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Abstract

Fuzzy classification systems is defined in this paper as an aggregative
model, in such a way that Ruspini classical definition of fuzzy partition ap-
pears as a particular case. Once a basic recursive model has been accepted,
we then propose to analyze relevance and redundancy in order to allow the
possibility of learning from previous experiences. All these concepts are ap-
plied to a real picture, showing that our approach allows to check quality of
such a classification system.
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1 Introduction.

From the very beginning of Fuzzy Sets Theory (see Zadeh [32]), fuzzy uncertainty
have been widely considered in classification and control problems (see, e.g., Bezdek
[8] and Zadeh [33]). In fact, quite often fuzziness is associated to complexity, in
the sense that a fuzzy approach allows a useful simplification of the amount of
information to be managed by decision makers. But sometimes concepts taken into
account by decision makers are fuzzy in nature. This is the case when concepts are
subject to a natural degree of membership, a standard situation in most human
classification problems. Considering crisp classes instead of the true fuzzy class may
appear then as a tremendous oversimplification of reality, probably misleading our
efforts towards a right understanding of the real problem we are being faced to.

In many classification models it is already assumed the existence of a family
of classes, previously defined. But the most interesting problems use to appear
when those classes are still to be defined. From a statistical perspective, several
classical clustering techniques have been developed. Anyway, getting a clear idea of
what a class is use to require a long learning process, starting from a first proposal
which is again and again modified. This argument applies both to crisp and fuzzy
classification.
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In fact, and denoting X the family of objects to be classified, fuzzy classification
models quite often assume a previously defined countable family of fuzzy classes C,
in such a way that the key objective is to estimate the degree of membership p.(z)
of each object € X for each class ¢ € C. In this way we are defining a membership
function

pe : X —[0,1]

for each class ¢ € C (see, e.g., Roubens [21]).

Some times it is claimed that each membership function u. represents an iso-
lated estimation problem, so its evaluation can be solved without taking into ac-
count other classes in C. From our point of view, such an approach is quite un-
realistic, since most decision makers use to assign degrees of membership having
a previous look to all possible classes: we can not accept independence of alter-
natives within classification. Classification is highly dependent on the family of
classes being actually shown to decision makers. Even in a crisp framework, de-
cision makers like to have a look to all potential alternatives before assigning a
particular class. It is essential to develop classification procedures based on the
whole set C of classes under consideration, and most probably, taking into account
some basic structure between classes (”big”, "medium” and ”small” are more than
just three classes, but a structured family of classes: there is an obvious linear
order explaining relationship between them).

A standard structure in practice, perhaps the simplest one, in related to the
idea of partition. A key issue in classification modeling is indeed the notion of
partition: a minimal structure for our family of classes under consideration. In
a standard crisp classification model, for example, it is assumed that each object
belongs to one and only one class (but it is not usually assumed that a given class
is in between two other classes).

The definition of fuzzy partition was introduced by Ruspini [23] (see also Bezdek-
Harris [7]). In his definition, it was assumed that

Zﬂc(w) =1

ceC

for every object = € X. Each one of these objects belongs to a certain degree to
each class, and the total degree of membership is distributed among all classes,
with no superfluous membership. The notion of crisp partition is being obviously
generalized, since

Vee X=>3ceC | pelz)=1, wpp(z)=0, Vk#c

whenever p.(z) € {0,1}, Va,Ve € C.

Ruspini’s definition may be understood as a desirable fuzzy classification sys-
tem, but it should be considered too restrictive for most real implementations. It
is a fact that most decision makers are not able to define such a fuzzy partition,
at least at a first stage, and such a difficulty can not be simply addressed to error
measurements. Most of the time the family of classes under consideration are far
away from defining such a partition. It is only after a long learning process that
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decision maker will be able to define such a nice family of classes, holding Ruspini’s
condition. It is usually only after a long experience that we can define a family of
classes in such a way that every object is being fully explained with no superfluous
information.

Of course, it may be the case that such a Ruspini’s fuzzy partition can not be
reached by decision makers (such a nice family of classes may not exist or may
not come to decision maker’s mind). In addition, it should be pointed out that
it is not true that every decision maker is willing to work with Ruspini’s fuzzy
partitions. For example, some fruit classification procedures are designed allowing
strong overlapping between classes: due to market restrictions, it is required that
each piece of fruit can be simultaneously assigned to several classes (with degrees of
membership close to 1 for several classes). As pointed out in Medasani et al. [19],
there is no single best method. Most complex problems require several simultaneous
alternative approaches in order to capture and understand the limits of a chosen
classification method.

Some of the above difficulties that may appear in the real implementation of
Ruspini’s definition can be partially solved by means of weaker approaches (see, e.g.,
Thiele [27, 28]). Our proposal below (see [3]) suggests to explain fuzzy classification
system by means of an aggregation model. Ruspini’s definition will appear as a
particular case that can be pursued while still being able to classify. Ruspini’s
partition is sometimes desirable but it is not a must in practice.

2 Recursive aggregation models.

Classification usually assumes a previous aggregation procedure, in order to amal-
gamate available information about each item relative to every class under consid-
eration.

In a fuzzy framework, aggregation can be modeled according several kinds of
fuzzy connectives: OWA operators [29], t-norms and ¢-conorms [25] or uninorms [6]
(see also [10, 11, 12, 13, 20, 30, 31]). A criticism to some of these fuzzy connectives
was addressed in Cutello-Montero [9] (see also [4]): most of those operators are
either binary and associative or the number of aggregated items has to be fixed
in advance. As pointed in [9], associativity is a need whenever we are willing to
evaluate an arbitrary number of item based upon a unique binary operator. But it
is easy to realize that binary operators evolve in time, and the overall aggregation
rule still keeps consistency. Recursiveness, as introduced in [9], allows to avoid such
a criticism, developing a formal definition of consistency for aggregation rules (see
also [17] and [18] for interesting alternative approaches).

First of all, a rule ¢ is understood in [9] as a consistent family of connectives

{¢n : [07 ]-]n - [07 1]}n>1

being each operator ¢, the one to be applied when the number of items to be
aggregated is n. By definition it is assumed that connectives are continuous and
non-decreasing in each coordinate (see also [17]). Such a rule will be considered
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operational in case there is an alternative calculus based upon binary operations,
needing perhaps a previous re-arrangement of data.

Definition 1 Let us denote

7rn(a17 az, ..., a'n) = (a’ﬁn(l)7a’ﬁn(2)7 R awn(n))
An ordering rule 7 is a consistent family of permutations {mp}n>1 such that for
any possible finite collections of numbers, each extra item a,41 is allocated keeping
relative positions of items, i.e.,
Tn+1 (ala az,...,0an, an+1) = (aﬂ'n(l)a s O (5-1)) Ay 1 (5) > O (541) - - - 7a7rn(n))

for some j € {1,...,n+1}.

Of course, data can be kept in its natural sequence, just in the order each one
is reaching to us, real time: this is the identity ordering rule.

Definition 2 A left-recursive connective rule is a family of connective operators
{on - 10,1]" = [0,1]}n>1

such that there exists a sequence of binary operators
{Ln 2 [0,1]* = [0,1]} 1

verifying

¢2 (ala 0/2) = L2(aﬂ'(1)7 a/7r(2))
¢n(a17 R an) = Ln(gbnfl(aﬂ'(l)a ceey aﬂ'(’ﬂ—l))) aﬂ(n)) Vn > 2

for some ordering rule m.

Right recursiveness can be analogously defined, and then we talk about a re-
cursive rule when both left and right representations hold for the same ordering
rule. Commutative recursive rules will be those recursive rules leading always to
the same result for any possible ordering rule. We talk about standard recursive
rules when they are based upon the identity ordering rule.

In this way recursiveness generalizes the property of associativity, still assur-
ing an operational constructive consistency, but allowing to explain key rules in
practice, like the mean rule. Key results concerning representation of fuzzy recur-
sive rules can be found in [4]. They refer to a the additive solution of the general
associativity equation of [16] (see also [15]).

3 Recursive classification systems.

A recursive classification system is a countable family C of fuzzy classes, in such a
way that each ¢ € C has a membership function

pe : X —[0,1]
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together with a recursive triplet

({¢n}n227 {‘Pn}n22a N)
where

o ¢ = {¢n}n>2 is a standard recursive rule playing a disjunction role,

e N :[0,1] — [0,1] is a negation function, i.e., a continuous, strictly decreasing
function such that N(0) =1 and N(1) =0, and

e {on}n>2 is a standard recursive rule playing a conjunction role, in such a
way that

Son(ala s :an) = N_1(¢n(N(a1)v .- vN(a'n)))

Since the particular operator to be applied in each moment is fixed once we know
the number of items to be aggregated, such a recursive triplet can be denoted by

(6,0, N)

From such a basic structure, our model should be able to evaluate classification
quality, to be analyzed according three aspects:

e Covering: some explanation should be obtained for each object.

e Relevance: each class included in our classification system should be able to
explain something about some object.

e Redundancy: each family should not fully overlap with any family of classes.

As pointed out above, we can not impose a perfect classification system. There-
fore, we need to build up a measure for each one of these aspects, so the higher
degree of relevance, the better; the lower degree of redundancy, the better; the
higher degree of explanation, the better (at least as a quite general rule: take into
account, for example, that a good classification system, in order to be applied by
a decision maker, needs to be understood by this decision maker: if improving
mathematical behaviour brings out new classes with no meaning for such a deci-
sion maker, it may be the case that such a theoretical improvement is not worth
it).

Anyway, behavior according to these three features (covering, relevance and
redundancy) should allow some hints about possible improvements to be tried
(defining new classes, suppressing some of them or mixing them). In this way,
learning is justified.

Lets develop here a first proposal showing how covering, relevance and redun-
dancy can be modeled within our aggregative model.
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3.1 Covering.

First of all, degree of explanation of each pixel should in principle be as high as
possible. Such a degree of explanation can be modeled in terms of

¢{ue(r)/c € C}

Any useful classification system should verify, at least, that
Ve € X = 3Jec € C/uc(z) >0

but better if the aggregated value

¢{ue(r)/c € C}

is high enough for each object z € X.
Of course, there is an underlying problem of statistical nature, to be previously
solved: highly correlated classes may mean that a class is in fact duplicated, i.e.,

pre(x) ~ pi(x),  VeeX

where ¢, k are two different classes (¢ # k). More in general, a class being too
close to a linear combination of other classes should be a direct candidate for being
deleted from our model. Perhaps a pure statistical analysis in needed at this very
first stage. Anyhow, the possible existence of such a bad behavior can be also
suggested from a careful analysis of relevance and redundancy, as defined below.

A standard action when covering is too low is a search for some additional
classes.

3.2 Relevance.

A nice classification system, in general, assumes that no class can be deleted with-
out loosing essential information. As far as explanation does not change when a
class is taken away from the model, such a class is less relevant. On the contrary,
whenever the degree of explanation goes down significatively for at least one of
the objects to be classified, we should consider that such a class is relevant. For
example, an empty class ¢ (u.(z) = 0,Vz € X) should be deleted from our model
(we are in principle faced again to another statistical problem: how to determine if
all those values are significatively close to zero). Thiele [27, 28] excludes from his
model those empty classes.

Being a class ¢ relevant means not only that u.(z) > 0 for some object . Of
course we expect that our classification system holds that

VeeC = 3x € X/pc(x) >0
Again, relevance is also subject to gradation, and it can be measured by means of

P{ue(z)/z € X}

In some way we could think that a class c¢ is less important when such a degree of
relevance is lower. But it should be taken into account that:
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e u.(x) may be even extremely low, but still the only available information
about object x (this is the case when u.(z) > 0 and p(z) = 0,Vk # ¢).

e u.(x) may be high, but still not allowing any useful information for classifi-
cation (for example, if p.(x) = p.(y),Vy € X).

e u.(x) may be high, but still not the best (object is better described by other
clases: for example, when ug(x) > p.(z) but pur(y) = p.(y), vy # x.

Hence, we should analyze relevance of class ¢ by comparing

¢{pe(z)/ c € C}

and
o{uk(z)/ k € C,k # c}

for each object z. We shall be accepting relevance of class ¢ whenever there is a
significative decrease from the first value to the second.

Relevance should also be evaluated for families of alternatives A C C, and not
only isolated alternatives ¢ € C. It implies to compare

¢n{N6($)/ ceE C}

and
onfpn(z)/ k €Ck & A}

for every A C C, A # ) (for each object z € X).

This approach supports an alternative search for a smaller family of classes that
keeps main explanatory properties (notice that we do not expect to get an auto-
matic classification but a supervised one being interactive with decision makers).
A family of classes should be in principle removed from our model if relevance is
not appropriate (each element in a family of classes can be not relevant meanwhile
the family itself is of course relevant). Nevertheless, the key issue is how classes,
and which classes, can be mixed or modified.

Anyhow, as already pointed out, decision maker may be willing to accept that
objects belong to several classes, at least at first stages.

A standard action when relevance is too low is to remove some class from the
model (or an appropriate redefinition of our classes).

3.3 Redundancy.

Once our family of classes has been reduced taking away an irrelevant enough
subset of classes (perhaps classes have been properly redefined), we can assume
that each class preserves useful information. But these classes can still overlap in
the sense that the same information appears in different classes.

Many classification systems have in mind an ideal orthogonal representation,
obtained by subsequent modifications in a family of classes till it is suggested that
classes do not interact. But this search for a compact classification system should
keep a real meaning in the decision maker’s mind: without a meaning, decision
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maker can find serious difficulties in managing information. This is an important
issue in order to modify or create new classes.

In the same way relevance was analyzed by means of our disjunctive rule ¢,
redundancy can be analyzed by means of our conjunctive rule, ¢. For example,

(,D{MC(.’L'), 10" ('T)}

can be understood as the degree of overlapping between classes ¢,k € C,c # k,
relative to object x.

In general we may be willing to work with a classification system where classes
show high degree of relevance but low degree of redundancy. But we can not expect
to be able to define such a nice classification system from the beginning. Covering,
relevance and redundancy should play a key role in th subsequent and necessary
learning process, giving hints about how to classes should be redefined.

A standard action when redundancy is too high is an appropriate redefinition
of our classes (perhaps removing some class from the model). In this sense, re-
dundancy can be sometimes confused with relevance, since actions may be similar.
But notice that redundancy focuses on the possibility of excessive (replicated) in-
formation, while relevance focuses on unuseful (void) information.

Ruspini’s fuzzy partition will appear when ¢ is the Luckasievich t-conorm, and
the rule is obtained by associativity, showing complete covering and no redundancy
(absolute non relevance is avoided just taking away empty classes).

4 Statistical analysis of a real image.

In order to develop a real application, we consider the image already analyzed in [5]
and also presented in [3]: an particular orthoimage in Sevilla province (south Spain)
taken on August 18, 1987, by the LANDSAT 5 satellite (Worldwide Reference
System (WRS) image 202 — 34 — 4). This image was taken with the Thematic
Mapper sensor, which has a spatial resolution of 30 meters. The main objective
in [5] was a first fuzzy classification of landscape by means of an unsupervised
algorithm initially presented in Amo et al. [2]. Fuzzy classes obtained in [5] were
compared with those obtained from the ERDASTM program on the same image,
showing the accuracy of our fuzzy approach. As a conclusion, it was pointed out
that whenever real classes are natural fuzzy classes, with gradual transition between
classes, then its fuzzy representation will be more easily understood -and therefore
accepted- by users. In now propose to consider standard statistical methods in
order to quantify the quality of the classification obtained in [5]. In this way we
can focus our future attention on the search for an alternative improved family of
classes (see [14] and [24] for a more general discussion on fuzzy methods in remote
sensing end ecological modeling).

Hence, in this section we shall consider the solution shown in [5] and check some
statistical properties of its associated covering, relevance and redundancy indexes.

Results below refer to the following disjunctive and conjunctive rules:

1—[Tee ,n(lfa )
e dlay...a,) = Wnu_;)
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3 1 Ok
o ar,...ay) = 71_‘_5[11“[;1:’1’“ ”

where parameters have been fixed after some experiments (see [1]). Statistical tests

will be applied assuming that pixels represent a random sample, in such a way we

can in some way check the percentage of pixels being covered by the classification

system proposed in [5], or the percentage of pixels showing relevance or redundancy

for that classification system.

4.1 Covering.

First thing to be checked is the global quality of the selected family of classes.
In order to measure covering, we propose to consider some statistical tests

Hy : ¢{ppe,c€C} <
Hy : ¢{ppe,c€C} >

Value « appears as a quality level, in such a way that rejecting Hy means that
at least 100a% data is being explained.

Then we can take as a covering measure the maximum value o such that the
above test rejects Hy, for all a < ag.

High values of ag will be associated to high covering. It will depend on our
particular experience to decide if a certain level suggests high enough covering.

When classical non parametric Wilcoxon tests were applied to the above ref-
erenced Sevilla orthoimage data (see [5]), the algorithm proposed in [2] for two
classes gave a too low covering index. In fact, as pointed out in [5], with two
classes we were not able to recognize key objects in the picture. So, we considered
three classes.

Classification algorithm in [2] was then developed now imposing three classes.
If we just denote these three classes by pi,us and ps, then the application of
Wilcoxon tests to

Ho @ ¢(p, p2, p3) <
Hy = g, pz, p3) >

gives ap = 0.6, which we considered good enough (analogous results were obtained
for other non parametric tests).

A careful analysis pixel by pixel may help to guess how classes can be redefined
in order increase covering.

4.2 Relevance

Once we have an explanatory enough family of classes, we trie to check at what
extent it is close to a true partition, i.e., at what extent classes are relevant and
non redundant.

As already pointed out, once we obtained three fuzzy classes in [5], we should
be comparing the aggregated explanatory index for those three classes

(s pa, pi3)
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with the analogous explanatory index for every subset of classes:

Az, p3), P, p13), ¢(pr s p12)

at a first stage. In this way we can evaluate relevance of isolated classes p1, uo, it3.

Whenever

D5 2, p3)

is significatively higher than ¢(us, ps),0(p1, us) or ¢(u1, p2) it will be respectively
suggesting that class pi, us or us is relevant. Non relevant classes should be in
general suppressed, but we rather expect that a careful analysis pixel by pixel
will help us to guess how classes can be redefined in order to avoid irrelevant
information.

If we fix a minimum level for each difference,

P, p2, p3) — (i, pj) >

in order to suggest relevance, we could consider some appropriate test in order
to decide if such a level can be assumed. A relevance measure can be defined by
means of the maximum value aq such that we reject Hy for all a < ag in a test

HO : ¢(/~L1all2ali3) - ¢(ul7u]) S «
Hy = ¢, 2, p3) — i, pg) > @

for each pair {u;, p;} of classes, i # j.
High values of ap will suggest relevance of isolated class. Results obtained for
our Sevilla image were the following:

e For class 1, comparison between ¢(u1, p2, u3) and ¢(us, u3) gave ap = 0.14,
meaning a 14% information directly associated to class 1.

e For class 2, comparison between ¢(u1, pe2, t3) and ¢(u1, ps) gave ap = 0.15.
e For class 3 comparison between ¢(u1, p2, #3) and ¢(u1, u2) lead to ag = 0.13.

All these values were considered high enough. Hence, we can assume that each
isolated class within the three classes solution proposed in [5] is relevant, since
suppressing from the model any of them the explanatory level would decrease too
much.

4.3 Redundancy
Overlapping in our example [5] can be checked by means of
e(pi, 1)

Too much redundancy will in general suggest deleting some class, but we again
rather expect to be able to guess how classes should be redefined.
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Following the above approach, we can fix a minimum level of redundancy «,
and then evaluate the maximum value ag such that the test

Ho : o(pi, 1) < o
Hy 2 o(pi, pj) >

concludes rejection for every a < ag. A high value ag will suggest overlapping. A
careful analysis pixel by pixel may help of to guess how classes can be redefined in
order to avoid redundancy.

In our example, again for three classes and applying the Wilcoxon test, we
obtain the following results:

o (s, us3): ap = 0.42.
o (1, p2): ap = 0.44.
o o(p1,pus3): ap = 0.42.

At a first stage none of them seem to be too excessive, so in principle we can
accept the classification system given by the three fuzzy classes defined in [5]. But
of course, depending on the precision we pursue we may be forced to redefine those
three classes. A careful study of behavior of each index pixel by pixel will for sure
give a hint about the characteristics of the new classification system we are looking
for, hopefully reducing redundancy.

5 Final comments.

Future research should implement more complex inner structures and relations
between classes. In fact, our recursive model can be strictly applied when those
classes show an underlying linear order.

Moreover, although it has been shown that a battery of statistical tests can play
an interesting role in order to evaluate the quality of actual classification system,
and therefore they will help us to learn about better classification systems, the
key issue still is how new classes and alternatives can be created (see Roy [22] and
Shafer [26]). We still need much more experiences.
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