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Abstract

A new similarity measure for objects that are represented by feature vec-
tors of fixed dimension is introduced. It can simultaneously deal with numeric
and symbolic features. Also, it can tolerate missing feature values. The sim-
ilarity measure between two objects is described in terms of the similarity of
their features. IF-THEN rules are being used to model the individual con-
tribution of each feature to the global similarity measure between a pair of
objects. The proposed similarity measure is based on fuzzy sets and this al-
lows us to deal with vague, uncertain and distorted information in a natural
way. Several formal properties of the proposed similarity measure are derived;
in particular, we show that the measure can be used to model the Euclidean
distance as well as other, non-Euclidean distance functions. Also, an appli-
cation of the proposed similarity measure to nearest-neighbor classification
in a medical expert system is described.
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1 Introduction

Similarity is a key concept in intelligent information processing. For example, in
information retrieval pieces of information are tagged with labels or indexes and
the relevance of some entry in the database with respect to a query is determined
based on the similarity of the indexes of the query and the database entry [1]. Case-
based reasoning (CBR) attempts to solve problems by reusing past experience [2].
An actual problem is compared to cases that have been previously analyzed by
the CBR system and those previous solutions are transformed in order to solve
the actual problem. Clearly, the determination of the similarity of the actual
problem and a previous case is one of the most important steps in case-based
reasoning. In pattern recognition, models or prototypes of known objects are stored
in a database and the identity of an unknown pattern is determined based on its
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similarity to the prototypes [3]. This approach, which is also known as nearest-
neighbor classification, has been applied in various instances to numerous problems
[4].

One of the most widely used approaches to similarity detection is Euclidean
distance. It is applicable if objects are represented by N-dimensional vectors of
numerical features. Given two objects * = (x1,...,xn) and y = (y1, ..., yn) where
x; and y; represent the feature values of x and y, respectively, the Euclidean
distance between x and y is given by

or, equivalently,
N
dplwy) =3l — i (1.2)
i=1

Clearly, the more similar & and y are, the smaller is their Euclidean distance,
and vice versa. If objects are described by symbolic rather than numeric features
then Eq. (1.1) or (1.2) can still be used as a similarity measure if the distance,
or dissimilarity, of all pairs of feature values x; and y; is appropriately defined.
More general similarity measures are string, tree, and graph edit distance [5, 6, 7).
Here the similarity of two structures is defined in terms of the minimum number of
edit operations that are required to transform one of the structures into the other.
While Euclidean distance as well as edit distance based similarity measures are
application independent, many other application specific similarity measures have
been proposed, for example, in the domain of case-based reasoning [8, 9, 10].

In this paper, a new application independent similarity measure is introduced.
It is very general in the sense that it allows to deal with numeric as well as symbolic
features at the same time. The values of particular object features may be missing.
Rather than treating each feature in a uniform manner as it is done, for example,
in Egs. (1.1) and (1.2), the proposed similarity measure is based on rules that
deal with features on an individual basis. Thus not only the individual importance
of a feature can be easily modeled, but also interdependencies between features
can be taken into account. The proposed similarity measure is based on fuzzy
set theory [11, 12], which provides us with proper capabilities to deal with vague,
uncertain, and distorted information in a natural way. The similarity of objects
can be expressed in qualitative and quantitative terms; in particular, the new
similarity measure can be used to model both the Euclidean distance and other,
non-Euclidean distance functions. Thus it is more powerful than just Euclidean
distance.

In Section 2, the new similarity measure is introduced. Some formal properties
are derived in Section 3. An application of the proposed similarity measure to
nearest-neighbor classification in a medical expert system is described in Section
4. Finally, a discussion and conclusions is presented in Section 5.
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2 Rule-Based Fuzzy Similarity

Let each object & in our problem domain be represented by an N—dimensional
vector, i.e.
= (x1,...,ZN) (2.1)

such that z; the i—th feature of . A feature can be from any domain Dy, i.e.
x; € Dy. For example, features can be integers, real numbers, or symbols from
some discrete set of values. The domain of feature i can be different from the
domain of feature j. It is also admissible that the value of a feature is undefined

or missing.
Let X denote the set of objects under consideration, such that objects & =
(1,.-,2N), ¥ = (Y1,---,yn) € X. For example, ¢ may represent some unknown

object, whose identity is to be determined, while y belongs to a database of known
objects. In this section we develop a similarity measure which is based on the
distance of objects « and y, and object features x; and y;. The smaller the objects’
distance is, the greater is their similarity and vice versa. In order to measure the
distance of a pair of features, z; and y;, 1 < i < N, we introduce the fuzzy
linguistic variable distance of the i-th feature, or F(x;,y;) for short. This fuzzy
linguistic variable consists of a number of fuzzy sets Fy, ..., F, that are all defined
over Dy x Dy. Whenever x; or y; is undefined, all of Fi,..., F, are undefined as
well. The membership function of fuzzy set Fj is given by

pr; @ Dy xDy = [l,o0] , 00 <[ <. (2.2)

For example, for x;,y; € R, F(x;,y;) may consist of the following three fuzzy sets
(i.e. n=3):
F; = identical,
Fy, = similar, (2.3)
F3 = different,

with the following membership functions (for a graphical representation see Fig. 1):

110 — |z; — y]) if |mi — wi] < 10
o) = { P00 ub e <

otherwise
pry (i yi) = S g5lei — vil if [z — yi| <10 (24)

1- %(‘l’z —yi| —10) otherwise

%Uﬂ?z —y;| — 10) otherwise
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Fig. 1. An example of the linguistic variable distance of the i-th feature,
consisting of three fuzzy sets Fi, Fy, F3

Fuzzy sets such as those given in Fig. 1 have to be defined for all features
i=1,...,N. In general, the fuzzy sets Fi,..., F, that represent the distance of
the i—th feature will be different from the fuzzy sets that represent the distance of
the j—th feature, depending on the nature of the features. In other words, F; =

Fy(xiyvi),.. . Fr, = Fo,(2;,9;). In order to keep our notation simple, however, we
don’t explicitly express this dependency in the formulas.
By definition, for each i = 1,..., N, we assume an ordering
(Fy, Fy,...,F,) (2.5)

on the fuzzy sets that represent the distance of feature ¢ such that fuzzy set Fj
corresponds to a larger degree of distance than fuzzy set F;, 1 < j < n — 1.
Formally, for each pair of fuzzy sets F; and Fj, j < k, we require the existence of
a partition of Dy x Dy into two disjoint subsets S C D) x Dy and S C Dy x Dy such
that the following conditions are satisfied:

e any pair (z,y) € S has a smaller distance than any pair from S, and
o 1ipy (T3, Yi) 2 pp (Tisyi) & (@4,9:) € S and (2.6)
o pr (i, ys) < pp, (26, y:) < (zi,4:) €S

Moreover, we require that pp, (z;,y;) takes on its maximum value if z; and y;
are identical, i.e.

pr (zi,z;) =1for 1 <i< N (2.7)
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For some applications it may be useful to furthermore require, for 1 <i < N,

wr; (Tis yi) = pory (Yiszi) for 1 < j <m (2.8)

As can be seen later this is a necessary and sufficient condition for our distance
measure to be symmetric.

In order to model the global similarity of objects, we introduce the fuzzy lin-
guistic variable distance of objects  and y, or D = D(x,y) for short. D consists
of a number of fuzzy sets D1,..., Dy, that are defined over the interval [0,1]. Let
u € [0, 1] denote the base variable of linguistic variable D. The membership func-
tions of fuzzy sets Dy are given by

pp, ¢ [0,1] > 10,1, 1<k<m (2.9)
For example, for m = 5, D may consist of the following five fuzzy sets:
D, = identical,
Dy = similar,
D3 = similar to a small degree, (2.10)

D, = rather different,
D5 = completely different,

with membership functions shown in Fig. 2.

Ko

X
similar rather conapletely -
identical sirnilar to a small degree different different
1.0
0.0 |
I
0.5 Lo

Fig. 2. An example of the linguistic variable distance of objects  and y
consisting of five fuzzy sets Dq,..., Ds.

Similarly to the F;’s we assume an ordering on the Dy’s

(D1, Ds,...Dy) (2.11)
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such that Dy represents a higher degree of distance between « and y than Dy, 1 <
k < m — 1. Formally, we require for each pair of fuzzy sets Dy and Dy, k < I, the
existence of a real number 0 < I < 1 that divides the range [0,1] of the base
variable u into two intervals [0, I] and [, 1] such that

KDy, (’IL) z KD, (U) ifue [Oa {]7and (2.12)

po, (w) < pp,(u) ifw € [1,1]

The smaller the value w is, the smaller is the distance between @ and y (see
Fig.2). The cases u = 0 and u = 1 represent the smallest and largest possible
distance (i.e. the largest and smallest degree of similarity), respectively. Similarly
to (2.7) we require

up,(w)=1ifu=0 (2.13)

Given the linguistic variables F(z1,v1),. .., F(2n,y,) and D(x,y), the actual dis-
tance between vectors « and y is defined by means of rules. The general format of
a rule is

if the similarity of the i;—th feature is X; and/or
the similarity of the io—th feature is X2 and/or

the similarity of the i,,—th feature is X,
then the similarity of @ and y is Y

or, more formally,

if F(zi,yn) = Fj1 &1

F(zs2,yi2) = Fj2 @2

: (2.14)
F(zim, yim) = Fj
then D = Dy,

where each @; denotes either an ’and’ or an ’or’ connector. Examples of rules are
the following (see also (2.3) and (2.10)):

if the similarity of the 1st feature is different
then the objects are completely different

if the similarity of the 2nd feature is identical and

(the similarity of the 3rd feature is identical or
the similarity of the 3rd feature is similar)
then the objects are identical.

These rules describe a situation where one feature, x1, is suffcient to classify two
objects as completely different, while the identity of the objects can be concluded
based on features zo and z3. Rules of this kind provide a very flexible and natural
way for human experts to express their knowledge about a certain problem domain.
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Once the similarity of both features and cases has been appropriately defined,
standard inference techniques can be used to draw conclusions about the similar-
ity of two given objects, x and y. In the application described in Section 4, the
well-known max-min inference procedure has been used [12]. For a rule of the
form given in (2.14) we first determine the degree of membership of all pairs of
features (w1, ¥%:1),-- -, (Ting, Yine) With respect to fuzzy sets Fj, ..., Fjur, respec-
tively, and combine these membership degrees according to the logical connectors
@1y...,Pp—1. The result is a numerical value L € [0, 1] that represents the de-
gree to which the complete left-hand side of the rule is satisfied. By definition, if
any of the features involved in the left-hand side of the rule is undefined, the rule
is not applicable. Similarly, we may define a threshold 7" and declare a rule not
applicable if I, < T. For example, if the minimum-operator is used for ‘and’ and
the maximum-operator for ‘or’ then the rule in (2.14) evaluates to degree

L= OPjM—l(' .. OPjQ(Ole(/.LFjl,/j,sz),/j,Fj?)) . ) (215)

where o
OP, — { min if §; = and

max if §; = or } v l<i<ima
;=

The degree L to which the left-hand side of the rule is satisfied is transferred
to the right-hand side in the next step. Under max-min inference, for example,
the membership function pp, (see (2.14)) is modified into fip, according to the
following operation:

ip, (v) = min{up, (u), L}, u € [0,1] (2.16)

If fuzzy set Dy, is affected by more than one rule, i.e. if it occurs in the right-hand
side of several rules, then the corresponding membership functions are combined

by the maximum-operator. Formally, if the application of rule j results in the
~(7)

modified membership function jif, , and there are totally R rules, ie.,j=1,..., R
then 0

pistet = max{pp) |j = 1,..., R} (2.17)
Furthermore, under max-min inference all membership functions u%’z‘” 2 [0,1] —

[0, 1] are combined into a single membership function pp : [0,1] — [0, 1] by means
of the maximum operator. Formally,

HD(U) = ma’x{/j’tDofal(u)a R P/tDozal(u)} , U E [Oa 1] (218)

The final step of the inference procedure consists of defuzzification. The purpose
of this step is to transform the membership function pup that is defined over the
interval [0, 1] into one specific number from that interval corresponding to the dis-
tance of objects & and y. Several approaches to defuzzification have been proposed
in the literature [13]. In the application described in Section 4, defuzzification is
achieved by computing

 Jy po(wudu

oz, y) =
o =T

(2.19)
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Obviously, d(@,y) is the center of gravity of the function pp(u) over the interval
[0,1]. Let
Omin = 0(x, ) (2.20)

be the value that is taken on by d(z,y) for identical arguments, i.e. & = y.
Eventually we define the distance between  and y as d(x, y) where

d(ﬂ}, y) = (S(.’E, y) - 5min (221)

In the next section, some formal properties of the distance measure are studied.

3 Formal Properties

Intuitively, d(x, y) can be understood as a distance and a similarity measure at the
same time. Small(large) values of the distance d(,y) correspond to a large(small)
degree of similarity between x and y. From (2.19)-(2.21) we can immediately
conclude that

0<d(z,y) <1 (3.1)

for any pair of objects x,y € X. If (2.8) is satisfied then

Moreover, if & = y then
d(z,y) =0 (3.3)

On the other hand if d(@,y) = 0 then it is not necessarily true that & = y.
Whether & = y or @ # y depends on the fuzzy membership functions that define
feature and object similarity, the inference technique, and the defuzzification pro-
cedure. Clearly, in some applications it may be meaningful to treat the situations
@ = y and ’x similar to ¥’ in the same manner, i.e. to have d(x,y) = 0 not ounly
for & = y but also if @ is similar to y.

Next, we show that the distance measure introduced in Section 2 can be used to
model the Euclidean distance. By "modeling” we mean the existence of a monoto-
nous function f such that dg(z,y) = f(d(x, y)) where dg(x,y) denotes the
Euclidean distance, and d(x, y) the distance introduced in Section 2. For ¢,y € X
assume that x;,y; € R, 1 <4 < N. Let the linguistic variable F(x;,y;) consist of
just one fuzzy set F; with membership function

(i — i)

b (T, ys) = AN (3.4)

where
A =max{(z; —y:)*li=1,...,N; z,y € X} (3.5)

Similarly, let the linguistic variable D(x,y) consist of just one fuzzy set D
with membership function

ppy(u) =1, uwe[0,1] (3.6)
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Under this function, the degree of membership is constant over the complete
range of u. For the definition of the distance of any two objects & and y we use
just one rule :

ifF(ZEhyl) = Fl(mlvyl) and
F(z,1y2) = Fi(x2,y2) and
: (3.7)

F(zn,yn) = Fi(zn, yn)
then D(z,y) = Di(z,y)

In the inference procedure we do not apply the minimum-operator for the and-
connection in rule (3.7), but rather summation. Namely, for any pair of membership
functions pa(u) and pp(u) of fuzzy sets A and B defined over the interval [0,1],
we let

ftA ana B(w) = pa(u) + pp(u) for u € [0, 1] (3.8)
It is easy to see that in the present application always pa and 5(v) < 1 for all
u € [0,1]. Using (3.8), Eq. (2.15) evaluates to

N 2
L= ZMFl (i, i) = Z % (3.9)

i=1
From (2.16), we get

2

o (i — 1) (i — v2)
ﬂDl(u)min{l,Zﬁ}Zﬁ wel0,1] (3.10)

i=1 i=1

Notice that this function is constant over the complete range of w. As there is
only one rule, (2.17) yields

5 (u) = i, (u), (3.11)

and as the fuzzy linguistic variable D consists of only one membership function,
D1, we conclude from (2.18)

up(u) = Wgt (u) , u e [0,1] (3.12)

In contrast with (2.19) we now integrate pup(u) over the interval [0,1] for the
purpose of defuzzification. Thus

. R N T N T
i=1 i=1
Because of
Omin =0 (3.14)
we finally get
1 & )
d(@,y) = > (zi — i) (3.15)
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Clearly, this function can be used to model the Euclidean distance. Notice that
a distance function modeling the weighted Euclidean distance

(3.16)

with
> ai=1 (3.17)

can be constructed similarly.

Next, we illustrate, by means of a simple example, that rule-based fuzzy simi-
larity can be used to construct distance measures that do not fulfill the triangular
inequality. For simplicity, let N = 1,& = z,y = y. Consider some interval [a, ]
on the real axis with 3 — a = K, K > 0. Define a distance measure as follows :

Koo {rgldmivgind o
’ z ¢ [o, Bl and y € [ov, B] (3.18)
|z —y|, otherwise

Y(z,y) =

Now choose numbers z,y,z € R with z < a <y < 8 < z and |z — 2| > 2K.
Clearly,

Yz, y) + 7y, 2) <y(z,2) (3.19)

Thus v doesn’t fulfill the triangular inequality. Therefore, it is certainly a non-
Euclidean distance measure. On the other hand, we can easily construct, by means
of rule-based fuzzy similarity, a distance measure that is equivalent to . For this
purpose let

x’
Fi(z,y) = W(Ay) (3.20)
where
A = max{y(z,y) | z,y € X} (3.21)
Hence, we can infer similarly to the above derivation that
1
d(z,y) = < - v(z,y) (3.22)

Thus the class of distance measures that can be represented by rule-based fuzzy
similarity properly includes the Euclidean distance.

4 An Application to Thyroid Gland Diagnosis

The similarity measure introduced in Section 2 has been implemented and tested
as part of a knowledge based system for the diagnosis of thyroid gland diseases
[14]. Other expert systems for this particular application described in the litera-
ture include [15], where a rule based approach was taken. In [16], the considered
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diagnoses were hierarchically structured and the inference procedure was based on
Dempster-Shafer theory [17]. A system where diagnostic inferences are made from
scintigraphic images of the thyroid gland has been described in [18].

In the inference of a thyroid gland diagnosis, a human expert considers many
different sources of information. These include the symptoms reported by the
patient, the patient’s history, palpation findings, results of laboratory tests, results
from image analysis, and others. In contrast with other expert systems where only
part of this information is taken into account, the system described in this section
tries to expoit all available information, thus ’simulating’ the reasoning of a human
expert as closely as possible.

The inference of a diagnosis by a human expert usually consists of two phases.
First, a few hypotheses, i.e. possible diagnoses, are established based on initial
input data. The initial input data, which is easy to acquire, include the patient’s
symptoms, the patient’s history, and palpation findings. Depending on the hy-
potheses established in the first phase, further information, for example through
more expensive laboratory tests and images, is gathered in order to derive the final
diagnosis in the second phase.

In the system described in this section, an attempt modeling this two stage
approach has been implemented. In order to find plausible hypotheses, given the
initial input data, a nearest-neighbor classification schema using the similarity mea-
sure introduced in Section 2 has been adopted. For the second phase of the diagnos-
tic inference, other reasoning techniques have been used [14]. The nearest-neighbor
approach adopted here can be interpreted as a special instance of case-based rea-
soning [2]. The basic idea is to store a number of prototypical cases with known
diagnoses in a case library. Given an actual case the identity of which is to be
determined, we compare it with the case library and retrieve all cases that are
similar to it. This approach seems very natural to establishing the set of initial hy-
potheses. Moreover, the system can acquire additional knowledge by incorporating
new cases in the library, and thus it can learn. In the following, we describe this
nearest-neighbor classification procedure in more detail.

A case x is represented in the case library as a vector of 27 features. These
features are of different nature. Some are numeric, such as the age of a person
or the number of nodules detected during palpation. Others are binary symbolic
features representing, for example, the patient’s sex, or the presence or absence of
certain symptoms. The third group of features is symbolic with multiple values.
For example, the time elapsed since the first occurrence of a symptom. This feature
can take on values from the set {days, weeks, months, years}. Some features may
be undefined, i.e. unknown.

The similarity of numerical features is defined by means of the presentation
in Section 2; for an example see Fig.1. For binary features the linguistic variable
feature similarity F consists of two fuzzy sets, F; = equal and Fy = different, with
membership functions

NFl(il?yy)Z{ L dz=y }

0 otherwise
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upz(ﬂs,y){ 1 7y }

0 otherwise

The feature similarity of non-binary features is dependent on the meaning of the
particular feature. For example, for the feature that represents the time elapsed
since the first occurrence of a symptom, whose possible values are from the set
{days, weeks, months, years}, the linguistic variable distance of feature consists
of five fuzzy sets, F1 = identical, Fy = very similar, F3 = similar, F, = rather
different, F5 = different. The membership functions of these fuzzy sets are defined
as follows:
pr (day, day) = 1.0
1, (day, week) = 0.2
pr, (day, month) = pp, (day, year) = 0.0
r, (day, day) = 0.0
r, (day, week) = 0.8
r, (day, month) = up, (day, year) = 0.0
r; (day, day) = 0.0
r; (day, week) = 0.3
r; (day, month) = 0.3
(day, year) = 0.0
(day, day) = pp, (day, week) = 0.0
r, (day, month) = 0.9
(day, year) = 0.0
(day, day) = pp, (day, week) = 0.0
r (day, month) = 0.1
r (day, year) = 1.0
r, (week, day) = 0.2
r, (week, week) = 1.0
e, (week, month) = 0.1
pr, (week, year) = 0.0
a.8.0.

The linguistic variable distance of object - actually distance of cases in the
present application - consists of five fuzzy sets, D1 = indentical, Dy = very similar,
D3 = similar, Dy = rather different, D5 = different. Notice that, although these
fuzzy sets have the same names as the F;’s that represent feature distance, they
are different because they are defined over the interval [0,1].

The rules for the definition of case distance can be grouped into two different
categories. The first category is called ’context-free’ rules. These rules are valid
independent of the diagnostic class of the actual case from the case library that is
selected for comparison. An example of such a rule is:

Fy
Fs

tttttttg%tttttt
aw

if the function is different and the morphology is different
then the cases are different

The rules in the second category, which are called ’context-dependent’, take the
diagnostic class of the considered case from the case library into account. These
rules are of the general format:
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if the diagnostic category of the case from the case library is ...and
the distance of feature i1 is ...

and the distance of feature iy is ...
then the distance of the cases is ...

By means of these rules it is possible to directly model the fact that one par-
ticular feature may be of high saliency for one particular disease, but may be of no
relevance with respect to another disease.

The nearest-neighbor classifier was implemented and run on a Unix- worksta-
tion. A case base was collected consisting of 35 cases representing 15 different
diagnoses. (According to findings by medical doctors, these 15 diagnoses cover
about 90% of all actual cases.) In the first experiment, 28 new cases were classified
using the 35 prototypes in the case base. As the primary aim of the nearest-
neighbor classification consists of finding a set of possible hypotheses rather than
coming up with just one diagnosis, we considered not only the most similar case
from the case base, but the n most similar ones for n = 1, ..., 4. The result is shown
in Table 1 (first row).

Experiment Ist | 1st ...2nd | 1st ...3rd | 1st ...4th | below 4th
rank rank rank rank rank

1st 1% 82% 89% 93% 7%

2nd 54% 89% 93% 100% 0%

Table 1: Results of nearest-neighbour classification

In order to study the learning ability of the system, we performed a second
experiment. A new set of 18 cases that were not used in the first experiment -
neither in the case base nor in the test set - were gathered and classified by the
system. Out of these 18 cases, four cases that were not correctly classified (i.e. the
correct class was not among the top four ranks) were selected and added to the
case base. Thus an enlarged case base of cardinality 39 resulted. Then the original
test set used in the first experiment was classified again, but this time based on
the enlarged case base. The result is shown in Table 1 (second row). Although the
recognition rate in the first rank dropped, we notice an improvement if more than
just the first rank is taken into account. Regarding the first four ranks, all 28 test
cases were correctly classified.

5 Discussion and Conclusions

A new approach to measuring object similarity is proposed in this paper. It has a
high degree of flexibility from both the theoretical and practical point of view. For-
mally, the proposed measure includes, as a special case, the well-known Euclidean
distance. However, it can be used to model other, non-Euclidean distance func-
tions as well. Thus the new similarity measure properly includes the Euclidean
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distance. From the practical point of view, the new similarity measure can deal
with arbitrary mixtures of numerical and symbolic features. It is admissible that
some feature values are missing. Thus the measure includes partial similarity as a
special case. For each particular feature, an individual similarity function can be
defined. The similarity of the individual features is combined into a global object
similarity measure by means of rules. Thus the importance of each individual fea-
ture can be represented. In particular it is possible to model the situation where
the importance of a feature depends on the object’s class. Also, potential inter-
dependencies of features can be taken into account. For example, if the degree of
similarity of the i-th feature of two objects « and y is known to be S, then feature
J may not yield any additional information any longer. However, if the similarity
of the i-th feature has value S’, then the j-th feature may be of crucial importance
to the similarity of « and y.

Due to the rule-based approach our proposed similarity measure ’inherits’ a
number of benefits that are commonly found in rule-based systems. First, it is
often natural and easy for human experts to express knowledge in terms of rules.
Next, a rule-based representation of object similarity is easy to understand, debug
and modify. Moreover, there are well-understood inference techniques available in
order to draw conclusions, given a set of rules and some specific input data. Finally,
the implementation of rule-based inference is supported by a number of software
tools [19].

In the similarity measure investigated here, the similarity of both features and
objects is modeled by means of fuzzy linguistic variables and fuzzy sets. There are
many application domains where a fuzzy approach is meaningful in order to deal
with uncertain information and noisy data. The proposed measure, however, can
be used not only in an uncertain (fuzzy) environment, but also in order to represent
crisp functions such as Euclidean or other distance functions. It can be used to
model both feature and object similarity in qualitative and quantitative terms.

Rule-based fuzzy object similarity is of generic nature with respect to the un-
derlying techniques that deal with fuzzy sets. There are almost no restrictions
regarding the fuzzy linguistic variables that define feature and object similarity.
Moreover, practically any known technique can be used for the implementation
of the fuzzy logical operators that evaluate the degree of satisfaction of a rule.
Similarly, any technique for rule inference and defuzzification may be adopted.

Our similarity measure has been applied as part of a case-based reasoning com-
ponent in a medical expert system for thyroid gland diagnosis. The medical experts
involved in the project confirmed the hypothesis that the rule-based formalism is
very suitable to express their knowledge of the problem domain, i.e. knowledge of
the role of the various features with repect to case similarity. A nearest-neighbor
classifier has been implemented using the proposed similarity measure. The task
to be solved by this nearest-neighbor classifier was the preselection of possible di-
agnoses by retrieving a number of candidates from a case library that are similar
to the actual case. In an experiment with this classifier, 26 out of 28 cases were
correctly ranked among the top four candidates. Enlarging the database from 35
to 39 cases, all of the 28 test cases were among the top four choices. Thus the
performance of the nearest-neighbor classifier can be regarded very good in this
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experiment. Clearly, the data used for training and testing are not sufficient to
draw general conclusions about the performance of the proposed approach in other
applications. Nevertheless, the result is very encouraging and leads to the con-
jecture that rule-based fuzzy object similarity can be successfully applied to other
problems as well.
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