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Abstract

It is shown that any set—open topology on the automorphism group A(X)
of a chain X coincides with the pointwise topology and that A(X) is a topo-
logical group with respect to this topology. Topological properties of connect-
edness and compactness in A(X) are investigated. In particular, it is shown
that the automorphism group of a doubly homogeneous chain is generated
by any neighborhood of the identity element.
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1 Introduction

Let X be a chain and A(X) denotes the automorphism group of X, i.e., the set
of all order—preserving bijections from X onto X. A(X) is also a lattice-ordered
group with respect to meet and join operations defined, respectively by

(f N g)(x) = min{f(z),g(x)} and (fVg)(x) = max{f(z) g(x)}

for all f,g € A(X) and z € X [5].

The usual interval topology on X makes it completely normal Hausdorff space [1].
Thus A(X) is a function space. In Section 2 we show that the pointwise topology is
the smallest admissible topology on A(X) and compatible with the group structure
on A(X). We also prove that this topology coincides with any set—open topology
and, consequently, with the compact—open topology. The pointwise topology is
also compatible with the lattice structure on A(X). Thus A(X) is a topological
lattice—ordered group.

Homogeneity properties of X affect topological properties of A(X). In Section 3
we establish some geometric and topological properties of doubly homogeneous
chains that will be used in the succeeding sections.

A connected topological group is generated by any neighborhood of the identity
element [2]. This fact motivates our studies of connectedness properties of A(X)
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in Section 4. We show that A(X) is connected (resp. totally disconnected) if and
only if X is connected (resp. totally disconnected). We also prove that the auto-
morphism group of a doubly homogeneous chain is generated by any neighborhood
of the identity.
In Section 5, we establish three criteria for a subset to be compact in A(X).
Finally, in Section 6, we use the techniques developed in this paper to develop
an approach to robustness of aggregation procedures.

2 Topologies on automorphism groups

Let X be a chain and A(X) its automorphism group. Since X is also a topological
space with the usual interval topology, A(X) is a function space.

For each pairs of sets A C X and B C X, (A, B) denotes the set of all functions
f € A(X) such that f(A4) C B.

Definition 2.1. The pointwise topology (p—topology) T, on A(X) is that having as
subbasis all sets ({x}, V) where x € X and V belongs to the subbasis of the interval
topology on X consisting of open rays.

Definition 2.2. A topology ¥ on A(X) is admissible (or jointly continuous [6]) if
the evaluation mapping £ : A(X) x X — X defined by

E(f,x) = f(x)
for all f € A(X) and x € X is continuous.
Theorem 2.1. %, is the smallest admissible topology on A(X).

Proof. (a) First we show that %, is admissible. It suffices to show that the inverse
image W of an open ray in X is an open set in A(X) x X. Consider an open ray
(a,—) (the case of open rays in the form (+, a) is treated similarly). Then

W=E"(a,—) ={(f2): fx) >a}

Let (fo,z0) € W. Then fo(xo) > a or, equivalently, f5'(a) < zo. Let us consider
two cases.

(i) There exists b such that f;'(a) < b < xo or, equivalently, a < fo(b) < 0.
Then

o€V =(b=) and focU={f:f(b)>a}.

Clearly, U x V is an open neighborhood of (fo, zo). Suppose (f,z) € U x V. Then
f(z) > f(b) > a implying U x V C W. Hence W is an open set.

(ii) Suppose that 2 covers f5 '(a). Then fo(xo) covers a. We define

V =(fo'(a),—) and U={f: f(xo) > a}.
Then U x V is an open neighborhood of (fy,zo) and

V=lxo,—) and U={f: f(zo) > folzo)}.
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Suppose (f,z) € U x V. Then

f(x) > f(xo) > fo(zo) > a.

Thus U x V C W implying that W is an open set.
(b) We prove now that ¥, is the smallest admissible topology on A(X). Let
% be an admissible topology. For any given z € X, the mapping &, : A(X) - X
defined by f — f(z) is continuous, since £ is a continuous mapping. Let U be an
open set in X. Then
EU)={f:f(x)cU}.

These sets are open in ¥ and form a subbasis for ¥,. Thus %, C %.

O

Since any topology containing an admissible topology is admissible, we can
reformulate the previous theorem as follows.

Theorem 2.2. A topology ¥ on A(X) is admissible if and only if T D %,.
We now prove that group operations are continuous in p—topology on A(X).
Theorem 2.3. A(X) endowed with the p—topology is a topological group.

Proof. First we prove that f — f~! is a continuous mapping of A(X) onto itself.
Let

({a}; (b, =) ={f : fa) > D)

be an element of subbasis for %,. The inverse image of this set is given by

{ffHa) >0} ={f:f(b) <a}=({b},(+a)

which is an element of the same subbasis. Similarly, the inverse image of
({a}, (<, b)) is ({b}, (a,—)). Thus f — f~! is continuous.

Now we prove that the binary group operation in A(X) is continuous. Let
W = ({a},(b,—)) be an element of the subbasis in A(X) (the case of elements
in the form ({a}, («,b)) is treated similarly) and hg = fogo be an element of W.
Then fo(go)(a)) > b. To prove continuity of the composition operation in A(X) it
suffices to find open neighborhoods U and V of fy and go, respectively, such that
forany f €U and g € V, fg € W. Consider two cases.

(i) There is ¢ € X such that

b < ¢ < folgo(a)).
Then
fo 1) < fo(TH(e) < gola).

Let V = ({a}, (d, —)) and U = ({d}, (b, ~)), where d = f; '(c). We have fo € U,
since fo(d) = ¢ > b, and go € V, since go{a) > d. Thus U and V are neighborhoods
of fo and gy, respectively. Let f € U and € V. Then

flg(a)) > f(d) > b
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implying fg € W.

(ii) Suppose now that fo(go)) covers b. Then go(a) covers ¢ = f; ' (b). We define
V = ({a}, (¢, »)) and U = ({go(a)}, (b, —)). Then gy € V, since go(a) > f3 ' (b) =
¢, and fo € U, since fo(go)) > b. Since fo(go(a)) covers b and go(a) covers fy *(b),
we have

V =({a},[go(a),=)) and U= ({go(a)},[fo(g0(a)),=)).

Let f and g be any elements of U and V, respectively. Then

f(g(a)) = f(go(a)) = Jo(go(a)) > b

implying fg € W.
O

We proved that the p-topology is the smallest admissible topology on A(X) and
that A(X) is a topological group with respect to Tp,. Our next theorem shows that
some other topologies that play an important role in the theory of transformation
groups coincide with the p—topology in the case of automorphism groups. First we
introduce the following definition.

Definition 2.3. Let S be the set of all subsets A of X satisfying the following
conditions:

(a) If inf A exists, then it belongs to A.

(b) If sup A exists, then it belongs to A.
The S—topology Ts on A(X) is defined by its subbasis which consists of sets (A,U)
where A € § and U is an open ray in X.

Clearly, S contains all closed subsets of X. Thus s contains the largest set—
open topology [8] and, consequently, compact—open and pointwise topologies.

The following theorem shows that the S—topology coincides with the pointwise
topology in the case of automorphism groups.

Theorem 2.4. Ts =%, on A(X).

Proof. Let W = (A, (a,—)) be a nonempty element of the subbasis for Ts (the
case of elements in the form (A, (<, a)) is treated similarly). If b = inf A exists,

then b € A and
(A7 (a” _>)) = ({b}7 (CL, _>))a

since all functions in A(X) are strictly increasing. Suppose inf A does not exist.
Since (A, (a, —)) is not empty, there is f € A(X) such that f(z) > aforallz € X,
or, equivalently, f~'(a) < z for all z € X. Thus the set L of all lower bounds of
A is not empty. Since inf A does not exists, for any x € L there is y € L such that
y > x. Then x € («,y) C L implying that L is open. Consider V = ({a}, L). We
have

fevVeflaeLe fla) <z (Vxe A
sflz)y>a(VecA) e flcw
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Thus W = VL. Since V is open in the p-topology, we conclude that W is also
open in this topology.
O

Let X be a chain and X’ be the set of all inner elements of X, i.e.,
X' ={zeX:u<x<uw, for someu,ve X}

Thus a € X\X' if and only if a is a maximal or minimal element in X. If f is
an automorphism of X, then its restriction on X’ is an automorphism of the sub-
chain X', since maximal and minimal elements are fixed points of automorphisms.
Moreover, any automorphism of the subchain X’ can be uniquely extended to an
automorphism of X. Clearly, A(X) and A(X’) are isomorphic algebraic groups.
They are also isomorphic as topological groups endowed with the p—topology. In-
deed, any element of the subbasis of ¥, in A(X) in the form ({a},U), where a is
a maximal or minimal element, is either empty or coincides with A(X).

In what follows, we consider only chains without minimal and maximal elements
and assume that automorphism groups are endowed with the pointwise topology.

3 Properties of chains

The purpose of this section is to introduce some basic geometric and topological
properties of chains.

Let (a,b) be an open interval in X. Consider all automorphisms of X that
coincide with the identity automorphism on the complement of (a, ) in X. These
automorphisms form a subgroup of A(X) which is isomorphic to A((a,b)). We
shall often identify A((a,b)) with its isomorphic image in A(X).

First we introduce notions of transitivity and homogeneity [5].

Definition 3.1. Let X be a chain and A(X) its automorphism group. We say that
A(X) is transitive if for any x,y € X there is f € A(X) such that f(z) = y. If
A(X) is transitive, then X is said to be homogenecous.

Definition 3.2. If for any z1 < ... < z, and y1 < ... < y, in X there is
f e A(X) such that f(x;) = y; for all i,1 < i < n, we say that A(X) is n—
transitive and X is n—homogeneous.

Obviously, n—homogeneity (n—transitivity) implies m—homogeneity (m—transi-
tivity) for m < n. The converse, in general, is not true.

Double homogeneous chains are considered to be “well-behaved” in the theory
of chains [5, Chapter 2]. The following theorem gives some equivalent descriptions
of these chains.

Theorem 3.1. Let X be a chain. The following conditions are equivalent.
(1) X is doubly homogeneous;
(2) X is n—-homogeneous for all n > 2;
(3) any open interval in X is homogeneous;
(4) any open interval in X is n—homogeneous for all m > 2.
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Proof. (1) & (2) by [5, Lemma 1.10.1].
(2) = (3) and (2) = (4). Let (a,b) be an open interval in X. Consider two
sequences
a<r<...<2p, <b

and
a<yp <...<yp<b,

where n > 1. Since X is (n + 2)-homogeneous, there is f € A(X) such that
fla) =a, f(b) = b,and f(x;) = y; for all i, 1 < i < n. The restriction f* of f on
(a,b) is an automorphism of (a,b) satisfying f*(x;) = y; for all 4, 1 <i <n.

(3) = (1). We do not distinguish automorphisms of open intervals and their
trivial extensions to X. Let z < y and u < v be elements of X. Consider an open
interval (a,b) containing these elements. Since (a,b) is homogeneous, there is an
automorphism f such that f(y) = u. Since u < v, we have f~1(u) < f=1(v) = y.
Thus f~1(u) € (a,y). Since u < v, we have f~1(u) < f~1(v) = y. Thus f~(u) €
(a,y). Since (a,y) is homogeneous and = € (a,y), there is an automorphism g
of (a,y) such that g(z) = f !(u). Consider automorphism h = fg. We have
h(z) = f(g(x)) = w and h(y) = f(9(y)) = f(y) = v.

(4) = (3). Trivial.

O

Corollary 3.1. If X is doubly homogeneous, it does not have gaps.

Proof. Suppose (a,b) = () for some a < b. Since X has no minimal element, there
are elements ¢ and d such that d < ¢ < a < b. Then (d,b) is an open interval
containing at least two elements. Since (a, b) is empty, a is the maximal element in
(d,b) and therefore a fixed point of any automorphism of (d,b). Thus (d,b) is not
homogeneous, which contradicts condition (3) of the previous theorem.

O

We conclude that all open intervals with distinct end points in a doubly ho-
mogeneous chain are nonempty. In fact, each of these intervals contains infinitely
many elements.

Now we consider connectedness and compactness in X.

Lemma 3.1. Let X be a disconnected doubly homogeneous chain. For any two
elements u < v in X, there are disjoint open sets U and V such that u e Ujv € V
andUUV = X.

Proof. Since X is disconnected, there are two nonempty disjoint open sets A and
B such that AU B = X. Let a and b be some elements in A and B, respectively.
We may assume that a < b. Since X is doubly homogeneous, there is f € A(X)
such that f(a) = u and f(b) =v. Then U = f(A) and V = f(B) satisfy conditions
of the lemma.

O

Theorem 3.2. (¢f. [9]) A doubly homogeneous chain X is either a connected or
totally disconnected topological space.
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Proof. Suppose X is not connected and let K be a component containing at least
two elements v < v. Let U and V be sets from 3.1. Then K = (K NU)U(KNV)
and (KNU)N (K NV) =, a contradiction. Thus each component contains has
exactly one element.

|

Any topologically connected chain X is locally compact. The only connected
subsets of X are the intervals. Closed bounded intervals in X are compact. (See [2,
IV, 2, Exercise 7]).

4 Connectedness in A(X)

Automorphism groups A(R) and A(Q) provide typical examples for the results of
this section. Namely, A(R) is a connected topological group, whereas A(Q) is a
totally disconnected topological group. In the rest of this section, X is a doubly
homogeneous chain.

First, we consider the case of totally disconnected X.

Theorem 4.1. If X is totally disconnected, so is A(X).

Proof. Let K be a component of A(X) containing at least two elements, say, f
and g. Then there is @ € X such that f(a) # g(a). By Lemma 3.1, there are two
nonempty open sets U and V which form a partition of X and such that f(a) € U
and g(a) € V. Consider open sets U’ = ({a},U) and V' = ({a}, V). Clearly, they
form a partition of A(X). Then K = (K NnU") U (K N V') which contradicts the
definition of a component. Thus each component has exactly one element.

|

According to Theorem 3.2, the remaining possibility is that of connected X.
Let B(X) be the set of all automorphisms of X with bounded support. (Recall
that the support of f € A(X) is the set of all z € X such that f(z) # x.) We shall
need the following lemma.

Lemma 4.1. B(X) is dense in A(X).

Proof. Let U = (x1,... ,2,;U1,...,U,) be a nonempty element of the basis of
A(X) and h € U. We may assume that x; < --- < zp,. Let y; = h(x;),1 <i <n.
Let a,b € X be two elements such that

A< < - <Tp<b

and
a<yr <<y, <b

X) such that f(a) = a, f(b) = b, and f(x;) = y;,1 < i < n. We

There is f € A(
)= f(z) for a <z <b, and f*(z) = x, otherwise. Clearly, f* € U and

define f*(z
f* e B(X).
O
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Theorem 4.2. If X is connected, so is A(X).

Proof. Let K be the component of the identity element in A(X). The K is a closed
normal subgroup of A(X) ( [2, III, 2.2]). By [5, Theorem 2G|, B(X) C K. By
Lemma 4.1, K = A(X).

O

The following theorem summarizes the above results.

Theorem 4.3. A(X) is connected (respectively, totally disconnected) if and only
X is connected (respectively, totally disconnected).

It is known [2, III, 2.2] that a connected topological group is generated by any
neighborhood of the identity element. In what follows, we show that this true for
any A(X) provided X is a doubly homogeneous chain.

We shall use special open neighborhoods of the identity element in A(X). These
are neighborhoods in the form

U:(.’L’l,... ST J1, .. ,Jn):{fEA(X)f(ZL’Z)EJZ, 1§Z§n}

where 1 < -+ < z, and z; € J; = (a;,b;), 1 < i < n. In addition, we assume
that intervals J; do not overlap. Clearly, any neighborhood of the identity element
contains an open set in this form.

To prove that A(X) is generated by any neighborhood of the identity element
we only need to show that any neighborhood in the form (zq,...,%n;J1,... ,Jn)
generates A(X). First, we prove two lemmas.

Lemma 4.2. Let U = (z;J) where x € J = (a,b). Then U generates A(X).

Proof. Let h be any automorphism of X. It suffices to show that h = fg for some
f,g € U. Let y = h™!(z). We may assume that y # z. (Otherwise h € U.)
If y < z, then there is z € J such that y < = < z. If y > «, thereis 2z € J
such that z < z < y. In both cases, by double homogeneity of X, there is an
automorphism g such that g(y) = = and g(z) = 2. Thus g € U. Let f = gh™L.
Then f(z) = h(g~'(z)) = h(y) = z. Thus f € U and h = fg.

O

For a given U = (x1,... ,2p; J1,... , Jn) and k < n, we define
U, = (iUl,... axk;Jla"' 7Jk)
Lemma 4.3. For any h € Uy, k <n, there are f,g € Ugy1 such that h = fg.

Proof. Let y = h™*(xx41). We may assume that y # x41. Since z; € Ji and
Jr N Jgr1 = 0, we have h(xy) < zg41 or, equivalently, zr < y. If y < zpy1, there
is z € Jg41 such that y < zx41 < z. Thus we have

T < < T <Y < Tpy1 < 2.
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If y > xpy1, there is z € Jiy1 such that 2 < xpy1 < y. Note that z > xy, since
Jk N Ji11 = 0. Thus we have

T < < T <2< P41 < Y.

In both cases, by (k + 2)-homogeneity of X, there exists an automorphism g such
that g(x;) = x5, (1 <@ < k), g(y) = zps1, and g(xgy1) = 2. Clearly, g € Ugy1.
Let f = hg . Then f(z;) = h(g 1(z;)) = h(z;) € J; for all i < k, and f(zp41) =
h(g~ (@k41)) = h(y) = 41 € Jrs1. Thus f € Upqq. Clearly, h = fg.

O

Let U = U, = (z1,... ;&n;J1,...,Jn). Consider a nested family of neighbor-
hoods of the identity

AX)DU D20, D -2 T,

where Uy, = (z1,...,2k;J1,-..,Jk), 1 < k < n. Obvious inductive argument
using lemmas 3 and 4 shows that any element in A(X) is a composition of at most
2" elements in U. Therefore A(X) is generated by U. We proved the following
theorem.

Theorem 4.4. If X is a doubly homogeneous chain, then the automorphism group
A(X) is generated by any neighborhood of its identity element.

Consider chain X = Z. The automorphism group of this chain is a discrete
group isomorphic to Z. Clearly, U = {0} does not generate A(Z). Hence the
double homogeneity property is an essential condition in Theorem 10.

5 Compact sets in A(X)

In this section we introduce three compactness criteria for subsets of A(X). The
first two criteria are obtained by embedding A(X) into standard function spaces.
The third criterion employs the lattice structure in A(X). In what follows, we do
not assume that X is a doubly homogeneous chain unless it is otherwise specified.

First we note that A(X) is a Hausdorff subspace of X% in p —topology. Thus
we have the following theorem [6, 7.1].

Theorem 5.1. A subset F of A(X) is compact if and only if
(a) F is closed in XX, and
(b) for each v € X the set E(F,{x}) has a compact closure.

The second criterion is a form of the Arzela—Ascoli Theorem. It is established
under assumption that X is a k—space [6]. This includes, in particular, all doubly
homogeneous topologically connected chains and all chains that are first countable
topological spaces.

Suppose X is a k-space. Let C(X) be a space of all continuous functions from
X into X endowed with the compact—open topology. Then A(X) is a subspace
of C(X) (Theorem 2.4). Thus we have the following version of Arzela—Ascoli
Theorem [6, Theorem 7.21] and [8, Theorem 3.2.6].
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Theorem 5.2. If X is a k-space, then a subset F' of A(X) is compact if and only
if

(a) F is closed in C(X),

(b) the closure of E(F,{x}) is compact for each x € X, and

(c) F is evenly continuous.

The third criterion does not use any assumption about X or embeddings of
A(X) into a larger space.

Let L be a lattice. The interval topology on L is defined by taking the intervals
[p,—) and (<, q] for all p, g € L as a subbasis of closed sets. The following theorem
is found in [1] and [4].

Theorem 5.3. A lattice is compact in its interval topology if and only if it is
complete.

We shall establish a similar result for sublattices of topological lattice A(X)
endowed with the pointwise topology.

First note that sets ({a},[b,—)), and ({a}, («-,b]) form a subbasis for the p—
topology in A(X). We have

[f =) ={9:9= 11 = () (e} [f(2), )

reX

Thus [f, —) is a closed set for any f € A(X). Similarly, all sets (+—, f] are closed
sets. Thus interval topology is smaller that the p—topology in A(X).

Let L be a sublattice of A(X). The interval topology in L is smaller than the
induced topology. Thus, if L is a compact subset of A(X), then it is also compact
in the interval topology. By Theorem 12, L is complete. We proved the following
lemma.

Lemma 5.1. Any compact sublattice of A(X) is complete.

The following lemma asserts that the induced topology coincides with the in-
terval topology provided L is a complete sublattice of A(X).

Lemma 5.2. Let L be a complete sublattice of A(X). Then the induced topology
is smaller than the interval topology in L.

Proof. Let ({a},[b,—)) be an element of subbasis of closed sets in A(X). We define
Kop =L ({a},[b,—)) ={f € L: f(a) > b}.

Since L is a complete lattice, fq, = inf K, exists and f,p € Kqp. Forany f € L
such that f > f,p, we have f € K,p. Thus Ko = [fap,—) in L. Similarly, an
intersection of ({a}, (+,b]) with L is a closed interval in the form (+, f]. Therefore
any subset of L which is closed in the induced topology is also closed in the interval
topology.

O
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By Lemma 5.2 and Theorem 5.2, any complete sublattice of A(X) is a compact
subset in A(X). We proved the following theorem.

Theorem 5.4. A sublattice L of A(X) is compact if and only if L is a complete
lattice.

Corollary 5.1. Let H be a closed subset of A(X). If the lattice [H] generated by
H is complete, then H is compact.

6 Robustness of aggregation procedures

Generally speaking, an aggregation procedure is a function assigning to n—tuples of
objects all belonging to a given set X a single object from the same set. Typical ex-
amples include X = R (aggregation of real numbers) and X = [0, 1]™ (aggregation
of fuzzy sets with a finite universe).

We begin with the case X = R. Thus we assume that the objects are represented
by real numbers; in other words, we deal with measurements of real objects rather
than with objects themselves.

In this setting, an aggregation procedure is just a function

y=M(z1,22,...,2n)

from R™ to R. Naturally, some conditions on M should be imposed in order to
justify the name “aggregation procedure”. Here, we assume that M is a continuous
symmetric function of its arguments satisfying the following condition

min{zy, Zo, ... ,Zn} < M(x1,22,... ,2y) < max{zy,To,... 2y}

for all n—tuples (x1,x2,...,z,) € R™. Following Cauchy [3], we call these func-
tions means [9]. Yager’s OWA operators [12] are common examples of aggregation
functions satisfying the above conditions as well as the usual arithmetic mean.

Because numbers x1,x9, ... ,z, represent measurements, we should specify a
scale in which these measurements were performed. Here, we are concerned with
the case of ordinal scales. Moreover, we probably want the aggregation function
M to represent a meaningful relation with respect to this scale. The concept of
meaningfulness is formalized in the representational measurement theory [7] as the
invariance property as follows. For any f € A(R) (the automorphism group of R),
the equation

fly) = M(f(z1), f(@2), ..., flan))

is equivalent to the equation
y=M(z1,29,...,2y).

Functions from A(R) are called admissible transformations in measurement the-
ory [7].

The invariance condition greatly restricts the set of means on R. The following
theorem follows from a more general result established in [9].
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Theorem. An invariant mean on R is an order statistics.

The set A(R) of all admissible transformations of R is a huge set. It consists
of all strictly increasing functions from R onto itself. What happens if we consider
only “small” admissible transformations which are “near” the identity transforma-
tion? In mathematics, the concept of “nearness” is formalized by introducing a
topological structure on the set under consideration. Here, we consider A(R) as a
topological group so we can use the results of the previous sections. The transfor-
mations that are “near” the identity element belong to some neighborhood V' of
the identity transformation. These observations motivate the following definition
(cf. [10, 11]).

Definition 6.1. A mean M on R is V-—robust if

M(f(x1), f(za),..., f(zn)) = [(M(x1,29,... ,2p))

for all x1,z9,... ,2, € R and all f € V where V is a neighborhood of the identity
in A(R).

Clearly, any invariant mean is V—robust for any neighborhood V of the identity.
It turns out that in the case X = R the converse is also true. Namely we have the
following theorem [11].

Theorem 6.1. Any V—robust mean on R is invariant.

Proof. By Theorem 4.4, A(R) is generated by V. In other words, for a given
f € A(R) there are transformations fi, fo,..., fr € V such that

flz) = (fife - fr)(z)

for all x € R. Since

M(fi(x1), fi(x2), ..., fi(zn)) = f(M(21,22,... ,2,))

for all 1 < i < k, we have

M(f(x1), f(22), -, fwn)) = f(M(21, 22, Tn)).
O

The situation is quite different in the case X = [0,1]™ if m > 1. In this case
we are concerned with the aggregation problem for fuzzy sets defined on a finite
universe U with |U| = m. We denote z(u) the membership function of a fuzzy set
x € [0,1]Y. Consider the set of all “pointwise” admissible transformations of X of
the form

F(z)(u) = fu(z(u)),
where , for each v € U, f, is an increasing bijection of [0, 1] onto itself (an auto-
morphism of [0,1]). Thus defined transformations preserve lattice structure on X

and form a group A°(X) which is a proper subgroup of the automorphism group
A(X). We have the following theorem.
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Theorem 6.2. Let V' be a neighborhood of the identity in A(X) such that V C
A°(X). Then any V-robust mean is A°(X)-robust.

Proof. The group A°(X) is the direct product of m copies of automorphism groups
A([0,1]), ie.,
A%(X) = (A([0, 1])™.

Since the group A([0,1]) is isomorphic to the group A(R), it is a connected topo-
logical group. Thus A°(X) is also connected and therefore is generated by V. Now
we apply the same argument as in the proof of the previous theorem to complete
the proof.

O

The following theorem follows immediately from Theorem 6.1 in [9].
Theorem 6.3. Let
y(u) = M(z1(u), z2(u), ..., zn(u))

be a V -robust mean on X = [0,1)V, where V. C A°(X). There exists a function
p:U = {1,2,... ,m} such that, for any given u € U, y(u) is the p(u)’s order
statistic.

It is proven in [9] that any invariant mean on X is a p’th order statistic for
some p which does not depend on u € U. Thus, in the case X = [0,1]™, the class
of V-robust means is much wider than the class of invariant means.
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