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Abstract

This paper deals with the sets of strict conjectures and consequences of
a given collection P of premises. The set of Averaging Functions is intro-
duced on lattices and some properties of these functions are shown. Aver-
aging Functions allow to interpret “restricted consequences” as averages of
premises. The subset of consequences Cj(P) and the subset of conjectures
&7 (P) defined by means of the averaging function g are introduced, and their
properties are studied. This sets allow to give decomposition theorems for
the restricted consequences and for the strict conjectures.
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1 Introduction

Let it be L a complete orthocomplemented lattice (see [1] and [4]) with its three
operations of intersection, union and complementation represented, respectively, by
-,+ and ’, the least element represented by 0, and the greatest element by 1. Po(L)
designates the subset of P(L) whose elements P verify Inf(P) # 0. From now on and
if there is no confusion, we will write xp = x1-xo -2y and oy = 1+ xo+ - -+ T
and denote Pos(L) the set of those P € Po(L) that are finite subsets of L; that
is P € Poy(L) if and only if P = {p1,...,px} with pn = Inf P # 0. Let’s write
{p1;-- sk} = Pr.

Given a complete orthocomplemented lattice L and a collection of premises
P € Py(L), in [4] where introduced the sets:
o ®,(P)={x € L;pr £ '}, of strict conjectures of P
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e Ch(P)={xz € L; pr < x}, of consequences of P,

and it was proven that for any finite set Py, in Poy(L) it is:

OA(P) = [ ®g(Pr), and Ca(P) = |J ColPr),
geGk(L) geGk(L)

where Gi(L) = {g : L*¥ — L;A < g}, ®,(P) = {z € L;g(p1,-.. ,pr) £ o'},
Co(Py) = {z € Lyg(pr,... ,px) < x}, with A the function Azq,...,25) =
Z1 - ®o-- 2. It was also proven that Ca(Px) = {9(p1,... ,0k);9 € Gr(L)} and,
consequently, when the set of premises is finite, a complete characterization of con-
sequences by means of functions belonging to G (L) was obtained.

For example, let L be the hexagonal orthocomplemented lattice shown in the
following figure. If P = {b}, for each g € G; it is Cy(P) = {zx € L;g(b) < 2} =
{1,b}, since g(b) > ps = b.

1

Hence, CA(P) = | Cy(P) = {1,b}. With regard to conjectures of P, as
9€G1
g(b) > b, the following cases are possible:

o if g(b) =bit is ®,(P) ={1,a,d,b},
y=1

o if g(b it is ®4(P) = Lo;
hence ®A(P) = () ®4(P) ={1,a,d’,b}.
geG:

2 Averaging functions in lattices

In what follows we will consider the subset Ay (L) = {g: L¥ — L;A < g < V} of
G (L), where V denotes the function V(z1, ... ,2x) = x1+- - -+ 2. The elements of
Ay (L) are k-dimensional Averaging Functions of L or, for short, Averaging Func-
tions. The sets Ag(L) and Gi(L) can be defined on any not orthocomplemented
lattice. For example, if L = [0,1], with - = Min, and + = Max, the elements of
Ag([0,1]) are the well known k-dimensional means (see [2] and [3])

For any g € Ar(L) and for each z € L it is g(x,... ,x) = x; in particular is
g(0,...,0) = 0 and g(1,...,1) = 1. Of course, it is Ay = {idy} asif g € 4,
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it is x < g(x) < x. Note that functions g € Ax(L) can not be decreasing (that
is, if x; < 44, for all ¢ € {1,...,k}, then g(z1,...,2x) > g(y1,...,yk)) since
g(0,...,0) =0and g(1,...,1) = 1.

Functions g : L* — L such that g(x1,... ,2x) = AV =, or g(z1,... ,7%) =
jeJ i€l
V A z with I; C{1,2,... ,k} and J C N finite, belong to Ax(L) and are non-
jed iel;
decreasing, that is, if z; < y; (1 < <k) then g(x1,...,zk) < gly1,... ,Yk)-

Functions g : L*¥ — L with terms in which there is the complement ) of
some variable z;, either can belong or not to Ag(L); for example, if £k = 3,
g(x1,22,23) = ) - x2 + x3 belongs to As(L), but g(z1,x2,23) = x| + 22 - 2%
and g(z1,22,23) = 2} - x2 + 25 do not belong to As(L) as in both cases it is
g(0,0,0) = 1. Furthermore, these functions can be or not non-decreasing; for
example, if L is the hexagonal orthocomplemented lattice mentioned above, the
function given by g1 (x1,x2) = z1 + 2} - 2 belongs to A2(L) and is non-decreasing
as it can be checked, while the function defined as go(x1, z2) = x1-25+2x1 22 belongs
to A2(L) and is not non-decreasing since g(b,0) = b and g(b,a) = a. Nevertheless,
both functions are non-decreasing if L is any Boolean Algebra; in fact, the first one
isgi(xy, @) =14+ 2] xo=w1+ 2 -2+ 2] 20 =21+ (21 + ) -3 =21 + 29,
and the second one is go(21,22) = 1 - &b + 1 - 22 = ©1(2) + x2) = 1. Note that
ag1(x1, 2) # 1+ 2 in the hexagonal lattice (for example g1(a,b) = a < b= a+b).

For each function g : L¥ — L its dual g* : L* — L is defined by ¢*(z1,... ,2x) =
g(xl, ... ,x}), and it is immediate that “g € Ag(L) if and only if ¢* € Ax(L)”. If we
denote, as it is usual, by 7; the k functions (projections) given by m;(z1,... ,2%) =
Tipas xp- Tk <z <@y + o xp, it is w; € AR(L) for any 1 < i <k, and it is
also obvious that m; = @}.

If s € S(k) is a permutation of {1,2,... ,k}, to each g : L* — L we can asso-
ciate the function ¢g° : L — L given by g°(x1,... ,2x) = g(@s(1),- .. , Tsk)). For
example, it is w7 = 7y, for any s € S(k). A function g : L* — L is symmet-
rical if for any s € S(k) it is ¢ = ¢g°. Obviously, A* = A and V® = V for any

k
s € §(k); furthermore, functions of Ax(L) defined as g(z1,...,2x) = > ;- xj

i,j=1
i
k
and g(@1,...,28) = >,  a; ;- xp are symmetrical too. Functions with terms
i,j,h=1
A it AR

in which there is the complement :L'; of some variable x; can be also symmetrical, for
example g € A3(L) given by g(z1, 22, 23) = 21 -2 -x3+x1 -xh-ah+a) 2o wh+a) 2523,

For any P € Py(L) it was also considered in [4] the set of restricted conse-
quences, C(P) ={z € L;pr < x < py} C CA(P), with py = Sup P, and the first
goal of this paper is to study the relationship of restricted consequences and strict
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conjectures with, respectively, the sets Cy(Pr) and ®4(Pr) when g belongs to the
before mentioned subset Ag(L) of Gy (L).

3 Restricted consequences are averages of premises

For each P, € Po(L) let’s consider Ai(L) and Cyu, (Pr) = {9(p1,....Dk);9 €
Ap(L)}. As Ap(L) C Gi(L) it is Ca(Pr) C Ca,(Pr) = {g(p1,--- ,pr);9 €
Gr(L)} = CA(Py) (see [4]): all the elements of Ca,(Ps) are consequences of Pj.
As pr < g(p1,-.- k) < Dy, it is Ca, (Pr) C C(Py): all the elements of Ca, (Ps)
are restricted consequences of Py (see [4]). More again,

Theorem 3.1. For any Py € Py(L) it is

Ca,(Pr) = C(Py)

Proof. For each g € C(Py) let’s consider the function g, : L¥ — L defined by

_Jqa Hzi=p,... 0 =Dk
9a(1;--- s ak) = { zn  otherwise.

As it is obvious that g, € Ax(L) and that g4(p1, ... ,pk) = g, it follows ¢ € Cy, (Pr).
Then C(Py) C Ca, (Pr)™ Consequently, the restricted consequences of Py are
exactly those consequences of Py that are averages of the k premises.

Examples. Let £ = {1,2...,5,6} and let L = P(F) be the corresponding
Boolean Algebra with 26 elements.

1. If P = {p1,p2,p3} with p1 = {2,4,6}, p2 = {1,2,3} and p3 = {2,5}, it is
pa = {2} # 0; the function g € As defined by g(x1, z2,23) = ] - z2 + x3 allows to
obtain the element x = {1,2,3,5} as a consequence of P.

2. If P ={p1,pa} with p; = {1,2,3,4} and ps = {4,5,6}, it is p; - po = {4} and
x={3,4,5} € C4,(P) is obtained from function

| x1-xe if (m1,22) # (p1,P2)s
g1, @) = { @ if (1, 22) = (p1,p)-

which belongs to As since z1 - 2 < g(21, 22) < 1 + z2. However, there is not any
function g(z1,22) = a-x1- 22 +b- 2 22+ c-x1-xh+d- -2} - ah with a,b,¢,d € {0,1}
(that is, a boolean function) such that g(p1,ps) = z. Hence, if functions consid-
ered are just boolean functions, in general, restricted consequences do not
belong to Ca,(P).



Averaging Premises 87

Theorem 3.2.

~—

For any Py, € Po(L), P C Ca,(Pr)-
If P, Qm € Po(L) and P, C Qm, then Ca, (P,) C Cy,, (Qm).
For any Py, € Py(L) it is Inf Cy4, (Pr) = pa # 0.

For each P, € Py(L) such that Cy, (Py) is finite with m

(a
(b
(c
(d
elements, it is

Ca,(Pr) D Ca,, (Ca, (Pr))-

~— S T

Proof. Notwithstanding the proofs can directly follow from theorem 3.1 and the
results obtained in [4], it is illustrative to show different ones by using averaging
functions.

(a) As for each p; € Py it is mi(p1,... , k) = P4, it follows p; € Cy, (FPr).

(b) As n < m, let’s suppose m = n + r. For each g(p1,...,pn) € Ca, (Pn) it
ISt p1e- Pn Pt Por SP1- Do SGPL -5 Pn) SP1 P Sp1tcc

Pn + Pnt1 + -+ + Pntr. The function fy : L"t" — L given by fo(z1,... ,Tpir) =
glx1, ... ;Zn)+0-Tpy1 + -+ 0 Zpy, obviously verifies 21 - - Tpgr < 21+ -y <
gz, zn) = folz1,oo s Thnyr) <21+ -+ 2, < 214 -+ + Zpgy, and then

fg = An+r = Ap. ConsequentIY7 g(pla cen apn) - fg(Pl» e 7pm) < CAm(Qm)-

(¢) Inf Ca,(Pe) = Inf{g(ps,... .pr)sg € Ax(L)} = Inf{g(p1,... . pr);pa <
g(p1,- .. k) <oy} =pa. Consequently, Cy, (Pr) € Po(L).

(d) As C4, (Py) is finite, let it be Ca, (Px) = {91(p1,--- sPk)s- - gm(P1,- -+ sDk)}
and g; € Ag(L) (1 < i < k) with m > k. Then, any ¢ € Ca,, (Ca,(Px)) can be
written as ¢ = G(g1(p1,--- ,Pk)s- - s Gm(P1,--- ,Pk)) With G € A,,. Now for each
G € A, let’s consider the function fg : L¥ — L defined by:

folz1, . zk) = G(g1(x1,- oo s Zk)s v s Gm (T, oo s Tk))-
It is fo € Ar(L); in fact, for any i € {1,... ,m} and for each (x1,... ,zx) € L* it
is

m
T1 Tk gi(z1,... ,2x) and \/gi(xl,... k) < @1+ e+ T,

i=1

IN
~

Il
-

(2

and because of y1 - Y < Gly1, -+, Ym) < y1 + -+ Ym for each (y1,-.. ,Ym) €

L™, it suffices to take y; = gi(x1,... ,z) for each 1 < i < m to have
21w < Glg(z, o k) s gml( @1, -y 2k)) <@ 4+ xR, VX1, k) € Lk
That is, @1 -2k < fo(x1,--. ,2k) < T1+ -+ + Tk, or fg € Ag(L), and then

G(gl(p17"' apk)a"' agm(pla"' apk)) = fG(pla"' ?pk) S OAk(Pk)

Finally, Ca, (Ca,(Pr)) C Ca,(Pr). ™ Consequently, if for each P, € Po(L) we
define Cx(Py) = Cy, (Py), then



88 E. Trillas, E. Castifeira & S. Cubillo

Corollary 3.3. If L is finite, function Cy : Po(L) = Po(L), defined as Cx(Py) =
Ca, (Py) is a Tarski’s Consequences Operator.

Theorem 3.4. If P C L, either finite or not, belongs Py (L), for each finite P, C P
it is Ca(Py) C C(P).

Proof. Obvious because of Ca(Py) = Ca,(Pr) = C(Py) < C(P). ™ Con-
sequently, by means of the operator C'4 defined on Py(L) some restricted con-
sequences of any P € Py(L) can be obtained. In particular for any non-empty
FcAp(L)itis {g(p1...,pk);9 € F} CC(P).

4 Consequences and averages of premises

Let’s consider the set C;(Py) = {x € L;g(p1,-.. ,px) < x} for each g € Ag(L).
Of course, as Ax(L) C Gi(L) it is Cy(Px) = C;(Py) if g € Ax(L) and, then, it is
C;(Pk) C Cn(Pg). That is, any x € C;‘(Pk) is a consequence of Pg. Again, pr =
Inf CA(Pr) < InfC;(Py) = g(p1,- .. ,px) implies Inf C;(Px) # 0 and C;(Py) €
Po(L). Obviously, if g1 < g2 (pointwise) for both g1,92 € Ax(L) it is C;,(Pr) C
Cy (Pg); then, as it is A < g <V for any g € Ag(L), it follows C\ (Py) C Cj (Py) C
Cr(Py).

Theorem 4.1. For any Py € Po(L), Ca(Pr) = U  Cj(FPr).
gEAK(L)

Proof. As Cy(Py) C Ca(Pg) it follows | Cy(Pr) C Ca(Pr). As A € Ax(L)
gEAL(L)
it also follows Ca(Py) = CX(Px) € U Cy(Pk). ™
gEAL(L)
Corollary 4.2. z € CA(Pg) if and only if it exists some g € A;(L) for which
it is g(p1,...,pk) < z.

Theorem 4.3. Forany Py € Py(L), itis Pr C Cy(Px) ifand onlyif g(p1,... ,px) =
P Pk-

Proof. Of course, if g(p1,... ,pk) = p1-- P it is g(p1,... ,px) < p; for each 4,
and then P, C C}(P). Let’s suppose P, C Cj(Py); that implies g(p1,... ,pr) < pi
(1 < i < k) and consequently g(p1,... ,pk) = p1-+-Dk. ™ Then, if p1---pp <
9(p1,--- sPk), P is not included in C5(P). The theorem holds if in particular it
is g = A, in which case CX(Py) = {z € L;pr < z}.

Theorem 4.4. If Py, Qpyr € Po(L), and Py C Qpyy, then C5(Py) C Cg*(Q;HT)

with § € Ak, defined as g(x1, ... ,Zp4r) = g(z1, -+, Tk) +0-Tpg1+. ..+ 0 Zpgr.
Proof. From x1 -+ Tpyr <12 < g(ajl’_._ ’;pk) <zi4+-- 4o <4+
Thtr, 1t follows 1 - g < G(T1, - - s Thar) < 14 . .+ Tyr. Thenifz € C’;‘(Pk),

from g(p1,...,pr) < z it follows G(p1,... ,Pk+r) < T, 00 T € Cg(Qk_Hn). B Clearly



Averaging Premises 89

the theorem can be proven by means of any § € Ay, whose restriction to L*
coincides with g.

Corollary 4.5. If P, € Po(L),

g € Ag(L) is such that g(p1,... ,pk) = p1- Dk,
and C; (Py) is finite, then Cj(Py) =

C3(Cg(Pyk)), with g as in theorem 4.4.
Proof. It is Py C C;(Py) and if Cy(Pr) = {p1,--- :Pk:q1,--- ,qr} it follows,
from theorem 4.4, that C7(Px) C C5(Cy(Py)) with g(z1, ..., Zktr) = g(@1, ..., 2k)+
0-2gy1+ ... +0 2y, and g € Agy,. Reciprocally, if y € Cg"f(C;(Pk)), or
5(101’- <9 P> g1y .- vq’r’) < Y, it is g(pla v vpk) < Y, and AS C;(Pk) .
For P, = {p1,...,pr} and Qr = {q1,... ,qx} let’s define P, < Q) whenever
1 <q1,---,Pk < qx for these orderings of the elements of P and Q.

Theorem 4.6. If g € Ai(L) is non-decreasing, P, < Q) and P, € Po(L), then

Proof. If € C5(Qg), from g(q1,... ,qr) < z it follows g(p1,... ,pr) < z, as
1 S d1,--- 5Pk S qdk - Then T < O;(Pk) u

Remark If g; and g9 are in Ag(L), g1 < go (pointwise) and P, € Py(L), the
set Cgy 00(Pr) = {z € L; 1 (1 -+ s 08) < @ < ga(p1, ... ,px)} verifies Cy, 4,(Py) C

C(Pr)aspr - pr < g1(p1,--- oK) <@ < g2(p1,. -+ ,px) < p1+...+pr. Obviously,
C(Py) = Cav(Pg) is the particular case in which A = g1, V = go.

5 Strict Conjectures and averages of premises

For each Py, € Py(L) and each g € Ax(L) it is defined

O, (Pr) ={z € L;g(p1,--- ,pr) £ 7'}

If g1,92 € Ar(L) and g1 < go (pointwise) it is obvious that @} (Py) C &7, (P)-
Then, as it is A < g <V for any g € Ag(L) it follows ®A(Py) C @;(Pk) C Oy (Pr)
and then:

OA(P) = (] ®p(Pe)and @u(Pe)= |J @;(P).
geAk(L) QGAk(L)

Consequently, z € ®A(Pg) if and only if for all g € Ax(L) it is g(p1,... ,px) £
2/, and x € @ (Py) if and only if it exists some g € Ai(L) for which it is

9(prs- - pr) £ 2.
Theorem 5.1. For each g € Ax(L), it is Py C ®5(Fy).

Proof. If for some p; € Py it is g(p1,... ,pr) < p} it will follow py - ... pp < pf
and hence p, = 0 that is absurd. ®
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Theorem 5.2. Given a family {gx ; k¥ € N,k > 2} of functions g : L* — L such
that for each k& > 2, each r > 1 and each (z1,... ,Zktr) € LEtr verify

Gtr(T1, -+ Thogr) < Gu(T1, -+ 5 The),
it is @y, (Pryr) C @g, (Pr), for any Py, Py, € Po(L) such that Py C Pyy,.

Proof. If x € @y, (Pryr) it is gegr (P15 - Pryr) £ 2" and gr(p1,... ;o) £ 2.

Then z € @4 (Py). ™ In particular, when gi(z1,...,25) = /\f:1 x; it results
q)/\(Pk+r) C q)/\(Pk)
An example of such a family {gx} is given by gr(z1,... ,2k) = ©1 T2 - T+ 2]+

Ty Tp+x1-xh - T+ +x1 - Tp—1-2}. This is a family of functions that, if L is
a Boolean Algebra, follows the law of recurrence: go(x1,22) = 1 2o+ xo+x1-2)
and if k > 2, gk(.’L’l, . ,:Uk) =Ty - gkfl(.’z,’l, . ,ZU]C,1) + X1 T—1 - ZU;C

Theorem 5.3. Let it be a family {gx} of functions g : L¥ — L such that for each
k > 2, each » > 1 and each (x1,... ,2ry,) € LFTT | verify:

961, oy Zk) < Grgr (@1, 0o s Thgr)e

It holds
q)gk (Pk) C ¢gk+r (Pk-i-r)y

for any couple Py, Pyyr € Po(L) such that Py, C Py,

Proof. Like that of theorem 5.2. ®If gp(zy,... ,25) = 1 + -+« + x it is
Py (Py) C Pyv(Prtr)-

Theorem 5.4. If g € A,(L) is non-decreasing, P, < Qj and Py, € Py s(L), then
Qr € Po(L) and @7 (Py) C 3 (Qk)-

Proof. If x € ®3(Py) and g(q1,... ,qx) < 2, as g(p1, ... ,pk) < glqr, ... k) it
will follow g(p1, ... ,px) < 2, that is absurd. Then z € ®3(Qx) ™

Example. Let’s consider the hexagonal orthocomplemented lattice of the first
example. With P = {a, b}, then pr = a. If g € Ay it is a < g(a,b) < b, and the
following cases are possible:

e if g(a,b) = a it is C;(P) = {1,a,b} and ®,(P) = {1,a,b},
e if g(a,b) = b it is C;(P) = {1,b} and ®,(P) = {1,a,d’,b};
hence CA(P) = U C;(P) = {1,a,b}, ®A(P) = [] ®,(P) = {1,a,b} and
gEA2 gEA2

o, (P) = gl ®,(P)={1,a,d,b}.
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Conclusions

This work continues that initiated in [4], where structure theorems for both

strict conjectures and restricted consequences were given by using functions in
Gip(L) = {g: L* — L;A < g}. This paper is restricted to functions in Agx(L) =
{g: L* = L; A < g <V}, the set of averaging functions.
It is shown that restricted consequences are just averages of the premises, and that
the operator assigning to a family of premises Py, the set of their averages Cy, (Px),
is a Tarski’s Consequences Operator. Moreover, sets of conjectures @;(Pk) ={z ¢
L;g(p1,... ,pr) £ '} with g € Ax(L) are defined and initially studied.
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