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Abstract
This paper studies the problem of marginalizing convex polytopes of prob-

abilities represented by a set of constraints. This marginalization is obtained
as a special case of projection on a specific subspace. An algorithm that
projects a convex polytope on any subspace has been built and the expres-
sion of the subspace, where the projection must be made for obtaining the
marginalization, has been calculated.
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1. Introduction

Consider a variable, X, taking values over a finite universe U = {uy,ug,...,Up}.
Information about this variable is given by a probability distribution, which is not
completely known; we only know that it belongs to a set of probabilities P.

If CH(P) denotes the convex hull of P [18, 17], the sets P and CH(P) can
be considered as equivalent[20]. When the set P is finite, CH(P) is called convex
polytope. From behavioral point of view, the convex polytopes of probabilities have
been justified by Walley[22] as a form of representation of uncertain information.
The convex polytopes of probabilities have been used in this way by a large groupe
of authors[6, 3, 4, 15, 20, 22, 21].

Basic operators for convex polytopes of probabilities are combination and mar-
ginalization. There are several ways for combining and marginalizing[7, 23, 13, 2,
22]. In this paper, the problem of implementing these operators will be studied.

From our point of view, the combination should be carried out by means of the
intersection of convex polytopes (A justification of this choice is to be formed by
de Campos[5]). This operator can be implemented in a very simple way when the
convex polytopes are given by a set of constraints: if

n
P:{ZUERn :Zaija:j gbi,i:LQ,...,S}
j=1
and

Q:{QTE_ZRn :Zﬁi]’x]‘ gb;,iil,Q,...,’r’}
j=1
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are two convex polytopes of probabilities of IR™, the combination could be the
convex polytope given by the constraints:

n n
PNQ= {il? € R" :Zaija}j < b, Zﬂljl'j < b;,i: 1,2,...,8 1= 1,2,...,7"}
j=1 j=1

However, the problem of marginalizing is more complex. Traditionally, the mar-
ginalization of a convex polytope has been performed by marginalizing extreme
points[3, 1, 8, 22]: If we have a convex polytope P = CH({p1,pa,...,pr}) rep-
resenting information over the set of variables (X;)ies, each one defined on the
universe U; = {u;,, Uiy, -+, 4, }, © € I, the marginalization of P to the set of
variables (X;)jes, J C I is given by

P =cH({pt",p5’,...,pt"})

The aim of this paper is to carry out the marginalization when the convex
polytope is represented by a set of constraints instead of the classical way using the
extreme points. This marginalization will be done like a projection over a specific
subspace. So, an algorithm for making the projection on any subspace will be
constructed and, later, the specific subspace where the projection should be made
for obtaining the marginalization will be determined.

Theoretical basis for projecting a convex polytope on any subspace is given in the
second section. A special attention has been paid to typical problems which appear
when we work with polytopes. At this section, projection algorithm is built. In the
third one, the subspace, where we must project for obtaining the marginalization,
is identified and its expression is calculated. Finally, in the last section, we will
comment the obtained results.

2. Projection of a convex polytope

The projection of a convex polytope is a very powerful tool for solving problems
automatically from their specification[11, 14]. For example, a typical problem in
geometry is to find the convex hull of a given set of points. A point of coordinates
(21,9 ...,T,) is in the convex hull of a set of points {p1,pa,...,p,} if and only if
there exist a1, ag, ..., a, = 0 such that the system

T = i:aipi and zr:ai =1
i=1 i=1

is satisfied. That is, if a1, as,..., @, is a solution of the system

T
_ 1
T1 = E a;p;
i=1
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The representation of the convex hull is an equivalent set of relations solely
between the x;’s. It is obtained by eliminating all the ;’s from system by projecting
over the subspace related to the variables {z1,...,z,}.

This example illustrates the fact that projection provides a systematic way of
characterizing interesting sets of constraints directly from a simple existential spec-
ification.

2.1. Characterizing the projection

Let P be a convex polytope of IR™ represented by a set of constraints. Suppose
IR"™ is given on a system of coordinates {z1, o, ..., %, }. Theoretical basis for pro-
jecting a convex polytope P on the subspace S = {z;, j € J C {1,2,...,n}} is
explained in this point. The projection on § will be denoted by pg.

In the next development, at this point, we shall suppose that the convex polytope
is not degenerated, i.e., no degenerated extreme points[17, 9, 19] exist on the convex
polytope and the dimension of the convex polytope is n. General case will be studied
in another point.

Algorithm is based on, given an extreme point p of P, determining the support
hyperplanes of P which are orthogonal to S and which go through p. We shall
prove that the set of these hyperplanes forms a convex cone whose extreme rays,
when intersecting with the subspace S, establish the set of support hyperplanes of
1s(P) which go through ps(p). That is, the boundary of ug(P) in the area round
of pus(p).

This process is always performed starting from an extreme point p of P, but
not starting from any extreme point. In fact, the only extreme points which will be
considered are those through which support hyperplanes of P orthogonal to S are
going to pass. The following straightforward lemma characterizes these hyperplanes.

Lemma 1. Let P be a convez polytope of R"™ and p = (p1,p2,...,Pn) an extreme
point of P. Then, the hyperplanes orthogonal to S going through p are in the

following way:
Zaja:j:Zajpj, Vaj cR
jeJ JjEJ

Well now, a convex polytope could be defined as the intersection of a set of
half-spaces. Without any loss of generality, the hyperplanes orthogonal to S going
through p could be forced to contain all the points of P, that is,

VqgeP, Zajqj < Zajpj.

JjeJ jeJ

This set of hyperplanes will be denote by H(p). So, H(p) will be the set of support
hyperplanes of P which are orthogonal to S going through p. Now, we shall verify
that H(p) forms a convex cone.

Lemma 2. A bijective mapping could be defined between the hyperplanes of H(p)
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and the functions

Ya,,5€J - R" — R

fagier(@i, @, 20) =Y aju; (1)

jeJ

whose mazimum over P is reached at point p. This set of functions is denoted by
L(p).

The proof of this lemma is straightforward.

If a function of I'(p) is maximized over P using the Simplex algorithm[19], this
maximun is reached at p. At this moment, the cost vector of the olptimal tableau
could be modified for representing any function of (1), i.e.,the new cost vector could

be:
o — a; ifjed
7 0  otherwise

The functions of I'(p) will be those that maintain the maximum at p for this new
cost vector. That is, those for which the optimality vector zx — ¢ (depending on
a = (oj)jer, (2 — ck)(a)) continues being greater or equal than zero[19]. The set
of o’s values verifiyng this condition constitutes a convex cone of IR (d = card(J))
that will be denoted by C(p). So, according to lemma , the set of hyperplanes H(p)
is equivalent C(p). This correspondence is linear as the next straightforward lemma
proves.

Lemma 3. There is a bijective linear mapping transforming the hyperplanes of
H(p) into points on the convex cone C(p).

Therefore, H(p) is a convex cone whose extreme directions correspond to ex-
treme directions of C(p). Thus, C(p) could be used for calculating, by virtue of the
previous lemma, the extreme directions of H(p).

On the other hand, we are only interested in hyperplanes defining the boundary
of us(P) at pus(p). These hyperplanes are characterized in the following theorem:

Theorem 1. Hyperplanes defining the boundary of us(P) at us(p) are given by
the extreme directions of H(p).

Proof. P is a full dimension convex polytope, as we have previously assumed, and
the dimension of S is d, then the boundary hyperplanes of P defining the projection
intersect with the projected polytope on a face with dimension d— 1. That is, there
are d non-dependent points of IR", ¢;, i = 1,2,...,d, belonging to the intersection
of the boundary hyperplane with the projected polytope. Obviously, point pgs(p) is
one of them.

Let h be this boundary hyperplane. If A does not correspond to an extreme
direction, there are two hyperplanes of H(p),

hq Zﬁlﬂ?g‘ = Zﬁljpj

jeJ jeJ
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hy Y Bajay =Y Boip;

jeJ jeJ

such that h is a convex combination of h; and hs.

hed (@B + (1= a)By)e; =Y (aby+(1—a)by)p; 0<a<l

jeJ jeJ
Since h goes through the points ¢;, i = 1,2,...,d, convex combination goes
through these points as well,
> (B + (1= )By)ai; = Y (B + (1 — o)B2)p;, Vi=12,...,d
jed jeJ
Hence
JjeJ
and
@ Bijla —pi) + (1= )Y Bayai; — ps) =0, Vi=12,....d (2)
jeJ jedJ

On the other hand, hy and he belong to H(p), so,

> Biilai; —pi) <0
et Vi=1,2,....d
> Bailaij —pj) <O

jeJ

Therefore, if equation (2) is verified

> Bijlai; —pj) =0
jet Vi=1,2,....d
> Boilaij —pj) =0

jeJ

Thus, h1 and he go through the d non-dependent points g;, hence, both are
equal to h. Then, h is given by an extreme direction of H(p)

In this way, the support hyperplanes of us(P) at us(p) are given by the extreme
directions of H(p) which could be calculated from the extreme directions of C(p).

Now, we have another problem, there are some cases in which the projection of
an extreme point, ugs(p), could not be an extreme point of ps(P). The problem
appears when the number of support hyperplanes of pg(P) that intersect at pg(p)
is smaller than the dimension of the subspace S where the projection is made. In
order to avoid this problem, if the dimension of S is d, the set of extreme directions
of H(p) must contain d elements.

So, the algorithm will calculate the set of extreme directions of C(p), D, (which
corresponds to the extreme directions of H(p)) and, then, it will verify that card(D) =
d. If this does not occur, the extreme point p must be rejected and the algorithm
must move to an adjacent extreme point.
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Let us see an example:

(71) &

Fig. 1. Projection example

Example 1 Consider the convex polytope drawn in Figure 1. We want to project
this polytope over plane s = 0. Hyperplane o = 1 is a support hyperplane that
is orthogonal to the half-space x3 = 0 and it goes through extreme point (5,1,4).
Therefore, once the point (5,1,4) has been selected, the set of extreme directions
D = {(0,1)} is determined. This means that, in the projection space, only one
support hyperplane goes through projection of p. Then, the projection of point p
cannot be an extreme point of the projection of the convex polytope.

In the example, the point p is projected on the point (5,1) belonging to the
segment given by the extreme points (3,1) and (7,1), i.e., il is not an extreme point
of the projection.

Projection of P on S is based on determining the support hyperplanes of P
orthogonal to S going through an extreme point p, i.e., the elements of H(p). Thus,
we could change the projection subspace without more than to change the form of
the elements of H(p), or what is the same thing, the general form of the elements
of I'(p). Therefore, the projection algorithm could be generalized to an algorithm
projecting P on any subspace S. In order to do so, firstly, the general definition
of hyperplanes orthogonal to S going through an extreme point of P (elements
of H(p)) must be obtained providing it for the algorithm in the functional form
(elements of T'(p)).

Example 2 Consider the convex polytope P of IR® given by the set of constraints:

z3 = 10

31— 2220

3x1 —5x2 <0

r1 4+ a9 + 223 < 28
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Suppose that we want to project it on the subspace S given by:
1+ x9 =10

The hyperplanes orthogonal to S going through an extreme point p = (p1,p2,ps)
of the convex polytope are given by the following expression:

a(x1 — 22) + B3 = a(p1 — p2) + B3
and the functional form will be
Ya,8(T1, T2, T3) = o1 — T2) + B3

From this functional form, the algorithm will calculate the conver cone C(p).
So, for instance, the convex cone for the extreme point (2,6,10) of P will be:

a+3<0
a<0

whose extreme directions are:

D={(-1,1),(0,-1)}.
Then, the extreme hyperplanes defining ps(P) at us(2,6,10) will be given by

—T1+ a0 +23 =14
.’133:10

and ps(2,6,10) = (3,7,10).

Before looking at the algorithm implementation, we are going to study some
typical problems that appear when we work with convex polytopes.

2.2. Typical problems: full dimension, redundancy and degeneration

2.2.1. Full Dimension

This problem appears when the dimension of the convex polytope P is not n,
i.e., P is contained in a subspace given by the intersection of a set of hyperplanes.
For our algorithm, this problem is important only if the hyperplanes are orthogonal
to S because, otherwise, these are not considered.

Suppose we have a hyperplane orthogonal to S, h, containing to the convex
polytope P, then hN S contains the projection of P to S, and therefore {h} € H(p)
for any extreme point p of P. This case can be detected in the following way:

Theorem 2. For any p € Ext(P), if a linear subspace is contained in the convex
cone H(p), this subspace is constituted by the hyperplanes orthogonal to S containing
P.
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Proof. Let
hed Byes =2 Bw;
jeJ JjeJ

be any hyperplane of the linear subspace contained in H(p). It is verified

Zﬁjqj < Zﬁjpj, forallg c P

jeJ jeJ

because h belongs to H(p).
If @ <0, then
aZﬁjqj > aZﬁjpj, for all g € P (3)
jeJ jeJ
Since h belongs to a linear subspace, for any o € IR, ah belongs as well. There-
fore, ah € H(p) and hence

aZquj < aZﬁjpj, forallge P 4)

jeJ jeJ

Thus, from 3 and 4,

Zﬁj% = Zﬁjpj, forall ¢ € P.

jeJ jeJ

That is, P is contained in A

Corollary 1 The convex polytope P is contained in a set of hyperplanes orthogo-
nal to S if and only if for any p € Ext(P), a linear subspace given by the linear
combinations of the hyperplanes orthogonal to S containing P is included in H(p).

Proof. Let us see the direct implication. If K is the set of hyperplanes orthogonal
to S containing P, for any extreme point p of P and any hyperplane hof K, h € H(p)
is verified. That is, K C H(p) for all p € Ezt(P). Obviously, for all hy, he € K,
ahy + Bhy € H(p) for all p € Ext(P) and «,8 € IR. Then, a linear subspace
given by the linear combinations of the hyperplanes orthogonal to S containing P
is included in H(p).

Inverse implication is straightforward from previous theorem

The last corollary is the key for detecting and solving the problem. For any
extreme point p of P the convex cone C(p) is calculated. The maximum linear
subspace contained in C(p) is detected by Galperin’s algorithm[10]. If the result
is the empty subset, problem does not appear, i.e., P is a full dimension convex
polytope. Otherwise, Galperin’s algorithm provides a base for the linear subspace.
Each element of the base determines, according to the linear mapping established in
lemma , a hyperplane orthogonal to S containing P. If h is one of these hyperplanes,
the projection of P is included in h N S, therefore, A can be eliminated and the
dimension of the problem is reduced by one variable. Value of this variable is
calculated from remaining variables and h. An algorithm for detecting and solving
this problem is given bellow:
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Firstly, a procedure for detecting the set of hyperplanes orthogonal to § =
{z;,j € J} containing the polytope P from convex cone C(p) for any p € Ext(P)
is given. The following notations are used:

C: Represents the convex cone C(p).

S: Represents the set of variables on which the projection is performed, S =
{.’L’j,j S J}
LH: List of hyperplanes orthogonal to S containing P.

b: Vector of IR" representing the set of values assigned to elements of U by the
right-hand side vector of a Simplex algorithm tableau.

Yo : Represents the general functional form of the elements in I'(p).

Procedure Equality_Constraints (C,b, S, v,, LH)

1.- Calculate using Galperin’s algorithm the maximum linear subspace, £, in-
cluded in C.

2.- If £ # 0, then

2.1.- L is given by a set of points of IR?
L={a"i=1,2,...,k}
whose associated hyperplanes
Yai () = Yai(b), i=1,2,...,k

are verified in equality for all the points of P.

2.2.- For each af, keep the hyperplane

Z ol v = 4 (b)

veS

in LH.

2.3.- Since P is contained into the intersection of all the hyperplanes of LH,
it is possible to eliminate one variable of S for each hyperplane of LH.
So, if the set of eliminated variables is noted by Hg and the values of
the variables of S — Hg are known, values of the variables of Hg may be
calculated by solving the system of equations given by the hyperplanes
of LH. Put =85 — Hg.

So, the algorithm for detecting the hyperplanes orthogonal to S containing P is
the following:
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Procedure Orthogonal hyperplanes_in_equality (P, S, ~,, LH)

1.- Maximize over P, using the Simplex algorithm, the function:

flw) = Z u

uelU
storing the optimal tableau.

2.- Define b as the vector representing the set of values assigned to elements of U
by the right-hand side vector of a Simplex tableau.

3.- Change the objective function by 7, (), obtaining the new optimality vector
zK — ¢k given as a function of a.

4.- Construct the convex cone C with the constraints zx — ¢ > 0 for all k& associ-
ated with the non-basic variables in the initial optimal tableau.

5.- Call the procedure Equality_Constraints(C, b, S, v,, LH).

2.2.2. Degeneration

For each optimal tableau, an extreme point of P is obtained. This extreme point
is given by the intersection of hyperplanes corresponding to slack and artificial non-
basic variables[19]. From this point of view, an extreme point may be considered
like a configuration of hyperplanes. So, the extreme points can be seen in two ways:
like the proper points or like configurations of hyperplanes.

If the convex polytope is not degenerated, both concepts are the same. Each ex-
treme point is given by only one configuration of hyperplanes. However, in general,
this is not true because an extreme point can be generated by several configura-
tions. To avoid this problem, in our algorithm, we do not work on the extreme
points but on the configurations of hyperplanes. In this way, two configurations are
independently handled even though the same extreme point is produced from both.

2.2.3. Redundancy

The redundant half-spaces[16] increase the complexity of the projection process
since they give rise to non-necessary configurations of hyperplanes. Therefore, for
an optimal running of the algorithm, they could be eliminated. However, the cost of
the elimination process make its elimination prohibitive. So, the elimination should
not be carried out excepting the case that a fast syntactic algorithm is used[12].

In a final remark, if we only consider the extreme hyperplanes in each projected
point, redundant half-spaces are never obtained because redundant hyperplanes are
never extreme hyperplanes.
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2.3. Projection Algorithm

Suppose we have a convex polytope P of IR", represented on a set of coordinates
{z1,z2,...,2,}, given by a set of linear inequalities

’P:{LBERH :Z)\ijxj <bi,i:1,2,...,s}
j=1

and its projection on S = {z;,j € J}, J C{1,2,...,n} is wished.
Firstly, the trivial case is attached: The projection subspace is one-dimensional.
Then, the procedure is:

Procedure Trivial projection(P, S, LS, ~,).

1.- Maximize and minimize the function 7 (x)*over the convex polytope P.
2.- Let Maxz and Min be the maximum and minimum of ~; (u) over P.
3.- Let v be the only element of S. Then, the half-spaces
v < Mazx
v = Min
are kept in LS.

So, the projection of P is a segment of S with Min and Max as extreme points.

Once trivial case has been studied, our algorithm is a procedure with the fol-
lowing parameters:

e The convex polytope P that we want to project.

e The space where the convex polytope is defined, denoted by U.
e The projection subspace, denoted by S.

e The general form of the functions of I'(p), denoted by 7.
The output of the algorithm is stored in the variables:

e L H: Orthogonal hyperplanes contaning P.

e LS: List of half-spaces defining the projection of P to S.
e LV: List of extreme points of the projection of P to S.
Furthermore, the algorithm uses the working variables:

e LUT: List of examined tables.

o LNUT: List of tables that have not still been examined.

*v1(u) represents the function v (), where « is a 1’s vector, @ = (1v)ves
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Procedure Projection(U, S, P,v,).

1- T=285.
2- LH=0,LS=0,LV =0, LUT ={, LNUT = 0.
3.- Call Orthogonal_hyperplanes_in_equality (P, S, v,, LH).
4.- If card(S) =1, S = {v;}, then
4.1.- Call Trivial_projection(P, S, LS, v,)-
4.2.- Add to LS the non-negativity conditions for the eliminated variables,

ie.,

LS=LSU{vp, 20, Vv, T -85}
4.3.- End.

5.- Maximize over P the function ~s(u), where ¢ is a vector of IR, defined by

1 forallve s
6= (6u)veT = { 0 otherwise

6.- Put BV as the set of basic variables.
7.- Build the new function ~, changing o, to 0 for allv € T — S.

8.- Put b as the vector of the values assigned to the elements of U by the right-
hand side vector of the tableau.

9.- Values of «a, holding the optimality:
9.1.- Replace the objective function by v4(u) (given in point 6) obtaining the
new optimality vector z, — ¢i depending on (@, )ves-

9.2.- Build the convex cone C given by the constraints z; — ¢; > 0 for all j
corresponding to non-basic variables.

9.3.- Using Galperin’s algorithm, calculate the set of extreme directions for C.
Let D be the set of points that are pointed by the vectors corresponding
to these extreme directions.

9.4.- If card(D) < card(S) go to step 10.
10.- Obtaining vertices:

10.1.- For all v; € §,
10.1.1.- Calculate the vector of IR?, §, as

B 1 forallv=uy
0= (6u)veT = { 0 otherwise
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10.1.2.- Put Ver(v;) = 75(b).

10.2.- Complete the coordinates of Ver as a point of 7 by means of the LH
hyperplanes.

10.3.- If Ver is not in the list of vertices LV, keep it.
11.- For each « € D, calculate the associated half-space in the following way:
a) If a,, <0 for all v € S, store the half-space
Z —QuU = Z —a,Ver(v)
veS veS

in LS, if it does not appear.
b) Otherwise, store the half-space

Z v < Z a,Ver(v)

veS veS
in LS, if it does not appear.

12.- If the lists of half-spaces and vertices have not been both updated go to step
13.

13.- For each a € D,

13.1.- Obtain the new vector zp — ¢k, by substituting the values of «, by the
values of the point actually studied in the optimal tableau. If there is
some non-basic column with z; — ¢, = 0 then:

13.2.- For each non-basic column with z; — ¢ =0,

13.2.1.- Calculate I as the variable corresponding to the column studied.
13.2.2.- Calculate O as the variable satisfying feasibility criterion of the Sim-

plex algorithm:
b
Min {—]}
J :ajr>0 Ajr

where r is the index corresponding to I, aj, are the elements of
the matrix of coeflicients and b; the elements of the right-hand side
vector.

13.2.3- Put NBV = (BV - {0}) U{I}.
13.2.4.- If NBV does not belong to LUT U LNUT, add it to LNUT.

14.- Add BV to LUT.

15.- If LNUT is empty the alsorithm ends.

16.- Put BV as the value of the last element of LNUT.
17.- Delete this last element of LNUT.

18.- If BV does not belong to LUT:
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18.1.- Obtain, by pivoting, the Simplex tableau associated to the set of basic
variables given by BV.

18.2.- Go back to step 7 with the new tableau.
19.- If BV belongs to LUT, go to step 14.

3. Marginalization of a convex polytope of proba-
bilities

As we know, final goal of this paper is to obtain the marginalization of a con-
vex polytope of probabilities as a projection. In this point, the subspace where the
projection must be performed for obtaining the marginalization is calculated. More-
over, we shall establish the general functional form, 74, needed by the projection
algorithm.

Suppose J C I C {1,2,...,m} and consider the subsets of variables (X;);cr and
(Xj)jes respectively defined over Uy = [[,c; U; and U; = [[,, U;. Clearly, the
marginalization of Xy to X is the function (n = [[;c; i, d = [[;c, )

M: R"— R?
M(z) = (ayy) wev; T
velUy

where 2! denotes the transposed vector of « and (ay,,) is the matrix whose elements

are: u
1 ifu' =w
Qou = { 0 otherwise ()

In short, we denote by U and V to U; and Uy, respectively. Consider the d
vectors a, = (@pu)ueu for all v € V, of R™. These vectors are orthogonal and,
hence, non-dependent. n —d vectors b;, j =d+1,d+2,...,n can always be found
in order to complete the a, vectors for constituting an orthogonal base of IR".

The next mapping is defined:

A¢: R"— R"
A(z) = ( (av)vev ):L,t

(bj)j=d+1-n
If the projection of IR to IR is denoted by KR
M= /,[;Bd o A°

is verified.
So, the marginalization of P is

M(P) = pga(A*(P))

The mapping A¢ makes a change of base into IR". Then, A¢(P) is the expression
of P in the new base given by a,, v € V and b;, j = d+1,d+2,...,n. That is, there
are no changes in the convex polytope, but only in the coordinates of the points:
the points and the faces are the same ones.
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The next step for performing marginalization is the projection to the first d
coordinates. That is, we have to make a projection over

{ZEE.ZR” :md+i:0’i:1,2,...,n7d}

Since there are no changes in the convex polytope, these steps can be resumed
in one: the projection on the subspace

S = {zeR" :(Ae(a:))dﬂ.:o,i:1,2,...,nfd}:
= {zeR" <bj,x>=0,j=d+1,d+2,...,n} (6)

This projection gives us a convex polytope of IR"™ contained in the subspace S.
On the other hand, the set of half-spaces defining this polytope and the one defined
by marginalizing are the same one. So, we have expressed the marginalization as a
projection on S.

At this moment, the general functional form ~y, of I'(p) can be fixed for the
subspace S. Let (A1, A2,...A,) be the normal vector of any hyperplane of R". If
it is orthogonal to S, the vector (A1, Az, ... A,) must be orthogonal to each vector
bj,j=d+1,d+2,...,n

Since the set {(%‘)i:l,z,...,d, (bj)j:d+17d+27_,,7n} is an orthogonal base of IR", the

vector (A1, Ag, ..., An) must be a linear combination of the vectors a;, i = 1,2,...,d.
That is,
(Al,)\g,...An):ZOéiai, Oéig.lR
JjeJ

Thus, the functions that we have to maximize over P are

d
Yalt) = Y i <asu>
=1

But the d vectors a; are given as a set of vectors a, = (Ayu)uecu, Where

_ 1 ifut =v
ou =130 otherwise

Therefore, if the general vector o = (v )vey of IR is considered,

Ya(u) = aay)vevu’

is the function to be introduced into the algorithm!

So, if we have the variable (X;);cr, over which the information is given by the
convex polytope P defined in IR", in order to perform the marginalization of P to
the variable (X;) e, J C I we have to call the projection procedure in the following
way:

HU=Tlc; Ui, V =1lc;Uj and va(u) = a(av)vevu’, then

Projection(U,V,P,~,)-

fa(ay)yeyu? determines the matrix product of o by (av)pey and by the vector transposed of «
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Example 3 Suppose we have a two-dimensional variable X x Y defined over X x
= {z191, Z1Y2, T1Y3, TaY1, Tay2, Toys }. Assume that the information over X XY is
given by a convex polytope of probabilities of IR®, P, represented by the constraints:

p(z1y2) <

p(z1y3) < 0.4
p(w291) <0
p(zay2) = 0.1

p(z1y2) + p(@1y3) + p(z2y3) < 0.9
p(z1y1) + p(x2y1) + p(z2y2) + p(22y3) < 0.3
p(z1y1) + p(@1y2) + p(z1y3) + p(T2y1) + p(w2y2) + p(T2y3) = 1
p(@191), p(T1y2), P(T1Y3), P(T2y1), P(T2Y2), P(T2Y3) > O

S
<

If we want to marginalize this information to the variable Y defined over V=

{y1,y2,y3} and suppose U = X X Y, i.e., u = (T1y1, T1Y2, T1Y3, T2Y1, T2Y2, T2Y3),
the function to introduce is:

191
T1Y2
T1Y3
T2Y1
L2Y2
L2Y3

Ya(u)

o = O
_ o O
o R R
O = O
- O

1
Yal(t) = a(ay)pevu’ = (Qyys oy 0y3) | 0
0

oy, (p(z1y1) + p(2y1)) + g, (P(T192) + p(T2y2)) +
+ oy, (p(z1y3) + p(e2ys))

The convez polytope could be simplified before appliying the algorithm. So the
new set of constraints defining the convex polytope will be as follows:

p(z1y2) < 0.8
p(z1y3) < 0.4
p(z1y2) + p(z1y3) + p(22y3) < 0.9
p(x1y1) + plaays) < 0.2
p(@1y1) + p(21y2) + p(z1y3) + p(@2ys) = 0.9

p(z1y1), p(71Y2), p(T1Y3), P(T2Y3) = 0.

Since the values of the variables p(xoy1) and p(xoys) are fized, respectively 0 and
0.1.
The procedure Orthogonal_hyperplanes_in_equality (P, V, v, LH) produces

LH={y1 +y2+ys =1}
V:{ylal&}

Then, we mazimize the function 75(u) = p(a1y1) + p(a1ys) + p(e2ys) + plaays)
by the Simplex algorithm. Once the optimal tableau has been obtained, we replace
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the function ~s by the general projection function yo(u) = oy, (p(x131) + p(z2y1)) +
Oy, (p(:z:lyz) —I—p(:vgyg)). So, the tableau in Table 1 is achieved. From this tableau,

p(z1y3) plr2ys) hy
h1 -1 0 1 0.1
ha 1 0 0 0.4
hs 0 1 1 0.2
oy, p(T1y1) 0 1 1 0.2
Oy, D(T1Y2) 1 0 -1 0.7
Xys Xyy Qyy — Qyy

Table 1. Initial optimal tableau in the marginalization process

the convex cone C
0
0 (7)
Qryy — Qg Z

is obtained. The extreme directions are D = {(1,1), (1,0)} and the projected extreme
point is (0.2,0.8,0). Furthermore, the marginalization half-spaces

y1ty2<1
ye £ 0.2

are calculated. If we change the values of o by the values of points in D, the new
vectors z, — ¢, drawn in Table 2 are calculated.

Ay
p(T1Y3) P(@?Lh) p(z2y3) hs
h1 -1 0 0 1 0.1
ha 1 0 0 0 0.4
hs 0 1 0 0 0
ha 0 0 1 1 0.2
oy, p(T1y1) 0 1 1 1 0.2
0y, D(T2y2) 0 0 0 0 0.1
0y, D(T1Y2) 1 0 0 -1 0.7
Xya 0 Xy, Qyy — QXya
1 0 1 0 (1,1)
0 0 1 1 [0)

Table 2. Initial tableau after substitution of « by the values of points in D.
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In this way, the set

{h1,ho, b3, ha, p(@1yr), p(x2y2), p(21Y2) }
is added to the list LUT and the sets

{h1, ho, p(x2y1), ha, D(T191), D(T2, Y2), P(2192) }
{he, h2, h3, ha,p(x1y1), p(T2,Y2), P(T1Y2)},
{h1,p(x1y3), b3, ha, p(x1y1), (22, Y2), P(T1Y2) }

to the list LNUT.
So, last element of LNUT

{h1, p(21y3), h3, ha, D(x191), D(T2,Y2), P(Z172) }

is chosen and eliminated. The Simplex tableau associated with it is shown in Table
3.

ho 10(!13?2!;/1) p(@2y3) hs
h1 1 0 0 1 0.5
0 p(z1ys3) 1 0 0 0 0.4
hs 0 1 0 0 0
hy 0 0 1 1 0.2
oy, p(T1y1) 0 1 1 1 0.2
0y, D(T2y2) 0 0 0 0 0.1
0y, D(z1y2) || —1 0 0 -1 0.3
— 0y, 0 Qy, Oy — Oy,

Table 3. Second tableau of the marginalization process

From this tableau, we apply the process again and so on. At the end of the
algorithm

Vertices = {(0.2,0.8,0),(0.2,0.4,0.4), (0,0.4,0.6), (0.1,0.9,0), (0,0.9,0.1) }
LH={y1+y2+ys =1}
LS={y1+1y2 <141 <02,52 > 04,51 > 0,92 > 0.9}

are obtained.

4. Final remarks

When a system works with sets of variables, two basic operations are needed:
combination, for integrating pieces of information from several sources, and mar-
ginalization for focusing the information on the set of variables on which we are
interested.
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Once the operators have been selected, the problem appears when we must
choose the way in which these operators must be performed. Combinations are
very easy and computationally effective if the convex polytopes are represented by
sets of constraints[20], However, this is not the natural way for marginalizing. The
leading problem of this paper has consisted on performing the marginalization of
a convex polytope of probabilities when it was represented by a set of constraints.
This marginalization has been obtained like a projection on a specific subspace.
Thus, we have generalized the problem constructing an algorithm for projecting a
convex polytope on any subspace, and determining the projection subspace where
the marginalization is obtained.

The way of performing the combination and the marginalization is very impor-
tant because, normally, on any problem, we have a lot of operations. In general,
the number of combinations is greater than the number of marginalizations. This
is the reason on account of which we have chosen an easier way for performing the
combination against the marginalization.
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