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Abstract

_ n(n—l)---l(n—r+1) _

We are familiar with the combinatorial formula ( :
number of possible ways of choosing r objects out of n objects.

In section 1 of this paper we obtain < g > and < g

) by using a func-
tional equation, the additive Cauchy equation.

In genetics it is important to know the combinatorial function gr(n) =
the number of possible ways of picking r objects at a time from n objects
allowing repetitions, since this function describes the number of possibilities
from a gene pool. Again we determine g2(n) and g3(n) with the help of the
additive Cauchy equation in section 2.

Functional equations are used increasingly in diverse fields. The method
of finding < g ) , ( ;L ) ,g2(n) and gs(n) (see Snow [6]) is similar to that of

finding the well known sum of powers of integers Sk (n) = 15 4+ 25 ... 4 p¥
(Aczél [2], Snow [5]).

Notation. Let R denote the set of real numbers, Z7} denote the set of positive
integers. A function A : R — R is said to be additive (satisfies the additive Cauchy
equation) provided A satisfies the functional equation

(A) Az +y) = A(z) + A(y), for z,y € R.

It is well known (Aczél [1]) that on Z%, A(n) = cn, where c is a constant.

1. Combinatorial formula

Let B and D be two sets of n and m objects, respectively. Let f.(n) = number of
possible ways of taking r objects from n objects. It is clear that f.(n + m) = the
number of possible r objects among m+n objects, satisfies the system of functional
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equations

(1) fr(m+n):f7‘ +f7‘ +Zfz fr z s

form,n,r € Z*. We will now obtain fo(n) and f3(n), using the Cauchy functional
equation (A), noting that f2(2) =1=7f (3), fi(n) =n. For r =2, (1) yields

fa(m +n) = fo(n) + f2(m) + fr(m) fr(n)

which can be rewritten as
(A) Ai(m +n) = Ai(m) + Ai(n), for, m,n € Z7
whose Ai(n) = fo(n) — in*,n € Z3 .
Since A1(n) = c1n, fa(n) = %n2 + cin. Using f2(2) =1, we get ¢y = —1 and
To obtain f3(n), take r = 3 in (1) to get
fs(m +n) = fs(n) + fs(m) + fi(n)fa(m) + f2(n) f1(m)

n-mim-—1) m-n{n—1)

= faln) + fofm) + 0 .
= f3(n) + f3(m) + %(an +n’m) — mn
= fl) 1 fslm) + glom b )~ m® ¥ Z{(m g n)? —m? )

which goes over into

(A) Ay(m +n) = Az(m) + As(n)
L, 1,
where As(n) = f3(n) — g + P
Since Az(n) = can, f3(n) = %n?’f %n2+02n. Using f3(3) = 1, we have co = 1/3
and

1y 1, 1 namn-1)(n-2) [n
fg(n)—g’n 7571 +§’I”L—T— 3 .
Remark 1. This method is applicable to find fx(n) for any specific k and for

general k, ref [3],[4],[6].
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2. Application in genetics

In genetics, it is of interest to determine the combinatorial function g,.(n) = the
number of ways to take r out of n objects permitting repetitions.

Determining g.(n) is similar to finding f,.(n). We will determine g,(n) for
the specific values 2,3 for r using the additive Cauchy equation (A). Note that
g1(n) = n and go(1) = 1 = g3(1), that is, there is only one way one can take one
object twice and one object three times. It is evident that g.(m + n) satisfy the
system of functional equations

(2) Gr(m+4n) = Gr ( + gr + Zgz gr z

for m,n,r € Z%, which is the same as (1).
To determine go(n) we proceed as in section 1. Take r = 2 in (2) to get

g2(m +n) = ga(m) + g2(n) + mn
1
= g2(m) + g2(n) + S [(m + n)? —m? —n’|
which as before reduces to

(A) Az(m +n) = As(m) + Az(n),m,n € Z}

1
where Az(n) = g2(2) — §n2,n € Z3 since Az(n) = c3n,

1
gZ(n) — 5”2 + c3n,

1, 1
=50’ + gn (using ga(1) = 1),

1
= an(n +1).

Finally to obtain gs(n), let » = 3 in (2) to have

n~m(m—|—1)+m-n(n+1)

gs(m +n) = gs(n) + gs(m) + 5 9

= g3(n) + gs(m) + =(nm? + n’*m) + mn

| = DN =

= gs(n) + gs(m) + [(m—l—n)?’—m?’—n?’}—|—%[(m—|—n)2—m -n

which can be put in the form

(A) Ag(m +n) = Ag(m) + Ay(n),m,n, € Z7
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1

where A4(n) = gs(n) — =n® — 5712. Then A4(n) = can,

6

1 1
g3(n) = =n> + =n? + e4n

6 2
1 1 1
= En?’ + §n2 + 3" (using g3(1) =1)

_ %n(n 1)) n+2) = W

Remark 2. By this method, gi(n) for any specific k£ can be determined and for
general k (see [3],[4],[6]).

Remark 3. Even though the system of equations (1) and (2) satisfied by f,.(n) and
gr(n) are the same, the solutions are different because of the different boundary
conditions — other combinatorial formulas and the sum of powers of integers can
also be determined by adopting this method.
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References

[1]

2]

Aczél, J., Lectures on functional equations and their applications, Academic
Press, New York, 1966.

Aczél, J., General solution of a system of functional equations satisfied by the
sums of powers. Mitt. Math. Sem. Giessen 123 (1977), 121-128.

Aczél, 1., Functions of binomial type mapping groupoids into rings, Math. J.
154, (1977), 115-124.

Janossy, L., Renyi, A. and Aczél, J., On composed poisson distributions — I,
Acta Math. Acad. Sci., Hungar. (1950), 209-224.

Snow, D.R., Formuls for sums of powers of integers by functional equations,
Aequationes Math. 18, (1978), 269-285.

Snow, D.R., Some applications of functional equations in ecology and biology,
In Ecosystem Analysis and Prediction, ed. S.A. Levin, Siam, (1975), 306-313.



