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Abstract

In this paper, we establish a new version of Siegel’s fixed point theorem in
generating spaces of quasi-metric family. As consequences, we obtain general
versions of the Downing-Kirk’s fixed point and Caristi’s fixed point theorem
in the same spaces. Some applications of these results to fuzzy metric spaces
and probabilistic metric spaces are presented. *
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1 Introduction

In the last few years, Caristi’s fixed point theorem [2] is a very useful tool in the
theory of nonlinear analysis. Because the theorem does not require the continuity
of mapping, it has applications in many fields. Among those applications are
the inward mapping theory, normal solvability theory, results concerning metric
convexity, dissipative dynamical systems, and many others. For the literature, see
[1, 2, 5, 12, 15].

Also several generalizations of the theorem were given by a number of authors;
for instance, generalizations for single-valued mapping were given by Downing and
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Foundation, 1995-1996.
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Kirk [6], Park [15] and Siegel [17], the multi-valued version of the theorem was
obtained by Chang and Luo [3] and Mizoguchi and Takahashi [13], independently,
the uniform space version of the theorem was provided by Mizoguchi [14], and
extensions to fuzzy metric spaces and probabilistic metric spaces were by Chang,
Chen and Guo [4], Chang et al. [5], He [8], Jung, Cho and Kim [9], and Jung et al.
[10]. In particular, Siegel [17] gave a generalization with simple constructive proof.
A version of Siegel’s theorem which includes the result of Downing and Kirk [6]
was obtained by Park [15].

In this paper, we establish a new version of Siegel’s fixed point theorem [17]
in generating spaces of quasi-metric family. As consequences we obtain general
versions of Downing-Kirk’s fixed point theorem and Caristi’s fixed point theorem
in the same spaces. Simultaneously, applying these results to fuzzy metric spaces
and probabilistic metric spaces, we present the corresponding results. Our results
generalize and improve upon the corresponding results of [2, 6, 8, 9, 15, 17].

2 Siegel’s Fixed Point Theorem in Generating
Spaces of Quasi-Metric Family

In this section, we give a general version of Siegel’s fixed point theorem in generating
spaces of quasi-metric family. Using the result, we also present general versions of
Downing-Kirk’s fixed point theorem and Caristi’s fixed point theorem.

First, we give the definition, some properties and examples of generating spaces
of quasi-metric family.

Definiton 2.1 /5] Let X be a nonempty set and {da : o € (0,1]} be a family of
mappings do, of X x X into RT. (X,d, : a € (0,1]) is called a generating space of
quasi-metric family if it satisfies the following conditions:

(QOM-1) do(z,y) =0 for all o € (0,1] if and only if x =y,

(QM-2) do(z,y) = do(y,z) for all z, y € X and o € (0, 1],

(QM-3) For any o € (0,1], there exists a number p € (0, a] such that

da(ﬂ?,y) S d#(a:?’z) +d,u(zay)7 z, ya S X7

(QM-4) For any x, y € X, duo(z,y) is nonincreasing and left continuous in .

In what follows {dq : & € (0,1]} will be called a family of quasi-metrics.

Example 2.1 Let (X,d) be a metric space. Letting do(z,y) = d(z,y) for all
a € (0,1] and z, y € X, (X,d) is a generating space of quasi-metric family.
Furthermore, every fuzzy metric space (see Definition 3.1) and every probabilistic
metric space (see Definition 4.1) are both the examples of generating spaces of
quasi-metric family (the proof will be given in the sections 3 and 4 below).

In [7], Fan proved that if (X,d, : @ € (0,1]) is a generating space of quasi-
metric family, then there exists a topology Tia,} on X such that (X, 7Tq,}) is a
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Hausdorff topological space and U(x) = {Uz(e,a) 1 € >0, a € (0,1]}, 2 € X, is a
basis of neighborhoods of the point x for the topology T4, 1, where

Ugle,a) ={y € X : do(z,y) < €}.

Throughout this paper, we assume that &k : (0,1] — (0, 00) is a nondecreasing
function satisfying the following condition:

M= sup k(o) < occ. (2.1)
a€(0,1]

Now, we begin with following lemmas.
Lemma 2.1 Let (X,ds : @ € (0,1]) and (Y,04 : « € (0,1]) be two complete
generating spaces of quasi-metric family, f : X — Y a closed mapping, and ¢ :

f(X) = R a lower semicontinuous function, bounded from below. Let {z;} be a
sequence in X such that

max{da (T, Tit1), ¢Oa(f(Ti), f(@iy1))} < Kla){p(f(z:) — (f(zit1))} (2.2)

for any « € (0,1] and i, where ¢ > 0 is a given constant. Then lim; oo x; = T
exists and

max{da(zi, ), ¢ 6o (f (i), f(2))} < k(a){e(f(z:) — o(f(@))}
for any o € (0,1] and 1.
Proof. First for j > i+ 1, we prove inductively that
max{da (i, 7;), ¢ a(f (i), f(2))} < k(a){p(f(2:)) — o(f(x;))} (2.3)

for any o € (0,1] and 7. To this end, let j = 7 + 2. Since {dy : @ € (0,1]} and
{6a : @ € (0,1]} are both families of quasi-metrics, they are nonincreasing in «.
Hence for any given « € (0, 1], there exists a common number g € (0, 1] such that

do(2s, Tig2) < du(2s, Tig1) + du(@igr, Tig2)

and
da(f(i), f(mig2)) < 6,(f (i), f(@ig1)) + 0u(f(@ig1), [(mig2)).
By (2.2), we have
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Noting that the function & is nondecreasing, from (2.4) and (2.5) we have

max{da (s, Tiy2), cOa(f (@), f(2ir2))} k(p){e(f(@i)) — o(f(@iv2))}
k(a){p(f(w:)) — p(f(@iv2))}-

VANVAN

Suppose that
max{da(zs, zj-1), ¢ 6alf(2i), fl2;-1))} < Kla){e(f(xi)) — o(f(2j-1))} (2.6)
for any a € (0,1]. Then by the just above argument, for any a € (0, 1] we get
do (i, 25) < dp(i, 2j1) + dy(2j-1, 25)

and
Oa(f(2i), f(x5)) < 6, (f(@a), F(m5-1)) + 0 (flzj-1), f(5))
for some 1 € (0,a]. By (2.2) and (2.6), we have

do(ziszj) < k(p){e(f(z:) —o(f(2j-1)) +o(f(2i-1)) — p(f(z;))}

k() {e(f(z:) — o(f(25))} (2.7)
and
codal(f(@i), flzg) < Kp{e(f(z:) — o(f(@i-1)) + o(f(@i-1)) — o(f(z;))}
= Kk {e(f(z:) — o(f(z)))}- (2.8)

Again, noting the function & is nondecreasing, from (2.7) and (2.8) we get

max{da (i, 2;), ¢0a(f (i), [(25))} < k(@){e(f(2:)) — ([ ()}

for any o € (0,1]. This implies that (2.3) is true.
On the other hand, since {¢(f(x;))} is monotonically decreasing, by the bound-
edness from below of ¢, there exists a finite number r such that

lim p(f(x;)) =r.

i—00

Hence for any given A > 0 and € > M (where M is a constant defined by (2.1)),
there exists ig such that for i > i,

r <o(f(z) <r+ A
Hence for any j > ¢ > 49, we have
0<o(f(zi)) —d(f(zy)) <r+A—-r=A\

Therefore, for any a € (0,1] and j > i > ip, we have from (2.3)

max{da (i, 25), ¢da(f (i), f(2))} k(e){p(f (i) — o(f(25))}

<
< MM<e.
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This implies that {z;} and {f(z;)} are both Cauchy sequences in X and Y, re-
spectively. By the completeness of X and Y, we assume that z; - z € X and
f(z;) = g €Y. Since f is a closed mapping, § = f(Z). By the lower semicontinuity
of i, we have

P(f(@)) < Timinf o (f(20)) = lim p(f(2:)) = 7 < o(f(2)) (29)

1—> 00

for each i. Hence, from (2.9) we have

max{da(zi,2), ¢ 0a(f (@), J@)} = max{ lim dalai, ;). lim dalF(2:), £(2;))}

< k(i) - lim ¢(f(;)}
= ha){p(f) -1}
< Ka){e(f(e:) - ¢(F@)}

for any a € (0,1] and i, which completes the proof.

Let h; : X — X, 1 <14 < oo. The countable composition oh h; is defined by

oo

- i—00
=1

if the limit exists for each = € X.
Let ®* denote the set of all h: X — X satisfying the condition;

max{d(z, h(z)), cda(f(z), f(M(@)))} < k(a){e(f(z)) — e(f(M(x)))}  (2.10)
for any z € X and « € (0, 1], where ¢ > 0 is a given constant.

Lemma 2.2 ®* is closed under countable composition.

Proof. Let hy, hy € ®*. Since {d, : @ € (0,1]} and {6, : a € (0,1]} are both
families of quasi-metrics, they are nonincreasing in «. Hence for any given a €
(0, 1], there exists a common number p € (0, @] such that

da(@, hao(h1(2))) < du(@, hi(z)) + du(ha(z), ha(hi(z)))
and

da(f(@); f(ha(h1(x)))) < 6u(f (@), f(R1(2))) + 0u(f(R1(2)), f(h2(ha(x))))-
By (2.10), we have
da (@, ha(h1(2)))

k(u{e(f (@) — o(f (ha(2))) + o(f (ha(2))) — e(f(ha(ha(2))))} (2.11)
= k(wi{e(f(2) — o(f(ha(hi(2))))}

IN

x)

2)
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and

da(f (@), f(ha(ha(x))))
< ( Helf(2) = e(f(ha(2))) + e(f(ha(2))) — @(f (ha(h1(2))))} (2.12)
= k(w{e(f(2) — o(f(ha(ha(2))))}

Noting that the function & is nondecreasing, from (2.11) and (2.12) we have

max{dq (2, hy(h1(2))), cda(f(2), f(ha(h1(2))))}
< Kla){e(f(2)) — o(f(ha(hi(2))))}

for any o € (0,1]. This shows that ®* is closed under composition. By putting
xz; = hihi—1 - hi(z) for each x € X, from Lemma 2.1, we have the conclusion.

Forany A C X, let r(A) = infyea{e(f(x))}. Then B C Aimplies r(B) > r(A).
For any ® C ®*, let ®(z) = {h(z) : h € ®}. For A C X, define the diameter of A
by

diamA = sup da(zi,z;) for any o € (0,1].
Ii,IjEA

Lemma 2.3 diam®(z) < 2M{p(f(x)) — r(®(z))}, where M is a constant defined
by (2.1).

Proof. For any hy, hy € ®, it follows from the same argument that
da(h1(z), he(x)) < dyu(@, ha(x)) + dyu(@, ha(w))

for some u € (0,a]. By (2.10), we have

da(hy(x), ha(z)) < k(u){e(f(2) —o(f(h1(2))) + o(F (@) — o(f (ha(x)))}-

Since k is nondecreasing, for any « € (0, 1] we have
da(h1(z), ha(z)) < 2k(a){p(f(z)) —r(®(z))}
< 2M{p(f(z)) —r(®(x))},

which completes the proof.

Now we are in a position to give a main result.

Theorem 2.1 Let (X,d, : @ € (0,1]) and (Y,04 : o € (0,1]) be two complete
generating spaces of quasi-metric family, f : X — Y a closed mapping, and ¢ :
f(X) — R a lower semicontinuous function, bounded from below. Let ¢ > 0 be a
given constant and let ®* be the family of all h : X — X satisfying

max{da (z, h(x)), cda(f(z), f(h(2)))} < k(a){p(f(2)) — o(f(R(2)))}  (2.13)

for any a € (0,1] and x € X. Let & C ®* be closed under composition and xg € X.
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(a) If @ is closed under countable composition, then there exists an h € ® such
that T = h(zg) and h(Z) = T for all h € .
(b) If each mapping in ® is conlinuous, then there exist a sequence {h;} in ®

and
T = hm hihi—1-+-hq (ZU())

1—> 00

in X such that h(Z) = Z for each h € ®.

Proof. Let {£;} be a positive sequence converging to 0. Choose an hy; € ® such
that

P (F(h(w0)) = 1(®(x0)) < 577,

where M is a constant defined by (2.1). Set 21 = hi(x¢) and for any a € (0, 1],

diam®(z1) < 2M{p(f(z1)) — r(®(z1))}

< 2M{p(f(hi(x0))) — 7(D(x0))}
< 2M - 26—]\14, = £1.

Repeating this process, we obtain a sequence {h;} such that
Tiv1 = hi(2i), ®(zit1) € () and diam®P(x;) < ;.

(a) Let b = 132, ki and & = h(xo). Since T =[5, hj(x;), we have Z € ®(x;)
for each 4. Furthermore, since lim;_, o diam®(z;) = 0, we have & € ;2 ; ®(z;).

Now we show that h(Z) = T for each h € ®. In fact, since h(z) =
h([1j<i;1 hj(xi)), we have h(Z) € ®(z;) for each i, and hence h(Z) = Z.

(b) Let T = lim;_00 hihi—1 - - - R1(20) = im0 2;. Since {z;} C ®(x;) for each
i, we have Z € cl®(x;), the closure of ®(x;). Since diam(cl®(z;)) = diam®(x;), we
get & = (i ocl®(z;).

To show that A(Z) = % for all h € @, observe h(x;) € ®(z;) for each 4. Since h
is continuous, for any € > 0, there exists i such that for any v € (0,1] and ¢ > ig,

dy(h(Z), h(x;)) < € and d(h(x;), ) < diam®(z;) < &;. (2.14)

Since {dy : o € (0,1]} is a family of quasi-metrics, for any given « € (0,1] there
exists v € (0, a] such that

da (M), T) < dy(W(T), h(2:)) + dy (h(2:), ).
(From (2.14) it follows that
do(h(Z),Z) <e+¢g

for all i > ip, and so we get do(h(Z),Z) < ¢ for any a € (0,1] because ¢; — 0.
Since ¢ is arbitrary, we have h(Z) = Z, which completes the proof.

As a consequence of Lemma 2.2 and Theorem 2.1, we can obtain the following:
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Corollary 2.2 Let (X,dy : @ € (0,1]), (Y,da : @ € (0,1]), f and @ be the same
as in Theorem 2.1. Then the family ®* has a common fixed point. Futhermore, if
h € ®* is continuous, then for any o € X, T = lim;_,, h%(x) is a fixed point of
h.

By putting X =Y, f = Ix, the identity mapping, and ¢ = 1, we establish a
general version of Siegel’s fixed point theorem in generating spaces of quasi-metric
family.

Theorem 2.3 Let (X,d, : a € (0,1]) be a complete generating space of quasi-
metric family, v : X — RY a lower semicontinuous function, and ®* the family of
all h: X — X satisfying

da(2,1(x)) < k(a){p(x) — p(h(z))}

forany x € X and a € (0,1]. Let @ C ®* be closed under composition and xg € X.
Then the conclusions of Theorem 2.1 hold.

As a consequence of Corollary 2.2 for a single mapping, we also have the fol-
lowing result, which is a general version of Downing-Kirk’s fixed point theorem in
generating spaces of quasi-metric family.

Theorem 2.4 Let (X,do : o € (0,1]), (Y,00: @€ (0,1]), f and ¢ be the same as
in Theorem 2.1. If ¢ > 0 is a given constant and a mapping h : X — X satisfies

max{da (2, h(x)), da(f(x), f(h(2)))} < k(a){p(f(z)) — ¢(f(h(x)))}

for any a € (0,1] and x € X, then h has a fized point.
If we take X =Y, f =1Ix, and ¢ =1 in Theorem 2.4, we obtain the following:

Theorem 2.5 Let (X, d, : a € (0.1]) be a complete generating space of quasi-metric
family and let ¢ : X — RY be a lower semicontinuous function. Ifh: X — X is a
mapping satisfying

da(x, h(x)) < k(a){p(z) —p(h(z))}
for any a € (0,1] and x € X, then h has a fized point.

Remark 2.1 (1) Theorem 1 in [15] is a special case of Theorem 2.1 with X being
a metric space and k(o) = 1.

(2) Siegel’s fixed point theorem in [17] is a special case of Theorem 2.3 with
k(a) =1 and X being a metric space.

(3) When X is a metric space and k(a) = 1, from Theorem 2.4 and Theorem
2.5, we obtain Downing-Kirk’s fixed point theorem [6] and Caristi’s fixed point
theorem [2], respectively.

(4) Corollary 2.2 is also a generalization of Corollary of Theorem 1 in [15].
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3 (General Versions in Fuzzy Metric Spaces

A mapping = : R — [0,1] is called a fuzzy number. For a € (0,1] and a fuzzy
number z, the set
[2]a ={u € R: z(u) > o}

is called a a-level set of . A fuzzy number z is called to be conver if r, s, t €
R, r < s <t, implies
min{z(r),z(t)} < z(s).

A fuzzy number z is said to be normal if there exists a point v € R such that
z(u) = 1. If a fuzzy number z is upper semicontinuous, convex and normal, then
the a-level set of z is a closed interval [a®, b%], that is,

[]o = [a%, %], «a < (0,1],

where the values a® = —oo and b* = oo are admissible. A fuzzy number z is called
nonnegative if x(u) = 0 for all u < 0. The fuzzy number § is defined by 8(u) = 1
for w = 0 and O(u) = 0 for u # 0.

Throughout this section, we denote by G the set of all nonnegative upper
semicontinuous normal convex fuzzy numbers and we always assume that L, R :
[0,1] x [0,1] — [0, 1] are two functions such that they are nondecreasing in both
arguments, symmetric and L(0,0) =0, R(1,1) = 1.

Let X be a nonempty set and d : X x X — G be a mapping. Denote

[d(z,9)]a = [Aa(2,9), palz,y)], , y € X, e (0,1], (3.1)

where [d(z,y)]s is the a-level set of fuzzy number d(z,y) € G, which actually is a
closed interval of R and Ay(z,y), pa(x,y) are the left and right end points of the
closed interval [d(z,y)]a, respectively.

Definition 3.1 [11] The quadruple (X,d, L, R) is called a fuzzy metric space if the
mapping d : X x X — G satisfies the following conditions:

(FM-1) d(z,y) = 0 if and only x — v,

(FM-2) d(z,y) = d(y,x) for allz, y € X,

(FM-3) For any x, y, z € X,

(i) d(z,y)(s +t) > L(d(x, 2)(s),d(z,y)(t)) whenever s < A1(z,2), t < A1(z,¥)
and s+t < Ai(z,y),

(i) d(xz,y)(s + 1) < R(d(z, z)(s),d(z,y)(t)) whenever s > A (z,z), t > Ai(z,y)
and s+t > Mz, y).

Remark 3.1 By Theorem 3.2 in Kaleva and Seikkala [11], we know that if (X, d, L, R)
is a fuzzy metric space with lim,_,g+ R(a,a) = 0, then there exists a topology g
on X such that (X, 73) is a Hausdorff topological space and

U(z) ={U,(e,0) : e >0, a € (0,1]}, z€X
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is a basis of neighborhoods of the point z for the topology 74, where
Us(e;a) = {y € X : pa(z,y) < €},

and p,(z,y) is the right end point of [d(z,y)], defined by (3.1).

Proposition 3.1 [5] Let (X,d, L, R) be a fuzzy metric space with

Jim R(a,a) =0, limd(z,y)(t)=0, @ yeX (32)
Letting [d(z,y)]la = [Aa(,Y), palz,y)], then (X,pa : o € (0,1]) is a generating
space of quasi-metric family and the topology Ty, induced by the family {pa} of
quasi-metrics coincides with the fuzzy topology on Ta on (X,d, L, R).

Proof. Since limy_, . d(z,y)(t) = 0, it follows that p,(x,y) < oo for all a € (0,1].
Next we prove that (X, ps : @ € (0,1]) is a generating space of quasi-metric family.
It is obvious that (X, pa : « € (0,1]) satisfies the conditions (QM-1), (QM-2) and
(QM-4) in Definition 2.1. Now we prove that it also satisfies the condition (QM-3).

By the assumption that lim,_,o+ R(a,a) = 0, for any « € (0, 1], there exists an
i € (0, a] such that R(p, ) < . For any given z, y, z € X, let

Pu(ivaz) :S7 p,u(z,y) :t
By the definition of p,, it is easy to show s > Ai(z, z) and ¢t > Ai(z,y).
(i) If s+t > Ai(x,y), then for any € > 0 it follows from (FM-3)(ii) that

(z,y)(s + 1+ 2€) R(d(x, 2)(s + €),d(z, y)(t + €))

R(p, 1) < o

[VANVAN

Hence we have p,(z,y) < 2¢ + s + ¢. By the arbitrariness of ¢, we obtain

pa(@,y) < s+1=pu(z,2)+ pu(z,y). (3.3)

(ii) If s + ¢t < A1 (z,y) and u = A1 (z,y) — (s + t), then we have

1 = d(z,y)(M(z,y) = d(z,y)(u+ s +1)
< R(d(e,2)(s + 50, () + 5u)
< R(p,p) <a,

which is a contradiction. Therefore, the case (ii) can not happen. This proves that
(X, pa : @ € (0,1]) satisfies the condition (QM-3).

On the other hand, by Remark 3.1, the topology 7;,.; on the generating space
of quasi-metric family (X, p, : @ € (0, 1]) coincides with the fuzzy topology 7y on
fuzzy metric space (X, d, L, R). This completes the proof.

From Theorem 2.1 and Proposition 3.1, we can obtain the following;:
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Theorem 3.2 Let (X;,d;, L, R), i =1, 2, be two complete fuzzy metric spaces with

tli}m di(z,y)(t) =0, =, y € X;, i=1, 2, and lim R(a,a)=0.

a—0t

Let f: X1 — X5 be a closed mapping, ¢ : f(X1) — R a lower semicontinuous
function, bounded from below, and ®* the family of all h : X — X satisfying

max{p1a(z; (2)), ¢ paa(f(2), f(R(2)))} < k(a){p(f(2)) — o(f(h(2)))}

for all o € (0,1] and x € X1, where ¢ > 0 is a given constant and {p;a : o € (0,1]}
is the family of quasi-metrics on X; defined by (3.1), i = 1, 2. Let & C ®* be
closed under composition and xg € X;.

(a) If ® is closed under countable composition, then exists h such that T = h(xg)
and h(Z) = Z for all h € ®.

(b) If each mapping in ® is continuous, then there exist a sequence {h;} in ®

and
T = hm hihi_1-+-hq (ZU())
i—00

in Xy such that h(T) = T for each h € .
Corollary 3.3 Let (X,d, L, R) be a complete fuzzy metric space with

tlim d(z,y)(t) =0, z, ye X, and lim R(a,a)=0.
—00

a—0t

Let ¢ : X — RT be a lower semicontinuous function and let ®* be the family of
all h: X — X satisfying

pa(@, W(x)) < k(a){p(x) — p(h(z))}

for any o € (0,1] and = € X, where {p, : a € (0,1]} is the family of quasi-metrics
on X defined by (3.1). Let ® C ®* be closed under composition and zg € X. Then
the conclusions of Theorem 3.2 hold.

Proof. The results can be obtained from Theorem 3.2 if X7 = X5, f = Ix, and
c=1.

Corollary 3.4 Let (X;,d;,L,R), i =1, 2, f, and ¢ be the same as in Theorem
3.2, ¢ a positive constant, and A : X; — X; a mapping satisfying

max{p1a(z; h(2)), ¢ paa(f(2), f((2)))} < k(a){p(f(2)) — o(f(h(2)))}

for any a € (0,1] and = € X1, where {p, : @ € (0, 1]} is the family of quasi-metrics
on X defined by (3.1). Then h has a fixed point .

Proof. The result follows from Theorem 2.4 and Proposition 3.1.

Corollary 3.5 Let (X, d, L, R) be a complete fuzzy metric space with

lim d(z,y)(t) =0, z, y€ X, and lim R(a,a)=0.

t—o0 a—0t
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Let ¢ : X — R* be a lower semicontinuous function and let h : X — X be a
mapping satisfying

pa(@, W(x)) < k(a){p(x) — p(h(z))}

for any o € (0,1] and = € X, where {p, : a € (0,1]} is the family of quasi-metrics
on X defined by (3.1). Then h has a fixed point.

Remark 3.2 (1) Theorem 3.2 is a generalization of Theorem 1 in [15] to the case
of fuzzy metric spaces.

(2) Corollary 3.3 extends Siegel’s fixed point theorem [17] to the case of fuzzy
metric spaces.

(3) Corollary 3.3 and Corollary 3.6 in [10] are special cases of Corollary 3.4 and
Corollary 3.5 with R = max. Theorem 4.1 in [8] is also a special case of Corollary
3.5 with R = max and k(a) =

4 Generalizations in Probabilistic Metric Spaces

In this section, by using Theorem 2.1, we give generalizations of Siegel’s fixed point
theorem [17] in probabilistic metric spaces.

Throughout this section, we denote by D the set of all left continuous distrib-
ution functions.

A function A : [0,1] x [0,1] — [0, 1] is called a t-norm if the following conditions
are satisfied:

(TN-1) A(a,b) = A(b,a),

(TN-2) Aa, 1) = q,

(TN-3) Aa, A(b, ) = A(B(a,b)¢),
(TN-4) A(a,b) < A(c,d) for a < cand b < d.

Definition 4.1 [16] A triple (X, F,A) is called a Menger probabilistic metric
space (briefly, a Menger PM-space) if X is a nonempty set, A is a t-norm and
F: X x X — D is a mapping satisfying the following conditions (we shall denote
F(z,y) by Fpy):

(PM-1) F, ,(t) =1 for allt > 0 if and only if x =y,

(PM-2) F\y(0) =0,

(PM_‘?) Fw:y - wa;

(PM-4) Fy (s +1t) > A(Fy .(s), F.y(t) for allz, y, z € X, s, t > 0.

Remark 4.1 It is pointed out in Schweizer and Sklar [16] that if A satisfies the
condition sup,; A(t,t) = 1, then there exists a topology 7 on X such that (X,7)
is a Hausdorff topological space and the family of sets

Up) ={Up(e,A) : € >0,A€ (0,1]}, peX,
is a basis of neighborhoods of the point p for 7, where
Uple, \) ={x € X : Fy () >1— A}
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Usually, the topology T is called (e, A)-topology on (X, F, \\).

Proposition 4.1[5] Let (X, F, A) be a Menger probabilistic metric space with the
t-norm /\ satisfying the condition:

sup A(t,t) = 1. (4.1)

<1
For any a € (0,1], we define do, : X x X — RT as follows:
do(z,y) =inf{t >0: F, ,(t) >1—a}. (4.2)

Then (1) (X,dy : @ € (0,1]) is a generating space of quasi-metric family and
(2) the topology Tra,y on (X,do : o € (0,1]) coincides with the (e, X)-topology
T on (X, F, ).

Proof. (1) From the definition of {d, : a € (0,1]}, it is easy to see that {dy : & €
(0,1]} satisfies the conditions (QM-1) and (QM-2) in Definition 2.1. Besides, it
follows clearly that d, is nonincreasing in a.

Next we prove that d, is left continuous in a. In fact, for any given a; € (0, 1]
and € > 0, from the definition of d,, there exists a t; > 0 such that ¢; < dn,(x,y)+e€
and Fy 4 (t1) > 1 —ay. Letting 6 = Fy ,(t1) — (1 —a1) > 0 and A € (a1 — 9§, a1], we
have

1—a1 < 1—/\<1—(C¥1—(5):mey(t1),
which implies that t1 € {t > 0: F, ,(¢) > 1 — A}. Hence we have
doy(,y) < di(z,y)=inf{t >0: F,,(t) >1— A}
< iy <dgy (z,9) €

which shows that d, is left continuous in «.
Finally, we prove that (X, dq,: @ € (0,1]) also satisfies the condition (QM-3).
By the condition (4.1), for any given a € (0, 1], there exists an p € (0, a] such
that
Al=—p,l—p)>1-—a.

Letting d,(z, z) = ¢ and d,(z,y) = B, from (4.2), for any given € > 0, we have
Folote)>1—p, F.u (B+€¢>1-p
and so

Fyy(o+ B+ 2e) A(Fy (0 +€), F.y(B+€))

Al —p,1—p)>1—c.
Hence we have

do(z,y) <o+ B+2e=dyu(x,2) + du(z,y) + 2.
By the arbitrariness of ¢ > 0, we have

do(z,y) < du(z,2) +du(2,y).
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(2) To prove the conclusion (2), it is enough to prove that for any ¢ > 0 and
a € (0,1],
do(z,y) <e ifandonly if F,,(e) >1— .
In fact, if do(z,y) < ¢, from (4.2), we have F (e — u) > 1 — a.
Conversely, if F, ,(¢) > 1 — «, since Fy, is a left continuous distribution func-
tion, there exists an y > 0 such that Fy ,(e—p) > 1—a, and so do(z,y) < e—p < e.
This completes the proof.

From Theorem 2.1 and Proposition 4.1, we can obtain the following:

Theorem 4.2 Let (X;, F;, N\;), i = 1,2, be two complete Menger probabilistic
melric spaces with the t-norms /\; satisfying the condition (4.1), f : X; — X2 a
closed mapping, ¢ : f(X1) — R a lower semicontinuous function, bounded from
below, ¢ a positive constant, and ®* the family of all h : X — X salisfying

max{inf{t > 0: Figzpu)(t) >1—a},cinf{t >0: Fopu) rn)(t) >1—a}t}
< k(a){e(f(9(2)) — o(f(y))}

for any a € (0,1] and © € Xy. Let & C ®* be closed under composition and
z9 € X7.
(a) If ® is closed under countable composition, then there exists h € ® such
that & = h(xzo) and h(z) = = for all h € ®.
(b) If each mapping in ® is continuous, then there exist a sequence {h;} in ®
and
Tz = lim h;hj_q1--- hl(mo)

i— 00

in X such that h(Z) = Z for each h € ®.

In Theorem 4.2, if (X, F,A) = (X;, F;,A\;), i =1, 2, f = Ix,, and ¢ =1, then
we can obtain the following:

Corollary 4.3 Let (X, F, ) be a complete Menger probabilistic metric space with
the t-norm A satisfying the condition (4.1), ¢ : X — R a lower semicontinuous
function, bounded from below, and ®* the family of all A : X — X satisfying

inf{t > 0 Fiop0)(H) > 1 - a} < k(a){p(z) - p(h(x))}

for any a € (0,1] and = € X. Let & C ®* be closed under composition and z¢ € X.
Then the conclusions of Theorem 4.2 hold.

For a single mapping h : X1 — X1, we also have the following:
Corollary 4.4 Let (X;, F;, ), i =1, 2, f, ¢ be the same as in Theorem 4.2. If
¢ is a positive constant and h : X7 — X; is a mapping satisfying

max{inf{t > 0: Fla:,h(a:) (t) >1—a}t,cinf{t >0: FQf(x),f(h(a:))(t) >1—al}}
< k(a){e(fg(x)) —o(f (1))}
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for any a € (0,1] and 2 € X4, then h has a fixed point.

Corollary 4.5 Let (X, F, A) be a complete Menger probabilistic metric space with
the t-norm A satisfying the condition (4.1), ¢ : X — RT a lower semicontinuous
function, bounded from below, and h : X — X a mapping satisfying

inf{t > 0: Figpa)(t) >1—a} < k(a){e(z) — p(h(z))}
for any a € (0,1] and z € X. Then A has a fixed point.

Proof. The result follows from Corollary 4.4 with X; = X, F1 = Fy, A\ =
ANg, f=1Ix,,and c=1.

Remark 4.2 (1) Corollary 4.3 extends Siegel’s fixed point theorem [17] to the case
of probabilistic metric spaces.

(2) Corollary 4.4 and Corollary 4.5 generalize Theorem 8 in [9] and Theorem
5.1 in [8], respectively.
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