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Abstract

In this paper a new framework for the study of measures of dispersion for
a class of n-dimensional lists is proposed. The concept of monotonicity with
respect to a “sharpened”-type order is introduced. This type of monotonicity,
together with other well known conditions, allows to create a reasonable and
general ambit where the notion of dispersion measure can be studied. Some
properties are analized and relations with other approaches carried out by
different authors on this subject are established.
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1 Introduction

Shannon defined in 1948 ([5]) the first probabilistic uncertainty measure in the

framework of communication theory. According to this author, the uncertainty

(or entropy) of a random experiment can be measured by means of H(P) =
n

— Y pilogp;, where the values p; are the probabilities of the possible results of
i=1

the experiment. Since then there have been many works which have been mo-
tivated in some sense by this idea from Shannon: some of them deal with the
characterization of Shannon measure by means of a small set of conditions, other
studies try to generalize this measure by considering families of functions which,
in particular, contain Shannon measure. Recent papers of Morales, Pardo and
Vajda ([4]), Couso and Gil ([1]) deal with both aspects appearing, among others,
conditions of concavity and Schur concavity. In different fields from the stochas-
tic (discrete) systems, concentration measures have been studied (in Economics)
by using families of functions which contain, in particular, the ones of the type
n
S(z) = v > xz;logz; (v > 0, const.) (see [3]); in this paper by Gehrig (1984)
i=1
some conditions related with the concavity (Schur concavity, quasi-concavity) are
introduced. On the other hand, DeLuca and Termini introduce in 1972 a non
probabilistic definition of entropy ([2]) by considering the concept of measure of
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“fuzziness” for fuzzy sets using a condition of monotonicity with respect to a par-
tial order defined on the class of fuzzy sets (sharpened order). In Yager ([7]) we
can find Shannon entropy measures as well as measures of the type 1 — max[z;]
for weighting lists corresponding to OWA operators. O’Hagan (1987) studies the
problem of the optimization of the Shannon entropy (maximum dispersion) to de-
termine weighting lists with a fixed degree of optimism (“orness”). We plan in this
paper a definition of dispersion measure applied to a class of n-dimensional lists
which can be understood as probabilistic distributions, weighting lists, etc. We
use, besides the usual conditions of symmetry and extremal values, a condition of
monotonicity with respect to a partial order of “sharpened” type which shows a
priori “a list « of less dispersion than another list y”. Following this idea (see [6])
and after giving in the next section the necessary background, these measures are
studied, establishing relations with other families defined through some concavity
condition.

2 Preliminaries

Let us consider, for each n > 2, the following set L formed by n-dimensional lists:

L=A{x=(z1,...,2,) € [0,1]”:2@7:1}.

Observe that L is a convex subset of [0, 1]"; more precisely, it is the convex clo-
sure of the lists 6; = (1,0,...,0),d> = (0,1,0,...,0),...,d, = (0,...,0,1) written
as L =<6d1,...,0, >.

The sharpened order is defined as follows:

Definition 1 Given two lists x,y € L, we will say that x <y y if, and only if, for
eachi=1,...,n we have z; < y; S% or T; > y; Z%.

We obtain immediately:

Proposition 1 <, is a partial order on L.

In figure 1 we represent the set L for the case n = 3,which is the triangle of
vertices (1,0,0), (0,1,0) and (0,0,1). The three striped zones correspond to the
points which are greater than each one of these vertices, with respect to the order
<4. We represent as well a generic list  and its coordinates z;, z» and x3.

Observe that <4 has a maximum element which is the list (1,..., 1) and that,
if we call weight(x) = |{i : &; # 0}|, for each & € L, then z is minimal if, and only
if, weight(z) < n and z; > L for each z; # 0.

Given z € L such that z; < ... < zp, let p, = max{i : z; < %} Then
1 < p, <n,and p, =n if, and only if, z = (L,...,1).

n’’ ‘n
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Figure 1: Order <4 for the case n = 3

Given x € L, we will indicate the list formed by the elements of = written in
ascending order by z* = (2(1),...,%(y)), where, for each i =1,...,n,
T = min{max{le,...,a:ji} 1< << < n}
Proposition 2 The following properties hold:
1) If x <4y then x* <4 y*.
2) For lists written in ascending order, it holds:
x <4y if, and only if, p, < p, and
(@15, Tp,) <z (Y151 Yp.)
and
(Ypat1s---2Un) <a (Tp,+1,---5Tn),
where <, is the usual product order in [0,1]P= and [0, 1]" P=, respectively.
3) r<qgy<=(1—a)r+ay < (1—>b)x+by for all0 <a<b<1.

Proof:
The properties 2) and 8) are easy to prove.
To prove 1), we must show two things:

a) If 2(; <y, then yy < £
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b) If z(;y > y(s), then y) > +.
Let us put z(; = max{zp,,..., T, } = zp, and Yy = max{ye,-.- Yo} = Yq.-
Then, for all 1 < j; < --- < j; < n, 2, < max{zj;,...,z;;} and y,, <
max{y;,,.--, Y}

a) Let us suppose now that z,, <y,,. Then, if we call y,, = max{yp,,.-.,¥p; },
we will have z,, <z, <y, < Yp,, thus y,, < % and y,, < % .

b) If =, > y,., a similar reasoning shows that y,, > % .

&

In this paper we are interested in the study of a class of functions D : L — IR.
In [4] we can find a list of interesting properties for this type of functions to represent
an “entropy”. In this sense, we would like to recall the following concepts:

Definition 2 a) Given two lists x,y € L, we will say that x dominates y, indi-
cated by x = y, if there exists a doubly stochastic n X n matriz A such that
y=uxA.

b) We will say that a function D : L — IR is Schur concave if D(z) < D(y)
whenever © = y.

¢) Given two lists z,y € L, we will say that y is a smoothing of x, written
y = Sm(z), if there exist j,k with 1 < j # k < n, such that y; = z; Vi €
{13\ {5, k} and |xj — 2k| > |yj — yrl.

d) We will say that a function D : L — IR is weakly monotone if D(x) < D(y)
whenever y = Sm(x).

Let us recall that a square matrix is doubly stochastic if the sum of the elements
of each row and each column equals 1.

It is interesting to observe that none of the previous correspondences between
lists (@ and ¢) is an order relation.

We have the following result (see [4]):
Proposition 3 D is Schur concave if, and only if, it is weakly monotone.
An interesting property for our study is the following:
Definition 3 A function D : L — IR is quasi-concave if
D((1 - a)z + ay) > min(D(x), D(y))
for all z,y € L and a € [0,1],
Remarks: Let us consider D : L — IR.

1) If D is concave (that is, D((1 — a)z + ay) > (1 — a)D(z) + aD(y) for all
a € [0,1]), then D is quasi-concave.
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2) Let us consider L, = {z € L : D(x) > ¢} (the c-cut of D) for each ¢ € IR.
Then:

a) If c< ¢, then L. D Ly,
b) L. is a convex set for each ¢ € IR if, and only if, D is quasi-concave.
The concept of c-cut provides an interesting result to check whether a function
D : L — IR is Schur concave. Given z = (x1,...,%,) € L, we will write II(x) to
indicate the convex closure of (z(1),...,Zx(y)) for any permutation 7 of 1,...,n.

We need previously two results to make the dominance relation and the order <y
easier to use.

Proposition 4 If z <, y, then y € II(z).

Proof:
We will divide the proof into two parts:
1) Let us consider z = (x1,...,%p, |Tp.+1,---,%n). Let us take y > x of the
form y = (z1,...,xp +0,...,%p, |Tp.41,..., 85 — J,...,2p), where § > 0, 0 <
1
Zr+6 < — and — < xz — 6 < 1. Then y is a linear convex combination of
n n
z and ' = (z1,...,Z5,...,Zp,...,Ty); more precisely, y = Az + (1 — Ay with
A=1-— € [0,1].
Ts —Tp
2) In general, given y = (y1,.-.,Yp, [Yp, +1;- - - Yn), let us consider x <4 y. Then

we can write

r=(y1 — 615"'7ypy - 5py|ypy+1 +6py+17---ayn + 0n),

Py n
where §; >0 Vi=1,...,n, Zéy = Z 0; and, obviously,
i=1 i=py+1

1
Yi—0; < — Vi=1,...,py,
n

and 1
yi+5i>ﬁ Vi=p,+1,...,n.

The procedure followed is to elliminate the §; one by one by applying the way
shown in the first part of the proof, ending with z as a linear convex combination
of y and all its permutations.

Let §, = min{dy,...,d,}. We can consider two cases:

a) If r <p, let §; = max{d,,+1,...,0n}.

Then7 1f-rl = (yl _617-"7y7“7"'7ys +6s _6r7-"7yn+5n) and z' = (yl -
01y sYs + O0sye ey Ypr — Opyv oy Yn + 0,), we will have that z; is a linear convex
combination of z and z'.

Let us put now d5 := d;—0, and, thus, z1 = (y1—01, .-, ¥r,-- - Yp, —0p, [Up, +1+
6py+17---7ys +5sa---7yn +5n)
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b) If r > p, let 6, = max{dy,...,6dp, }.

Then, if 21 = (y1 —01,.--,Ys — s + Opyo vy Yry- vy Yn + 0pn) and z’ = (y; —
01y s Yr+0pyeveyYs — Osy- .., Un + dp), we have that x; is a linear convex combi-
nation of z and z'.

Let us put now d, := 6, — d, and, thus, z1 = (y1 — d1,...,¥s — s, ..., ¥Yp, —
6py |ypy+1 + 6py+17 e Yry Yt 6n)

We repeat now the previous procedure with x;. This procedure will finish with

6; = 0 for all 7, that is, we will obtain y and we will have proved that y is an
element of II(z). O

Proposition 5 Given z,y € L, we have:
z -y <=y ell(z).

Proof:
Let us suppose first that 2 > y. Then there exists a doubly stochastic matrix A such
that y = 2 A. But we know that A = > \;A;, where Y \; =1, \; > 0, and A; are

the matrices of the permutations. Theny =z [ Y MA; | =D Nz 4d; = > \imi(z),

(2 K3
where 7; indicate all the permutations of 1,...,n. Thus y € II(z).

To prove the reciprocal, it is sufficient to repeat the previous steps but in reverse
order, observing that A = > A\;A; is a doubly stochastic matrix. &
i

Now we can state the proposition which relates Schur concavity with the c-cuts.

Proposition 6 A function D : L — IR is Schur concave if, and only if, II(z) C
Lp(s) for any x € L.

Proof:

Let us suppose first that D is Schur concave and let us take z € L. Now let
y € I(z). Then we have x > y by proposition 5 and D(z) < D(y), thus y € Lp(y,
because D is Schur concave.

Reciprocally, let us suppose that z > y and we will prove that D(z) < D(y).
But, again by proposition 5, we will have y € TI(x) and, by hypothesis y € Lp,).
Then D(y) > D(x) and D is Schur concave. &

3 Dispersion measures

Definition 4 A function D : L — IR is a dispersion measure if it satisfies the
following conditions:

1) Symmetry: D(x1,...,2n) = D(Trq), .-, Ta(n)) for each x € L and for every
permutation ™ of 1,...,n.
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2) Extremal values:

1 1
D(1,0,...,0) < D@1, 20) < D(—y- o)

for any (z1,...,2,) € L.
3) Monotonicity: if v <qy, then D(z) < D(y).

Next we present a set of examples of dispersion measures, showing in each case
their range. The first eight dispersions are quasi-concaves. The dispersion measure
of the example nine is neither quasi-concave nor Schur concave.

Examples:

1) D(z1,...,z,) =1 — \/ z;. In this case, range = [0, 2=L].

. n
=1

2) D(z1,...,%,) = A\ z;. Range = [0, Z].
=1

3) Dy(a1,...,w) =1 = (\ @ — A @,). Range = [0,1]

4) Dy(z1,...,2n) = =Y, z; logz; (0log0 = 0) (Shannon entropy).
i
Range = [0,logn].
5) D(l‘l,. . ,a’,‘n) =1- Zm? Range = [0, n_—l]
i

n
6) D(x1,...,2p) = 1—Z|wi— L|. Range = [£2,1].

7) Do(z1,...,2n) = (=) a) logzml , where a > 0,a # 1, (a-order Rényi en-
tropy). Range = [0, logn].

8) D(xy,...,z,) = log(weight(z)) (Hartley entropy).
Range ={0,log2,...,logn}.

9) D(x1,...,%n) = 2@1) + ... + T(p,). Range = [0,1].
Observe that D is neither quasi-concave nor Schur concave: If we take z
(0.1,0.1,0.1,0.3,0.4) and y = (0.05,0.05,0.05,0.2,0.65), then D(3z + 2y)
0.225 < min{D(z), D(y)} = 0.3 and the function is not quasi-concave. To
prove that it is not Schur concave, it is sufficient to take z = (0.1,0.3,0.6)
and its "smoothed” y = (0.1,0.4,0.5).

On the other hand, it is well known that the Shannon entropy is the limit when
a — 0 of the Rényi entropy, whereas the Hartley entropy is the limit when a — 1.

Next proposition shows an 1nterest1ng 1nequahty relation between the disper-

sion measure Ds(z1,...,2,) = 1 — (\/ x; — /\ z;) and the Shannon entropy

Dy(z1,...,2,) = —Zml log z; (OlogO = 0)

i=1
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Proposition 7 Let x € L. Then:
a) If weight(xz) =1, D3(x) = D4(z) = 0.

b) If weight(z) =2, Ds(r) < =y Da(x)
¢) If weight(xz) > 3, Ds(z) < D4s(x)
Proof:
a) Obvious.

b) Let us consider two cases:

Case 1: n = 2.

Then z = (a 1—a) and D3( ) = 2min{a,1 —a}. The concavity of D, and the
fact that Ds(3,3) = D4(3,3) = 1 assure the inequality.

Case 2: n > 3.

In this case, D3(0,...,a,...,1 —a,...,0) =min{a,1 — a} < 2min{a,1 —a} =

Ds(a,1—a D4(a1 L_D4(0,...,a,...,1—a,...,0).

)_102 @) = 1553

¢) Observe previously that
o If £ €[0,1], then 2 < —zlogn.

o If z € [1,1], then =2 < —zlogn.

Let us consider now three cases, depending on whether the number of components
greater than L are 0, 1 or 2 (it can not be greater than 2 as 31 > 1).

Let us put a = A z; and b=\ z;.

Case 1: If all the components are less than or equal to %, we have Dy(x) =
=Y x;logz; > > x; =1>1—(b—a) = D3(z) because x; € [0,%], Vi=1,...,n

A i=1

Case 2: If only one component is greater than 1 (the maximum b), since
D3(x) = 1—(b—a) and Dy(z) = — Y x;logz; = — 3. x;—blogh > S z;+1=L =

= v
1—-b+ i%l = ee:elb, we have to prove that 1 — (b —a) < ee’_elb or, equivalently,
a(e — 1) + b < 1, and this is true because a(n — 1) +b < le =landn >3.

Case 3: If two components are greater than 1 b > b’ 1, since Ds(z) =
1—(b—a) and Dy(z) = —Za:l logz; = — Y. xl—blogb b’logb’ > > i+
i b b i b,

ij-l-el—l b—b + Qb_lb we have to prove that 1 —b+a <1-b—0'+ 2b_1b

or, equivalently, (e — 1)a +eb' + b < 2.

We know that a < 1—0'—band thus (e—1)a+eb' +b < (e—1)(1—b'—b)+eb'+b =
e—1+4b"+(2—e)b, which has to be less than or equal to 2. But this is true because
V+2—-ebp<b+(2-e)b=3—-e)b<3—e. &

. From proposition 1, it is immediate to prove the following result:

Proposition 8 If D : L — [0, 1] is symmetric and it satisfies the monotonicity
condition for lists in ascending order, then it is monotone.
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Next proposition analyzes transformations of dispersion measures through in-
creasing functions.

Proposition 9 1) Let D be a dispersion measure and ¢ : IR — IR an increas-
ing function. Then D'(x) = ¢(D(x)) is also a dispersion measure.

2) If D is quasi-concave and ¢ : IR — IR is a increasing function, then D'(z) =
¢(D(z)) is also quasi-concave.

In this case, we will say that D’ is the ¢-transformed of D.
Remarks:

1) According to this proposition, we have that, if D is a quasi-concave dispersion
measure, then its ¢-transformed is also a quasi-concave dispersion measure.

2) Given a dispersion measure D, we can normalize it in such a way that
D(1,0,...,0) = 0 and D(%,...,%) = 1, by simply defining a new disper-
sion measure of the form:

. D - D(1,0,...,0
D(l‘l,...,l'n): (wlla 7ain) ( y Uy ) )
D(=,...,=)—D(1,0,...,0)

n’ n

in the case that D(1,0,...,0) < D(L,...,1). Observe that D is the ¢-

z—D(1,0,...,0)
DL, ... Ly—D(1,0,...,0)°

n’ ‘n

transformed of D for ¢(x) =

3) In the case n = 2, a dispersion measure D is simply a function f : [0,1] — R
which is symmetric with respect to x = 1/2 (that is, f(z) = f(1 — z) for all
x), increasingly monotone on [0, 1/2] and decreasingly monotone on [1/2,1].

Proposition 10 If D is Schur concave, then D is symmetric, it satisfies the ez-
tremal values condition and it is monotone.

Remark:  This result says that the uncertainty measures in the sense of [4]
are dispersion measures. As proved in [3], concavity plus symmetry imply Schur
concavity. We will see later that we do not need to take concave functions, it
is sufficient that they are quasi-concaves (and symmetric) to obtain the Schur
concavity. In particular, we will have that if we impose quasi-concavity to the
dispersion measures, then we obtain a more restrictive concept than the uncertainty
measures.

Proof:
The proof of the symmetry and the extremal values can be found in [4]. Let us
prove now that every uncertainty measure D (that is, Schur concave) is monotone.

Let us suppose that z <; y. Then proposition 4 asserts that y € II(z) and
according to proposition 5, x > y. Since D is Schur concave, we will have D(z) <

D(y). %

Next proposition proves, as mentioned above, that every symmetric, quasi-
concave function is an uncertainty measure in the sense of [4].



236 J. Martin, G. Mayor & J.Suner

Proposition 11 If D is symmetric and quasi-concave, then it is Schur concave.

Proof:

According to proposition 6, we want to prove that II(z) C Lp(,) for all z € L.
But, due to the symmetry of D, (2r(1),-.-,Zx(n)) € Lp(s) for any permutation 7
of 1,...,n. Since Lp(,) is a convex set because D is quasi-concave and II(z) is the
minor convex set containing x and all the points (z(1),...,%x(n)), We will have
that II(z) C LD(m)- &

As a consequence of the last two propositions, we have the following result:

Proposition 12 If D is symmetric and quasi-concave, then it is monotone with
respect to the order <y and it satisfies the extremal values condition.

Remark: We have then proved that every quasi-concave dispersion measure is
an uncertainty measure.

Next we will give some examples which prove that the Schur concavity and the
quasi-concavity are not related, in general.

1) The Schur concavity does not imply the quasi-concavity, as it can be seen for
the case n = 3 with the following function:

3min{w1,w2,m3}
if p,>2
D($17$27$3) =
max{O,Q - 3max{w1,m2,m3}}
if p,=1
Observe that D is not quasi-concave, since if we take z = (1,1 1) and
y = (3, 33,1), then D(z) = D(y) = 0.75 and, on the other hand, in the

medium point D (%, %, %) =5/8 < 0.75.
On the other hand, it is easy to prove that D is weakly monotone and thus
Schur concave.

2) The quasi-concavity does not imply the Schur concavity, as it can be seen by
taking any projection p;(z1,...,Tn) = x;.

3) Finally, observe that if D is symmetric and quasi-concave, it is not necessarily
concave. To prove this fact, we can take the function D(z,y) = e~(@ 7).
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