Application of Cauchy's Equation in Combinatorics and Genetics

PL. Kannappan
Dept of Pure Mathematics
University of Waterloo
Waterloo, ON N2L 3G1
plkannappan@watdragon.uwaterloo.ca

Abstract

We are familiar with the combinatorial formula $\binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!} =$ number of possible ways of choosing r objects out of n objects.

In section 1 of this paper we obtain $\binom{n}{2}$ and $\binom{n}{3}$ by using a functional equation, the additive Cauchy equation.

In genetics it is important to know the combinatorial function $g_r(n)$ = the number of possible ways of picking r objects at a time from n objects allowing repetitions, since this function describes the number of possibilities from a gene pool. Again we determine $g_2(n)$ and $g_3(n)$ with the help of the additive Cauchy equation in section 2.

Functional equations are used increasingly in diverse fields. The method of finding $\binom{n}{2}$, $\binom{n}{3}$, $g_2(n)$ and $g_3(n)$ (see Snow [6]) is similar to that of finding the well known sum of powers of integers $S_K(n) = 1^K + 2^K + \cdots + n^K$ (Aczél [2], Snow [5]).

Notation. Let \mathbb{R} denote the set of real numbers, Z_+^* denote the set of positive integers. A function $A: \mathbb{R} \to \mathbb{R}$ is said to be *additive* (satisfies the *additive Cauchy equation*) provided A satisfies the functional equation

(A)
$$A(x+y) = A(x) + A(y), \text{ for } x, y \in \mathbb{R}.$$

It is well known (Aczél [1]) that on Z_+^* , A(n) = cn, where c is a constant.

1. Combinatorial formula

Let B and D be two sets of n and m objects, respectively. Let $f_r(n)$ = number of possible ways of taking r objects from n objects. It is clear that $f_r(n+m)$ = the number of possible r objects among m+n objects, satisfies the system of functional

equations

(1)
$$f_r(m+n) = f_r(n) + f_r(m) + \sum_{i=1}^{r-1} f_i(n) f_{r-i}(m),$$

for $m, n, r \in \mathbb{Z}^*$. We will now obtain $f_2(n)$ and $f_3(n)$, using the Cauchy functional equation (A), noting that $f_2(2) = 1 = f_3(3), f_1(n) = n$. For r = 2, (1) yields

$$f_2(m+n) = f_2(n) + f_2(m) + f_1(m)f_1(n)$$

$$= f_2(n) + f_2(m) + mn$$

$$= f_2(n) + f_2(m) + \frac{1}{2}[(m+n)^2 - m^2 - n^2]$$

which can be rewritten as

(A)
$$A_1(m+n) = A_1(m) + A_1(n)$$
, for, $m, n \in \mathbb{Z}_+^*$

whose $A_1(n) = f_2(n) - \frac{1}{2}n^2, n \in \mathbb{Z}_+^*$.

Since $A_1(n) = c_1 n$, $f_2(n) = \frac{1}{2}n^2 + c_1 n$. Using $f_2(2) = 1$, we get $c_1 = -1$ and

$$f_2(n) = \frac{1}{2}n^2 - \frac{1}{2}n = \frac{n(n-1)}{2!} = \binom{n}{2}$$
.

To obtain $f_3(n)$, take r=3 in (1) to get

$$f_3(m+n) = f_3(n) + f_3(m) + f_1(n)f_2(m) + f_2(n)f_1(m)$$

$$= f_3(n) + f_3(m) + \frac{n \cdot m(m-1)}{2} + \frac{m \cdot n(n-1)}{2}$$

$$= f_3(n) + f_3(m) + \frac{1}{2}(nm^2 + n^2m) - mn$$

$$= f_3(n) + f_3(m) + \frac{1}{6}[(m+n)^3 - m^3 - n^3] - \frac{1}{2}[(m+n)^2 - m^2 - n^2]$$

which goes over into

(A)
$$A_2(m+n) = A_2(m) + A_2(n)$$

where $A_2(n) = f_3(n) - \frac{1}{6}n^3 + \frac{1}{2}n^2$.

Since $A_2(n) = c_2 n$, $f_3(n) = \frac{2}{6}n^3 - \frac{1}{2}n^2 + c_2 n$. Using $f_3(3) = 1$, we have $c_2 = 1/3$ and

$$f_3(n) = \frac{1}{6}n^3 - \frac{1}{2}n^2 + \frac{1}{3}n = \frac{n(n-1)(n-2)}{3!} = \begin{pmatrix} n \\ 3 \end{pmatrix}.$$

Remark 1. This method is applicable to find $f_k(n)$ for any specific k and for general k, ref [3],[4],[6].

2. Application in genetics

In genetics, it is of interest to determine the combinatorial function $g_r(n)$ = the number of ways to take r out of n objects permitting repetitions.

Determining $g_r(n)$ is similar to finding $f_r(n)$. We will determine $g_r(n)$ for the specific values 2,3 for r using the additive Cauchy equation (A). Note that $g_1(n) = n$ and $g_2(1) = 1 = g_3(1)$, that is, there is only one way one can take one object twice and one object three times. It is evident that $g_r(m+n)$ satisfy the system of functional equations

(2)
$$g_{r(m+n)} = g_r(m) + g_r(n) + \sum_{i=1}^{r-1} g_i(n)g_{r-i}(m),$$

for $m, n, r \in \mathbb{Z}_+^*$, which is the same as (1).

To determine $g_2(n)$ we proceed as in section 1. Take r=2 in (2) to get

$$g_2(m+n) = g_2(m) + g_2(n) + mn$$

= $g_2(m) + g_2(n) + \frac{1}{2}[(m+n)^2 - m^2 - n^2]$

which as before reduces to

$$(A) A_3(m+n) = A_3(m) + A_3(n), m, n \in \mathbb{Z}_+^*$$

where
$$A_3(n) = g_2(2) - \frac{1}{2}n^2, n \in \mathbb{Z}_+^*$$
 since $A_3(n) = c_3 n$,

$$g_2(n) = \frac{1}{2}n^2 + c_3 n,$$

$$= \frac{1}{2}n^2 + \frac{1}{2}n \text{ (using } g_2(1) = 1),$$

$$= \frac{1}{2!}n(n+1).$$

Finally to obtain $g_3(n)$, let r=3 in (2) to have

$$g_3(m+n) = g_3(n) + g_3(m) + \frac{n \cdot m(m+1)}{2} + \frac{m \cdot n(n+1)}{2}$$

$$= g_3(n) + g_3(m) + \frac{1}{2}(nm^2 + n^2m) + mn$$

$$= g_3(n) + g_3(m) + \frac{1}{6}[(m+n)^3 - m^3 - n^3] + \frac{1}{2}[(m+n)^2 - m^2 - n^2]$$

which can be put in the form

(A)
$$A_4(m+n) = A_4(m) + A_4(n), m, n, \in \mathbb{Z}_+^*$$

64 PL. Kannappan

where
$$A_4(n) = g_3(n) - \frac{1}{6}n^3 - \frac{1}{2}n^2$$
. Then $A_4(n) = c_4n$,

$$g_3(n) = \frac{1}{6}n^3 + \frac{1}{2}n^2 + c_4n$$

$$= \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n \text{ (using } g_3(1) = 1)$$

$$= \frac{1}{6}n(n+1)(n+2) = \frac{n(n+1)(n+2)}{3!}.$$

Remark 2. By this method, $g_k(n)$ for any specific k can be determined and for general k (see [3],[4],[6]).

Remark 3. Even though the system of equations (1) and (2) satisfied by $f_r(n)$ and $g_r(n)$ are the same, the solutions are different because of the different boundary conditions – other combinatorial formulas and the sum of powers of integers can also be determined by adopting this method.

Acknowledgement: I thank Professor J. Aczél for his help during the preparation of the paper.

References

- [1] Aczél, J., Lectures on functional equations and their applications, Academic Press, New York, 1966.
- [2] Aczél, J., General solution of a system of functional equations satisfied by the sums of powers. Mitt. Math. Sem. Giessen 123 (1977), 121–128.
- [3] Aczél, J., Functions of binomial type mapping groupoids into rings, Math. J. **154**, (1977), 115–124.
- [4] Jánossy, L., Renyi, A. and Aczél, J., On composed poisson distributions I, Acta Math. Acad. Sci., Hungar. (1950), 209–224.
- [5] Snow, D.R., Formuls for sums of powers of integers by functional equations, Aequationes Math. 18, (1978), 269–285.
- [6] Snow, D.R., Some applications of functional equations in ecology and biology, In Ecosystem Analysis and Prediction, ed. S.A. Levin, Siam, (1975), 306–313.