositions respect the principle of ’excluded middle’, in that any
situation either supports a given infon or not — therefore, a proposition is either
false or true. Thus two different logics are employed, one classical, at propositions’
level, the other, usually containing some ’'undefined’ truth value, at the level of
infons.

This view is contrasted to earlier approaches where the semantical analysis of
a statement usually lead to a proposition having a predicate derived from the verb
phrase with statement’s subject and objects as arguments.

Liar paradox is one of the points where the advantages of this approach emerge
clearly. Instead of taking a proposition expressing the liar sentence and then trying
to calculate its truth value, situation-semantic analysis first produces the infon
carried by the sentence

(False, p)

and then considers, for any situation s, the proposition p?:
p = (s [= (False,p))

Now the assumption that p is false does not lead us into a paradox, as the
failure of s to support (False, p) is perfectly consistent with that assumption. This
is, of course, due to the law of excluded middle being relinquished at the level of
infons, and so no contradiction with the theorem from the beginning of the previous
section arises.

ISituations, infons, propositions, and the ’supports’ relation are crucial notions of Situation
theory, the underlying theory for situation semantics. It does not seem possible to give a definition
here even of the notions which have an exact one; still, as an example, we may consider a simple
version of Situation theory where situations are just collections of infons, and a situation s supports
an infon o, s |= o, just in case o € s.

2The existence of this proposition is guaranteed by a corollary of the Anti-Foundation Axiom
[1,2]



3 Degrees of Truth and the Situation-Semantic
Account of the Liar Paradox

Even some of the earliest versions of Situation semantics introduced the notion of
polarity, a characteristic of any infon that tells one which reading of a given infon
should be given: direct or opposite. For example, ‘John loves Mary’ is represented
by the infon (loves, john, mary; 1) while ‘John does not love Mary’ is represented
by the infon (loves, john, mary;0).

It might be worthwhile to fuzzify infon polarity — an obvious application may be
sentences like "John is a little ill’, represented by an infon of the form (ill, john; u)
for a suitable small value of u or even taken from a discrete set of possible values.
Such a fuzzification may be naturally followed by introducing a second degree, of
falsity, into the infon polarity

<T‘, a, b) (p,v)

to represent appropriate undetermined statements.
An interesting case appears when this possibility is applied to the Liar sentence
itself. We can imagine The Unconvinced Liar:

It is not clear whether this sentence is false.
or The Fuzzy Truth-Teller’:
The truth degree of this sentence is .

We will present a representation of these sentences within the framework that
will be developed below.

Observe now that while 'John loves Mary’ may well be true in one situation,
false in the next, and 'to some extent true’ in a third situation, there are statements
expressing propositions whose degree of truth or falsity is in a sense inherent, i.
e., rather independent from the situation they are put in. Various kinds of Liar
and Truth-teller sentences fall into this category. One thing that distinguishes such
sentences from our everyday utterances is that very ‘independence’.

Introducing intuitionistic fuzzy polarity of the infons makes exactly the step
necessary to capture this property. There remains however the question about how
should the intuition be reflected that an infon of higher y—polarity, and hence of
a greater gegree of independence, must be supported by more situations than an
infon with lower pu—polarity? In particular, should infons with polarity (1,0), if
any, be supported by all situations?

The answer to the above question requires that we distinguish between infon’s
polarity, in the sense of truth or falsity degree, and its independence degree in the

3The Truth-teller:
What I am now saying is true.
leads to no paradox — its proposition is definitely true. Maybe this is the reason that it is typically

regarded as not so interesting as the paradoxical Liar sentence. Both are, however, equally good
examples of ‘situational independence’.



above sense. The latter notion is captured by now by the sum y—v. The opposite of
this sum, 1 — g — v is normally called in the fuzzy literature ‘degree of uncertainty’.

So we have now infons of various sorts — absolutely or fuzzy true or false,
as well as situation-independent vs. situation-dependent ones. The next section
presents a uniform representation of all these varying subjects.

4 Fuzzy Situation Semantics

As discussed above, we take the polarity of an infon to be an ordered pair {u, )
meaning its inherent truth-degree and its inherent falsity degree. To sum up the
above discussions, we take it as a principle that inherent degrees set up minimal
values which should be respected by all situations ever.

We introduce a second degree pair which belongs to the |= relation. A situation
s will now be able to support an infon o to the degree of 1 and not to support it
to the degree of v: s |=,,, 04, ., Where p+v <1 and p, + v, < 1. We pose the
following requirement on this new relation:

s Euw 0u, v, only if g4 > pe and v > v,.

It is now clear how to coin a uniform representation of infons and propositions.
Aside from Liars and Truth-teller sentences, another obvious candidate is the class
of infons whose relation is ‘=’. Let us model every proposition p = (s = o) by
the infon (}=,5,0)(1,0y. By this we guarantee that any situation s would support
(E, s,0) with maximum degree of truth and independence.

The fuzzy truth-teller is modelled by o = (=, s, (True, 0)),,0)- Thus different
situations will be able to support it with various falsity (and so overall) degrees,
from (p,0) to the fully determined (u,1 — p).

The ordinary convinced Liar will be represented as o = (=, s, (False, o)) (1 1.

No other options are allowed except (%,%
independent.

Any ordinary infon (fully situation-dependent) will have fuzzy truth and falsity
degrees (0, 0) so that the corresponding situations may choose whatever truth and
falsity values are appropriate.

The approach presented in this paper, as the author hopes, may turn out useful
both in modelling real phenomena and in studying the fundamental parts of the

still developing theory of situations.

} because the Liar is fully situational-
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