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Abstract

Fuzzy Mathematical Morphology aims to extend the binary morphological
operators to grey-level images. In order to define the basic morphological
operations fuzzy erosion, dilation, opening and closing, we introduce a
general method based upon fuzzy implication and inclusion grade operators,
including as particular case, other ones existing in related literature

In the definition of fuzzy erosion and dilation we use several fuzzy
implications (Annexe A, Table of fuzzy implications), the paper includes a
study on their practical effects on digital image processing. We also present
some graphic examples of erosion and dilation with three different structuring
elements B(i,j)=1, B(i,j)=0.7, B(i,j)=0.4, i,j∈{1,2,3} and various fuzzy
implications.

Keywords: Fuzzy Mathematical Morphology, Inclusion Grades, Erosion
and Dilation.

.

1 Introduction

Mathematical morphology provides a set of operations to process and analyse
images and signals based on shape features. These morphological transformations
are based upon the intuitive notion of “fitting” a structuring element. It involves the
study of the different ways in which a structuring element interacts with the image
under study, modifies its shape, measures and reduces it to one other image, which
is more expressive than the initial one. Mathematical morphology was initially
developed to analysing binary images. Binary images are maps
A: U⎯→{0, 1}, where U represents the Euclidean plane R2 or the Cartesian grid Z2

indistinctly, and in each point x∈U the value of its image only can be 0 or 1, which
represents the black colour and the white.

Essentially, mathematical morphology is a theory on morphological
transformations. Serra [17] characterises the binary morphological transformations
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with four principles: Compatibility under translation, compatibility under change of
scale, local knowledge and semicontinuity.

The algebraic model that represents the study of the transformation of binary
images (crisp subset of U) is based on increasing maps Ψ: (P(U), ⊆) ⎯→ (P(U), ⊆),
such that A ⊆ B ⇒ Ψ(A) ⊆ Ψ(B). In particular, it has special relevant the
transformations named erosions and dilations of an image A by another B, A and B
belonging to P(U). Given A and B∈P(U) and denoting Ab={a+b | a∈A} and –B={-b
| b∈B}, then the erosion and dilation are defined as ξ(A, B) = ∩{Ab | b∈(-B)} and
�(A, B) = (ξ(AC, -B))C. These operators are the basis to build others operators used
in the theory, as the operators called opening [@(A, B) = �(ξ(A, B), B)], closing
[ζ(A, B) = ξ(�(A, -B), -B)], etc..

Grayscale morphology, as originally formulated by Sternberg, extends binary
morphology by treating the space beneath a gray-scale image (A: U ⎯→ G, where G
represents R∪{-∝, ∝} or Z∪{-∝, ∝}) as a binary image, called umbra. The umbra
of a image A is defined as U(A) = {(x, t)∈UxG | t ≤ A(x)}), for an n-dimensional
image the umbra is an (n+1)-dimensional set. The customary binary operations are
applied to the umbrae of both the image and structuring element. As recognised by
Serra, the appropriate framework for mathematical morphology is the set of images
whose gray-values are drawn from a complete lattice. The subsequent algebraic
development is due to Heijmans and Ronse.

In this paper the binary morphological operations are extended to grayscale images.
The gray levels are assumed to belong to the fuzzy subset of Cartesian grid or the Euclidean
plane, that is, an image (fuzzy subset) is a map A: U⎯→[0, 1], where U can be any of the
planes before mentioned. The grayscale images are interpreted as fuzzy sets in order
to be able to apply the operations from fuzzy set theory. For x∈U the quantity A(x)
denotes the grade which x belongs to fuzzy subset A or the gray level of image A in
the point pixel x. On the ordinal scale [0, 1], 0 represents "black" or background and 1
represents "white" or foreground. The usual fuzzy set-theoretic interpretation is also
valid: the higher the value, the more that pixel belongs to the image and vice versa.

In the literature on Fuzzy Mathematical Morphology there are different
approaches of the operators erosion and dilation [2, 4, 13-16, 19]. For instance,
Sinha and Dougherty define the basic operations of Fuzzy Mathematical
Morphology by means of the inclusion grade for fuzzy subsets. These authors define the
inclusion grade operator as a fuzzy relation, R: F(U)xF(U)⎯→[0, 1], such that R(A, B) =

Supp By∈
inf {min(1, λ(A(x))+λ(1-B(x)))} ∀A, B∈F(U), verifying conditions that allow them

to consider that for two fuzzy subsets A and B of U, R(A, B) is the degree to which A is subset
of B, being λ a function from [0, 1] to [0, 1] verifying some fixed conditions [13-16, 3, 9].

Given A, B∈F(U), z∈U and denoting –B the fuzzy subset such that  (-B)(x) = B(-x)
∀x∈ U and Bz the fuzzy subset such that  (Bz)(x) = B(x-z) ∀x∈U, then they define
the erosion of a fuzzy subset A by another one B, called structuring element, as the fuzzy
subset ξ(A, B) whose membership function is ξ (A, B)(z) = R(BZ, A). Dilatation is
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defined by duality �(A, B)(z) = (ξ(AC, -B)(z))C, opening and closing are defined
similarly to the binary case in terms of erosion and dilation.

What we do in this paper is to define erosion and dilation with the inclusion grade
operators as postulated by Bandler and Kohout [1]. For these authors, given A, B fuzzy
subset of U and I a fuzzy implication operator, the degree in which A is a subset of
B is given by R(A, B) =

Ux∈
inf {I(A(x), B(x))}. Now, fuzzy erosion and dilatation, of A

by B, are defined as the fuzzy subset of U such that ξ(A,B)(z) = R(Bz,A) =
{

Ux∈
inf I(Bz(x),A(x))}, and �(A, B)(z) = 1-R((-B)z, 1-A) ∀z∈U respectively. The

opening and closing operators are defined in the usual way, in terms of erosion and
dil+ation.

Let us recall that fuzzy implications are maps I: [0, 1] x [0,1] ⎯→[0, 1] which
extend the implications of Boolean logic, and that just three types of fuzzy
implications are commonly studied [5-8, 17, 18]:

I(a, b) = S(n(a), b), where S is a t-conorm and n is a strong negation
I(a, b) = Sup{c∈[0,1] | T(a, c)  ≤ b}, where T is a t-norm
I(a, b) = S(n(a), T(a, b)), where S is a t-conorm, n is a strong negation and T is
the n-dual of S
However, Willmot, Yager, etc. have proposed other operations that do not

belong to the previous mentioned families.
We want to study the properties that characterise the map I:[0,1]x[0,1] ⎯→[0,1]

for which fuzzy erosion and dilation are relevant to image processing
So we start assuming that the fuzzy implication has the widest meaning, as a

map I: [0, 1] x [0,1] ⎯→[0, 1] such that I(1, 1) = 1 and I(1, 0) = 0. Note that the
implications used here are given in Annexe A, and they are frequently mentioned in
the literature [11].

In the next section we discuss some of the properties of these operators erosion
and dilation for fuzzy implications of the Annexe A and we also start the analysis of
the practical effects of fuzzy erosions and dilations obtained through the different
fuzzy implications. The paper includes some examples to illustrate the effects of
different operators. The image used for these examples is an image with different
gray levels (the Fig. 1 of the Annexe B).

2 Preliminaries

Lemma 1. Let A and B be two fuzzy subsets of U, I a fuzzy implication of the Annexe
A and let R be the corresponding inclusion grade operator. Then the following
properties are verified:

R(A, B) = R(-A, -B) and R(A, B) = R(Az, Bz)   ∀z∈U.

Proof: R(-A,-B)=
Ux∈

inf {I((-A)(x),(-B)(x))}=
U∈x

inf {I(A(-x),B(-x)} =
U∈x

inf {I(A(x), B(x)}
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R(Az,Bz)=
U∈x

inf {I(Av(x), Bv(x)}=
U∈x

inf {I(A(x-v), B(x-v)}=
U∈x

inf {I(A(x), B(x)}=R(A,B).  .

Theorem 1. Let A and B be two fuzzy subsets of U, I a fuzzy implication of the
Annexe A, and ξ �  the corresponding fuzzy erosion and dilation. Then the
following properties hold:
1) ξ(Av, B) = ξ(A, B)v,    2) ξ(A, Bv) = ξ(A, B)(-v),

3) �(Av, B) = �(A, B)v  4) �(A, Bv) = �(A, B)

Proof.  1)  ξ(Av, B)(z) = R(Bz, Av) = R(Bz-v, A) = ξ(A, B)(z-v) = ξ(A, B)v(z)    ∀z∈U
2)  ξ(A, Bv)(z) = R((Bz)v, A) = R(Bz+v, A) = ξ(A, B)(z+v) = ξ(A, B)(-v)(z)      ∀z∈U
3)  �(Av,B)(z) = 1-ξ((Av)

c, -B)(z) = 1-ξ((AC)v,-B)(z) = 1-ξ(AC,B)v(z) = �(A,B)v(z)  ∀z∈U.
4)  �(A, Bv)(z) =1-ξ(AC, -(Bv))(z) =1-ξ(AC, (-B)(-v))(z) =1-ξ(AC, -B)v(z) =

1-ξ(AC, -B)(z-v) = �(A, B)v(z)  ∀z∈U. .

This theorem proves that for fuzzy dilations and erosions defined with the
inclusion grade operator postulated by Bandler and Kohout [1], invariability for
translation holds as it happens in ordinary Mathematical Morphology (First principle
settled by Serra [15] for the morphological transformations).

The second principle established by Serra [12] for the ordinary morphological
transformations deals to the invariability of morphological transformations under
changes of scale: ξ(αA, B) = αξ(A, B) (we define (αA)(x) = α A(x) ∀x∈U), and α
is a non negative real number.

In the next theorem it is proved that for the erosion, defined with the usual 18
fuzzy implications listed in Annexe A, the principle of compatibility with changes of
scale given by Serra [12] is not satisfied, even restricting ourselves to the values
α∈[0, 1].

Theorem 2. The fuzzy erosions and dilations defined with any fuzzy implication of
the Annexe A are not invariant under changes of scale (given A, B fuzzy subset of U,
there exits α∈(0, 1) such that ξ(αA, B) ≠ αξ(A, B).)

Proof. For each one of the 18 fuzzy implications of the Annexe A, we can find fuzzy
subsets A and B, α∈[0, 1] and x, z∈U such that ξ(αA, B) ≠ αξ(A, B). Indeed:

For the fuzzy implications 1, 2, 4, 5, 10, 11, 12, 13, 15, 16, 18, that verify the
property I(0, b) = 1 ∀b∈[0, 1], if we take α = 0.5, B(x) = 0 and A(x) = 1 ∀x∈U, we
have α I(Bz(x), A(x)) = 0.5 and I(Bz(x), αA(x)) = 1.

For the fuzzy implications 6, 7, 8 and 9, if we take α = 0.5, B(x)=0 and A(x)=1
∀x∈U, we have α I(Bz(x), A(x)) ≠ I(Bz(x), αA(x)).

For the fuzzy implications 3, 14, 17, let us just consider the values:
Case 3:    α = 0.5,   A(x) = 0.5 and B(x) = 0.2 ∀x∈U
Case 14:  α = 0.5,   A(x) = 1/3 and B(x) = 0.5 ∀x∈U
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Case 17:  α = 0.5,   A(x) = 1 and B(x) = 0.5 ∀x∈U.   .

3 Properties depending on the implication operator

Theorem 3. Given a fuzzy implication I such that I(0, b) = 1 ∀b∈[0, 1] ( numbers 1,
2, 4, 5, 10, 11, 12, 13, 15, 16, 18 of the Annexe A), the fuzzy erosion for fuzzy subsets
A, B of U defined as ξ(A, B)(z) =

Ux∈
inf {I(Bz(x), A(x))} extends the binary erosion, that

is, for crisps subsets A, B the fuzzy erosion ξ(A, B) is equal to the binary erosion
E(A, B) = ∩{Ab | b∈(-B)}.

Proof. For each z∈U we have that E(A, B)(z) = 
⎩
⎨
⎧ =∋∀=+

otherwise0

1)(1)(if1 xBxxzA

In the case of the fuzzy erosion we have that ξ(A, B)(z) =
Ux∈

inf {I(Bz(x), A(x))}

= 
Ux∈

inf {I(B(x), A(z+x))}. The expression I(B(x), A(z + x)) has one of the following

values :
1) If B(x) = 1 and A(x + z) = 1, then I(1, 1) = 1 for all I of the Annexe A
2) If B(x) = 0 and A(x + z) = 1, then I(0, 1) = 1 for all I of the Annexe A that

verify I(0, b) = 1 ∀b∈[0, 1]
3) If B(x) = 0 and A(x + z) = 0, then I(0, 0) = 1 for all I of the Annexe A that

verify I(0, b) = 1 ∀b∈[0, 1]
4) If B(x) = 1 and A(x + z) = 0, then I(1, 0) = 0 for all I of the Annexe A

But if E(A, B)(z) = 1, z∈U, it is impossible to find x∈U such that B(x) = 1 and
A(x+z) = 0. Therefore, ξ(A, B)(z) = 1.

If E(A, B)(z) = 0, z∈U, then there is an x∈U, such that B(x) = 1 and A(x + z) = 0
and therefore, ξ (A, B)(z) = 0.   

Theorem 4. Let A, B and K be fuzzy subsets of U, and let I be a fuzzy implication
from Annexe A, such that  b ≤ b’ ⇒ I(a, b) ≤ I(a, b’) (numbers 1, 2, 4, 5, 10, 11, 12,
13, 15, 16, 18 of the Annexe A). Then:

1) ξ(A∩K, B) = ξ(A, B) ∩ξ(K, B)
2) �(A∪K, B) = �(A, B) ∪ �(K, B).

Proof.  1) Let z∈U, ξ(A∩K, B)(z) =
Ux∈

inf {I( Bz (x), (A∩K )(x))} ≤ min( ξ(A, B)(z),

ξ(K, B)(z) ) since I is increasing in the second variable.
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If we suppose that ξ(A∩K, B)(z) < min( ξ(A, B)(z), ξ(K, B)(z) ), then there
exists y∈U such that  I(Bz(y), (A∩K )(y)) < min( ξ(A, B)(z), ξ(K, B)(z) ) ⇒ I(Bz(y),
(A∩K )(y)) < min (I(Bz(x), A(x)), I(Bz(x), K(x)))  ∀x∈U.

In particular I(Bz(y), (A∩K )(y)) < min ( I(Bz(y), A(y)), I(Bz(y), K(y)) ), but
- If min(A(y), K(y)) = A(y), then I(Bz(y), A(y)) < I(Bz(y), A(y)) which is a
contradiction
- If min(A(y), K(y)) = K(y), then I(Bz(y), K(y)) < I(Bz(y), K(y)) which is also a
contradiction.

Therefore ξ(A∩K, B)(z) = min( ξ(A, B)(z), ξ(K, B)(z) ).
Let z∈U, �(A∪K, B)(z) = [ξ((A∪K)C, -B) ]C(z) = 1-

Ux∈
inf {I((-B)z(x), min(AC(x),

KC(x)))} = 
Ux∈

sup  {1 - I((-B)z(x), min(AC(x), KC(x)))} ≥

Ux∈
sup {max(1-I((-B)z(x), AC(x)), 1 - I((-B)z(x), KC(x)))} =

max (�(A, B)(z), �(K, B)(z) ) = [�(A, B) ∪ �(K, B)](z).
If we suppose that �(A∪K, B)(z) > max( �(A, B)(z), �(K, B)(z) ), then  y∈U

can be found, such that
1 - I((-B)z(y), min(AC(y), KC(y))) > max ( �(A, B)(z), �(K, B)(z) ) ⇒
1 - I((-B)z(y), min(AC(y), KC(y))) > max (1 - I((-B)z(y), AC(y)), 1 - I((-B)z(y), KC(y)) ) ⇒
I((-B)z(y), min(AC(y), KC(y))) <  min ( I((-B)z(y), AC(y)), I((-B)z(y), KC(y)) ). But:
- If min(A(y) C, KC (y)) = AC (y), then I(Bz(y), AC (y)) < I(Bz(y), AC (y)) which is a
contradiction
- If min(AC (y), KC (y)) = K(y), then I(Bz(y), KC (y)) < I(Bz(y), KC (y)) which is also
a contradiction.

Therefore, �(A∪K, B) = �(A, B) ∪ �(K, B).   

Here we have the equivalent, in the area we are working on, to the third
principle, established by Serra [12], for morphological transformations: the local
knowledge principle.

Let A and B be two fuzzy subsets of U, fuzzy images, let K be any bounded
crisp set of U in which A ∩ K is known. Then fuzzy erosion and dilation satisfy the
local knowledge principle if there exits a bounded crisp set K’ of U which
only depends on K, such that ξ(A ∩ K, B) ∩ K’ =  ξ(A, B) ∩ K’ and
�(A ∩ K, B) ∩ K’ = �(A, B) ∩ K’.

Theorem 5. Let A and B fuzzy subsets of U, let K be any bounded crisp set of U in
which A ∩ K is known and let I be a fuzzy implication decreasing with respect to the
first variable and increasing in the second variable and verifying I(0, b) = 1 ∀b∈[0,
1]. Then the following two equalities are satisfied:

1) ξ(A∩K, B) ∩ ξ(K, Boα) = ξ(A, B) ∩ξ(K, Boα)

2) �((A∩K)∪KC, B) ∩ ξ (K, (-B)oα). =  �(A∩K, B) ∩ ξ (K, (-B)oα).
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Being Boα = ] ]1,0∈
∪

α
Bα

Proof. From theorem 4, it is easily verified that for A, B and K fuzzy subsets of U:
3) ξ(A∩K, B) ∩ ξ(K, B) = ξ(A, B) ∩ξ(K, B)
4) �((A∩K)∪KC, B) ∩ ξ (K, -B). =  �(A∩K, B) ∩ ξ (K, -B).

- If B is not a crisp subset, then ξ(K, B) and ξ (K, -B) neither are crisp subsets,
but if we take a crisp subset B as structuring element, then ξ (K, B) and ξ (K, -
B) are crisp subsets, and the theorem is proved.

� If B is fuzzy subset, we define Boα = ] ]1,0∈
∪

α
Bα , for all z∈U. We want to see that

min (ξ (A∩K, B)(z), ξ (K, B oα)(z) ) = min (ξ (A, B)(z), ξ (K, B oα)(z) ).

The following inequality is trivial min(ξ(A∩K, B)(z), ξ (K, B oα)(z) ) ≤
min (ξ(A, B)(z), ξ(K, Boα)(z)). Let us prove min(ξ (A∩K, B)(z), ξ (K, B oα)(z) ) ≥
min (ξ(A, B)(z), ξ(K, B oα)(z) ).

It is easily verified when

1)  ξ(A∩K, B)(z) = ξ(A, B)(z)  = ξ(K, B oα)(z),

2)  ξ(A∩K, B)(z) = ξ(A, B)(z)  < ξ(K, B oα)(z)

3)  ξ(A∩K, B)(z) = ξ(A, B)(z)  > ξ(K, B oα)(z),

4)  ξ(A∩K, B)(z) < ξ(A, B)(z) and ξ(K, B oα)(z)  = ξ(A∩K, B)(z)

In this  four  cases we have min(ξ(A∩K, B)(z), ξ(K, B oα)(z) ) =

 min(ξ(A, B)(z) , ξ(K, B oα)(z)).

But besides, we have to see it when ξ(A∩K, B)(z) < ξ(K, B oα)(z) and
ξ(A∩K, B)(z) < ξ(A, B)(z).

- If ξ(A∩K, B)(z) < ξ(K, Boα)(z), then there is y∈U such that I(Bz(y), (A∩K )(y)) <
I(Boα(x-z), A(x)) ∀x∈U (i). In particular, I(Bz(y), (A∩K )(y)) < I(Boα(y-z), A(y))
for every y that verifies (i),

- If ξ(A∩K, B)(z) < ξ(A, B)(z), then there is h∈U such that I(Bz(h), (A∩K )(h)) <
I(Bz(x), A(x)) ∀x∈U (ii). In particular, I(Bz(h), (A∩K )(h)) < I(Bz(h), A(h)) for every
h that verifies (ii), and I(Bz(h), (A∩K )(h)) < I(Bz(y), A(y)) for every y and h that
verifies (i), (ii) respectively.

Let ξ(A∩K, B)(z) < ξ(K, Boα)(z) and ξ(A∩K, B)(z) < ξ(A, B)(z). Then there is
y∈U such  that I(Bz(y), (A∩K)(y)) < I(Boα(y-z), K(y)). The four following situations should
be considered:

• Boα(y-z) = 0 and A(y) < K(y) ⇒ Bz(y) = 0, I(Bz(y), A(y)) = I(0, A(y)) = 1 <
I(Boα(y-z), K(y)) = I(0, K(y)) = 1, which is a contradiction.
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• Boα(y-z) = 0 and K(y) ≤ A(y) ⇒ Bz(y) = 0, I(Bz(y), K(y)) = I(0, K(y)) = 1 <
I(Boα(y-z), K(y)) = I(0, K(y)) = 1, which is also a contradiction.

• Boα(y-z)= 1 and K(y) ≤ A(y)⇒ Bz(y)≠ 0, I(Bz(y), K(y))< I(Boα(y-z), K(y))= I(1, K(y)),
also is a contradiction  since I is decreasing in the first variable.

• Boα(y-z) = 1 and A(y) < K(y). Then this occurs: I(Bz(h), K(h)) < I(Bz(y), A(y))
< I(Boα(h-z), K(h)) by (ii) and (i) respectively. But K(h) = 0, therefore
I(Bz(h), 0) < I(Bz(y), A(y)) < I(1, 0) which is contradictory since I is
decreasing in the first variable.

Therefore, ξ(A∩K, B)(z) < ξ(K, Boα)(z) and ξ(A∩K, B)(z) < ξ(A, B)(z) will
never occur  simultaneously. And the theorem is proved.   .

The fourth principle deals with the semicontinuity of the morphological
transformations. A fuzzy implication  I: [0, 1]x[0, 1] ⎯→ [0, 1] is semicontinuous if

it is decreasing in the first argument, increasing in the second and I(
Ni∈

sup ai, Nj∈
inf bj) =

Nji ∈,
inf I(ai, bj). In the next theorem we can to see that erosion (dilation) is

semicontinuous if the fuzzy implication used in this operators is semicontinuous [9].

Theorem 6. Let I be a fuzzy implication I: [0, 1]x[0, 1] ⎯→ [0, 1] that is
decreasing in the first argument, increasing in de second argument and
semicontinuous. Then the fuzzy erosion is semicontinuous, that is:

ξ(
Ni∈

sup Ai, 
Nj∈

inf Bj)(z) = 
Nji ∈,

inf  ξ(Ai, Bj)(z) ∀z∈U.

In the next theorems and corollaries we will establish the link between some
properties of the fuzzy implications and the fuzzy morphological transformation, as
well as the dependence between fuzzy erosions and fuzzy implications.

Theorem 7. Let I and J be fuzzy implications, such that I ≤ J (I(a, b) ≤ J(a, b) ∀a,b
∈[0, 1]), then it holds that ξI(A, B)(z) ≤  ξJ(A, B)(z),  �I(A, B)(z) ≥  �J(A, B)(z),
@I(A, B)(z) ≥ @J(A, B)(z),   ζI(A, B)(z) ≤ ζJ(A, B)(z) ∀z∈U.

Proof. For each z∈U we have ξ I(A, B)(z)=
Ux∈

inf {I(Bz(x),A(x))} and ξJ(A,B)(z)

=
Ux∈

inf {J(Bz(x),A(x))}, but I(Bz(x),A(x))≤J(Bz(x),A(x)) ∀x∈U. Therefore ξI(A,B)(z)

≤ ξJ(A,B)(z).   In the  case  of  dilation  we  have  � I(A, B)(z) =1- ξI(A
C, -B)(z) and

� J(A, B)(z) =1- ξJ(A
C, -B)(z), but  we have seen  that ξI(A

C, -B)(z) ≤  ξJ(A
C, -B)(z)

implies that �I(A, B)(z) ≥  �J(A, B)(z). For both opening and closing, the proof is
similar.  

Theorem 8. Let A, A’, B and B’ be fuzzy images, and I a fuzzy implication that
satisfies the following conditions:
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i)  a ≤ a’ ⇒ I(a, b) ≥ I(a’, b),  a, a’ and b∈[0, 1],
ii)  b ≥ b' ⇒ I(a, b) ≥ I(a, b')   b, b' and a∈[0, 1]. Then:
1) A⊆ A’ ⇒ R(A’, B) ≤ R(A, B),
2) B ⊆ B’ ⇒ R(A, B) ≤ R(A, B’),
3) R(A∪A1, B) = min(R(A,B), R(A1, B)),
4)  R(A, B∩B1) = min(R(A, B), R(A, B1)).

Proof:  1) A ⊆ A’ ⇒ A(x) ≤ A’(x) ∀x∈U ⇒ I(A(x), b) ≥ I(A’(x), b) ∀x∈U and
∀b∈[0, 1] ⇒I(A(x), B(x)) ≥ I(A’(x), B(x)) ∀x∈U ⇒ R(A, B) = 

Ux∈
inf {I(A(x), B(x))}

≥ 
Ux∈

inf {I(A’(x), B(x))} = R(A’, B).

3) R(A∪A1, B) = 
Ux∈

inf {I(max(A(x), A1(x)), B(x))} =

Ux∈
inf {min( I(A(x), B(x)), I(A1(x), B(x)) )} = min (R(A, B), R(A1, B) ).

The cases 2 and 4 can be proved similarly to cases 1 and 3 respectively. 

Corollary 9. Let A and A’ be fuzzy images A ⊆  A’ and I a fuzzy implication such that: a
≤ a’ ⇒ I(a, b) ≥  I(a’, b),      ∀a, a’ and b∈[0, 1]. Then it holds that:
ξ(A, B)(x) ≤ ξ(A’, B)(x),    �(A, B)(x) ≤  �(A’, B)(x),    @(A, B)(x) ≤ @(A’, B)(x),
ζ(A, B)(x) ≥  ζ(A’, B)(x)  ∀x∈U.

Corollary 10. Let B and B’ be fuzzy images, such that B ⊆ B’ and I a fuzzy implication
such that:  b’ ≥  b ⇒ I(a, b) ≥ I(a, b’)      ∀ b, b’ and a∈[0, 1]
Then:   ξ(A, B’)(x) ≤ ξ(A, B)(x)  ∀x∈U    and     �(A, B)(x) ≤ �(A, B’)(x)   ∀x∈U

Corollary 11. Let A, A’, B and B’ be fuzzy images of U and I a fuzzy implication with:
a ≤ a’ ⇒ I(a, b) ≥ I(a’, b),  ∀a, a’ and b∈[0, 1] and b’ ≥ b ⇒ I(a, b) ≥  I(a, b’)   ∀b, b’
and a∈[0,1]. Then ξ(A, B ∪ B’) = ξ(A, B) ∩ ξ(A, B’),
 ξ(A ∩ A’, B) = ξ(A, B) ∩ ξ(A’ ∩ B)   and   � (A, B ∪ B’) = � (A, B) ∪ � (A ∩ B’).

Theorem 12. Given n a strong negation and I a fuzzy implication such that
 I(a, b) = I(n(b), n(a)) ∀a, b∈[0, 1], then  R(A, B) = R(BC, AC).

Corollary 13. Given n a strong negation and I fuzzy implication such that
I(a, b) = I(n(b), n(a)) ∀a, b∈[0, 1], then it holds that the associated dilation
operator is commutative, that is, �(A, B) = �(B, A) ∀A,B∈F(U).
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4. Analysis of the different definitions of erosion:
practical effects on the image processing

In this section we study the effects of the structuring element B in the grey levels of
the output image ξ(A, B) /�(A, B), when processing a digital image A with the
erosion or dilation operators.

Proposition 14. Given A and B fuzzy subsets of U and I a fuzzy implication
satisfying I(0, x) = 1 ∀x∈[0, 1].Then

ξ (A, B)(z) = 
SuppB∈y
inf {I(B(z), A(z + y))} ∀z∈U

Proof. Given x∉Supp B, then B(x) = 0 and I(0, A(x+y)) = 1 ∀y∈U. Therefore

ξ (A, B)(z) =
U∈y

inf {I(B(z), A(z + y))} = 
SuppB∈y
inf {I(B(z), A(z + y))} ∀z∈U.  

Proposition 15. Given A, B fuzzy subsets of U, B(x) = α∈[0, 1] ∀x∈Supp B, and
I a fuzzy implication such that I(0, x) = 1 ∀x∈[0, 1]. Then
 ξ(A, B)(z) =

SuppB∈y
inf {I(α, A(z + y))}    and   �(A, B)(z) = 1-

SuppB∈y
inf {I(α, 1-A(z + y))}.

Proof. It is follows immediately from the fuzzy erosion-dilation and Proposition 14.  .

Note that the fuzzy implications 1,2,4,5,10,11,12,13,15,16 and 18 of the Annexe
A verifies the property I(0, x) = x ∀x ∈[0, 1].

Proposition 16. Given A, B fuzzy subset of U, B(x) = 1 ∀x∈Supp B, and I a fuzzy
implication such that I(0, x) = 1 ∀x∈[0, 1] and I(1, x) = x ∀x∈[0, 1]. Then

ξ(A, B)(z) = 
SuppB∈y
inf {A(z + y)} and �(A, B)(z) =

SuppB∈y
sup {A(z + y)}.

Proof. It is follows directly from Proposition 15.  .

Note that the fuzzy implications 1,2,5,10,11,13 and 18 of the Annexe A satisfies
the properties I(0, x) = 1 ∀x∈[0, 1] and I(1, x) = x ∀x∈[0, 1].

In the next paragraph we delve further into some consequences derived from the
fuzzy implication and the structuring element chosen in the operators erosion /
dilation. In particular we study erosion-dilation for fuzzy implications 1,2,5,10,11,13
and 18 of the Annexe A. Let A and B be fuzzy subsets of U, such that B(x) = α∈(0,
1) ∀x∈U. Then the following equality and inequality hold for several fuzzy
implications:

• Zadeh Implication
� If 1> α >0.5, then ξ(A, B)(x) ≤ α. If α ≤ 0.5, then ξ(A, B)(x) = 1-α.
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� if 1> α >0.5, then �(A, B)(x) = 
⎪⎩

⎪
⎨
⎧

+
+>−−

∈
otherwise)}(,{inf

)(1 if1

yxAa

yxAaa

BSuppy
.

 If α ≤ 0.5, �(A, B)(x) = α

• Lukasiewicz Implication
� If 1>α, then ξ(A,B)(x)=

SuppB∈y
inf {min(1.1-α+A(x+y)}> 

SuppB∈y
inf {A(x+y)}

� If 1 > α > 0, then ξ(A, B)(x) ≥
SuppB∈y
inf {A(x + y)},  the whole image

brightens depending of the value of  α.

� If 1>α >0, then �(A, B)(x)=
⎪⎩

⎪
⎨
⎧

++
∈∀≤++

∈
otherwise)}({sup

1)( if0

yxAa

DyyxAa

BSuppy

B

• Gödel Implication

� If α <1, then ξ(A, B)(x) =
⎪⎩

⎪
⎨
⎧

+
∈∀+≤

∈
otherwise)}({inf

)( if1

xyA

DyxyAa

BSuppy

B
.

Areas, whose greys are brighter than the structuring element, turn into white,
otherwise they take the minimum of the elements of the image involved.
� For α < 1, if α ≤ 1-A(x + y) ∀y∈ DB then �(A, B)(x) = 0 else
�(A, B)(x) = max(A(x + y)| y∈DB)

• Kleene-Dienes Implication

� If α<1, then ξ(A, B)(x) = 
⎪⎩

⎪
⎨
⎧

−

∈∀+≤−+
∈

otherwise1

)(1if)}({inf

a

DyxyAaxyA B
BSuppy .

� For 0< α <1, if α < A(x + y) ∀y∈DB then �(A, B)(x) = α else
�(A, B)(x) = 1-max{A(x + y)| y∈DB}

• Gaines Implication

� If α<1, then ξ(A, B)(x) = 
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ +

∈∀+≤

∈
otherwise

)(
inf

)(if1

a

xyA
DyxyAa

BSuppy

B
.

� For 0<α<1, �(A,B)(x) =
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ ∈+−−

∈∀−≤+

otherwise|
)(1

min1

1)(if0

B

B

Dy
�

yxA
Dy�yxA

• Kleene-Dienes-Lukasiewicz Implication
� If 0<α<1, then ξ(A, B)(x) =

SuppB∈y
inf {1-α+A(y+x)α},.

� For 0<α<1, �(A, B)(x) = max{A(y+x)α | y∈DB }
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• Yager Implication
� If 0<α<1, then ξ(A, B)(x) = 

SuppB∈y
inf {A(y+x)α} >

SuppB∈y
inf {A(y+x)}.

� If 0 < α < 1, ξ(A, B)(x) =
SuppB∈y
inf {A(y + x)α} >

SuppB∈y
inf {A(y + x)}.

� For 0 < α < 1, if A(x + y) = 0 ∀y∈Supp B then �(A,B)(x) = 0 else
 (if A(x + y) = 1 ∀y∈SuppB  then �(A, B)(x) = 1 else
�(A, B)(x) = 1 - min{(1-A(y + x))α | y∈DB }).

Partial results of the effects of performing of fuzzy erosion and dilation can be
seen in the Annexe B.

5 Conclusions

The fuzzy erosion and dilation operators defined with the grade inclusion operator
R(A, B) = 

Ux∈
inf {I(A(x), B(x))}, are relevant to Fuzzy Mathematical Morphology if

the map I: [0, 1]x[0, 1] ⎯→ [0, 1] used satisfies the following properties:
1) I: [0, 1]x[0, 1] ⎯→ [0, 1] with I(1, 1) = 1 and I(1, 0) = 0
2) If a ≤ a’ then I(a, b) ≥ I(a’, b) and If b ≥ b’ then I(a, b) ≥ I(a, b’)

 ∀a, a’, b, b’∈[0, 1]
3) I(0, b) = 1 ∀b∈[0, 1]

In this case, the fuzzy erosions (dilations) for fuzzy subsets extend the binary
erosion (dilation) and these operators satisfy some of the properties that holds in
ordinary mathematical morphology. In particular, erosion (dilation) verifies the first
principle established by Serra [12] (the invariability of translations for
morphological transformations); the third principle, the sufficiency of the local
knowledge. The fulfilment of the second and fourth principles of the same author
depends on the semicontinuity and invariability under homothetics of the used fuzzy
implication.

For binary images and binary structuring elements, erosions and dilations, such
as we have defined here, produce the same results as the analogous operators in
ordinary mathematical morphology.

We can finish these conclusions saying that the morphological operators
proposed in this work, extend the correspondent concepts of binary operators and
that the effects of performing of these operators are of interest in image processing.
For instance, in the computerised treatment of sonography or radiology pictures,
where grey, black and white levels are apt to appear.
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ANNEXE A: Fuzzy.Implications

1 Lm(a, b)=max(1-a, min(a, b)) Zadeh
2 La(a, b)=min(1, 1-a+b) Lukasiewicz
3 Lc(a, b)=min(a, b) Mamdani
4

Ls(a, b)=
 ⎩

⎨
⎧ ≤

otherwise0

if1 ba Standard Strict

5
Lg(a, b)= 

⎩
⎨
⎧ ≤

otherwise

if1

b

ba Standard Star (Gödel)

6 Lsg(a, b)=min(Ls(a, b), Lg(1-a, 1-b)) Standard Strict-Star
7 Lgs(a, b)=min(Lg(a, b), Ls(1-a, 1-b)) Standard Star-Strict
8 Lgg(a, b)=min(Lg(a, b), Lg(1-a, 1-b)) Standard Star -Star
9 Lss(a, b)=min(Ls(a, b), Ls(1-a, 1-b)) Standard Strict - Strict
10 Lb(a, b)=max(1-a, b) Kleene-Dienes
11

⎩
⎨
⎧ ≤

=∆ otherwise0

if1
)ba,(L

ba Gaines

12
Lσ(a, b)= 

⎪⎩

⎪
⎨
⎧

<>⎟
⎠
⎞⎜

⎝
⎛

−
−

otherwise1

1and0 if
1

1
,,1min ba

b

a

a

b Modified Gaines

13 L*(a, b) =1-a+ab Kleene-Dienes-
Lukasiewicz

14 L#(a, b) =min(max(1-a, b),  max(a, 1-a), max(b, 1-b)) Willmott
15

L (a, b) = 
⎩
⎨
⎧ =<

otherwise0

1or1if1 ba Standard Sharp

16
L1b(a, b) = 

⎩
⎨
⎧

−
≤

otherwise),1(min

if1

ba

ba Wul

17
L1e(a, b) = 

⎩
⎨
⎧ <

otherwise

if0

b

ba Wu2

18 LE(a, b) = ba Yager
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ANNEXE B

Let A be a gray scale image, Figure 1,
then Table 1 and 2 display the effect of
performing of fuzzy dilation and
erosion, when we use three different
fuzzy implications and three distinct
structuring element 3 x 3 defined by
B(i, j) = α, i, j∈{1,2,3} and α = 1, 0.7, 0.4
respectively.

Figure 1: image A

Table 1. Erosions

B(i,j)=1 B(i,j)=0,7 B(i,j)=0,4

Lukasiewicz
    I(a,b) =
 min(1,1-a+b)

    Gödel
    I(a,b)=

⎩
⎨
⎧ ≤

otherwise

if1

b

ba

   Yager

    ab
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Table 2. Dilations

B(i,j)=1 B(i,j)=0.7 B(i,j)=0.4

Lukasiewicz
    I(a,b) =
 min(1,1-a+b)

  Gödel
  I(a,b)=

⎩
⎨
⎧ ≤

otherwise

if1

b

ba

  Yager

    
ab


