Mathware & Soft Computing 7 (2000) 245-255

The Application of Generalised Constraints to
Object-Oriented Database Models

G. de Tré & R. de Caluwe
Computer Science Laboratory
Dept. of Telecommunications and Information Processing
Ghent University

Sint-Pietersnieuwstraat 41,
B-9000 Ghent, Belgium

Abstract

A formal framework for a generalised object-oriented database model is
presented, which is able to cope with fuzzy and uncertain information. This
model is obtained as a generalisation of a crisp object-oriented database
model, which is consistent with the ODMG de facto standard and is built
upon an algebraic type system and a constraint system. Generalised con-
straints have been used to enforce integrity rules and to specify the formal
semantics of the database model.

Keywords: Object-oriented database models, generalised constraints,
fuzzy and uncertain information management.

1 Introduction

During the past decade several “fuzzy” object-oriented database models have been
proposed [1, 2, 3,4, 5, 6, 7, 8]. An overview can be found in [9]. The definitions of
these models do not conform to a single underlying object data model, as a logical
consequence of the present lack of (formal) object standards.

The ODMG de facto standard data model [10] offers new promising perspec-
tives. However, it still suffers from several shortcomings such as some lack of
formal semantics and its limited ability to deal with constraints, despite the fact
that a thorough support of constraints is the most obvious way to guarantee the
integrity of a database. In this paper a formal framework for the definition of an
object-oriented database model is presented. This framework is consistent with
the ODMG model and overcomes the mentioned ODMG shortcomings. It also
supports both the modelling of fuzziness and uncertainty.

The fundamental concepts of the proposed model are the generalised type sys-
tem and the generalised constraint system, which respectively allow to define gen-
eralised types and generalised constraints. The generalised type system is obtained

245

246 G. de Tré & R. de Caluwe

as a generalisation of a crisp type system and establishes the definition of so-called
generalized types. Three different kinds of generalised types are distinguished:
generalised literal types, generalised object types and generalised reference types.
Generic generalised constraints, as defined by L.A. Zadeh, are used to define the
semantics of the components of a generalised object type. Beside generic gener-
alised constraints, the model also deals with specific generalised constraints, which
are used to define the semantics of a database and especially to guarantee the in-
tegrity of the data in a database. The generalised constraint system establishes
the definition of specific generalised constraints and is obtained as a generalisation
of a crisp constraint system. Both the generalised type system and the generalised
constraint system are used to define generalised object schemes and generalised
database schemes. A generalised object scheme describes the (semantics of the)
common characteristics of a set of objects, whereas a generalised database scheme
describes (the semantics of) a (fuzzy) database.

2 A formal framework for generalised object-
oriented databases

Since a crisp database can be seen as a special case of a fuzzy and/or uncertain
database, it has been the aim to define a generalised object-oriented database
model, which encompasses the crisp one (rather than defining an extension of
the crisp database model). This approach allows to define database schemes in a
more “natural” way: every generalised type implicitly deals with fuzziness and no
extra, specific “fuzzy types”’ are necessary to define the database scheme. As a
consequence, the use of fuzzy sets will be as “natural” to the user as the use of
crisp values.

2.1 The definition of types

Types have been defined as instances of a generalised type system. The definition
of a generalised type system is the generalisation of the definition of a crisp type
system which is in accordance with the directions given in [12] and is completely
consistent with the ODMG specifications.

2.1.1 The crisp type system

In the type system, the rules which define the valid types of the data model are
stated. In order to be consistent with the ODMG data model [10], a distinction has
been made between the so-called void type (which is the most primitive type of the
system and will be used in situations where no specific type is applicable), literal
types, object types and reference types (which enable to refer to the instances of an
object type and are used to formalize the binary relationships between the object
types in the database scheme) [13]. A literal type is either a base type, a collection
literal type or a structured literal type. The set of the type specifications of all
the literal types will be denoted as Tjtera;, the set of the specifications of all the

Generalised Constraints in Object-Oriented Database Models 247

object types as Topject, and the set of the specifications of all the reference types
as Treference-

The definition rules for the type specifications are not limited to their syntax,
but are also enriched with formal semantics. The proposed semantic definitions are
related to domains and sets of domains. The semantics of a type specification ts are
completely captured by a set of domains D, a designated domain dom;s € Dy,
a set of operators O;s and a set of axioms A;s. Each domain contains a bottom
value L5, which represents an “undefined” domain value [13].

The (crisp) type system TS, which allows to derive both the specification and
the implementations of the valid types, is defined as the quintuple:

TS =[ID,T,P, f*?%, <]

mpl?
in which
o ID is the set of the valid (type) identifiers,

o T ={Void} U T cterence U Thiterar U Tovject is the set of the valid type speci-
fications,

e P is the (infinite) set of all the (type) implementations,

. ffg; . is called the (type) implementation function:

oot 2 T — o(P)
ts = {p1,...,Pn}

This function is a mapping which maps each type specification ts of the
domain 7T onto the subset {p1,...,p,} of its co-domain p(P) (the powerset
of P) which contains all the implementations of ¢s and

e < identifies the operator <: Tozbject — domBoolean, Which defines a partial
ordering on Topject and is used to define the inheritance-based type-subtype

relationships between object types.

An instance t of the type system T'S is called a type and is defined by a triple:

t = [ts, [;0ho(ts), Vims'*"), with ts € T

If ts = Void, t is called a void type; if ts € Tjiterar, t is a literal type; if ts € Topject,
t is an object type; otherwise t is called a reference type. The third component
yjinstance jg the set of all the instances of the type . The instances of a literal type,
of an object type and of a reference type are respectively called literals, objects
and reference instances, whereas the void type cannot have instances at all.

Hereafter, the focus is on the object types, as they provide a formal basis for
the definition of the object, which is the most important notion in the ODMG
specifications. The syntax of the specification ts € Topject of an arbitrary object
type t is defined by:

-~

Class id : i?il,...,zdm(idl D815 50dy 1 Sn)

248 G. de Tré & R. de Caluwe

in which id is an identifier that represents the name of the object type, i/c\ii,
1 < i < m are identifiers representing the supertypes of ¢ (if any) and id; : s,
1 <4 < n are the characteristics (attributes, relationships and methods) which are
explicitly specified within the syntax of the object type. For each id; : s;, 1 <1i <mn,
id; is called the identifier of the characteristic, whereas s; is called the specification
of the characteristic. For attributes and relationships this specification is a type
specification, for methods the specification is a signature.

Example 1: With String, Integer, Set and the enumeration type
Enum T Lang(Dutch, French, English)
all being elements of Tjjterqr, the specification ts of an object type

TPerson = [ls, fzt'r?#;el (ts), %instance]

can be given as:
Class T'Person(Name : String;

Age : Integer;
Languages : Set(T'Lang)) o

The properties, as well as the behaviour of both objects and literals, are for-
malised by the types of proposed type system. (As far as the literals are concerned,
the definition of the behaviour is obviously limited to the behaviour which is implic-
itly defined.) An object o or instance of an object type is defined by the quadruple

o = [oid, N, t,v]
in which
e 0id is a unique object identifier,
e N is a set of object names,
type instance] ; :
o t=ts, fi(ts),V;] is the object type and
e v € domys is the state of the object.

N can be an empty set and for every attribute or relationship id; : s; specified
within ¢s, v contains a value v; € doms,. The extent V,27**™ of an object type t is
the set of all its persistent instances. If an object belongs to the extent of ¢, then
it has to be an instance of type t, i.e. Vg&tent C yjinstance TIf tyne ¢ is a subtype of
type £, then the extent of ¢ has to be a subset of the extent of .

Example 2: An instance of T Person is, e.g.

[0id1, (), T Person, Struct(“Ann”, 28, Set(Dutch, French, English))] <

Generalised Constraints in Object-Oriented Database Models 249

2.1.2 The generalised type system

The proposed generalised (fuzzy) type system is obtained by generalising the defi-
nition of the crisp type system

TS =[ID,T, P, fis", <
First of all, the set of type specifications T is generalised to the set T by generalising
the definitions of the domains and the operators of each type specification ts € 7.

For each type specification ts € T, the generalised counterpart ¢s has a domain
domy, that is defined as the crisp set

p(domys)

of fuzzy sets on dom:s and a set of operators O, that contains the generalised
counterparts of the operators of Oy, (generalised using Zadeh'’s extension principle).

Furthermore, the definition of a characteristic id; : s; of an object type is gener-
alised through the use of (generic) generalised constraints as defined by L.A. Zadeh
[15]: each attribute or relationship is generalised as

id; isr ts;

where isr is a variable copula and r is a discrete variable which value defines the way
in which the values of the (domain of the type of the) characteristic are constrained
[16]. For now, the considered types of constraints are:

1. Equality constraint, r = e. In this case id ise ts means that id will be
assigned a “crisp” value of domg,. This case is semantically equivalent with
the definition id : ts in the crisp counterpart.

2. Possibilistic constraint, r = blank. In this case id is ts means that id will be
assigned a value of dom,, i.e. a fuzzy set, and id is interpreted as a disjunctive
(possibilistic) variable.

3. Veristic constraint, r = v. In this case, Z'Eljsv s means that id will be
assigned a value of domg,, i.e. a fuzzy set, and id is interpreted as a conjunctive
(veristic) variable.

With these generalisations, the generalised type system GT'S is defined as the
quintuple:

GTS =[ID,T,P, fi*’:, %]
in which
e ID remains the set of the valid identifiers,

e T is the set of the valid generalised type specifications,

e P remains the (infinite) set of all the (type) implementations,

250 G. de Tré & R. de Caluwe

?gf;el is a mapping which maps each generalised type specification ts € T

onto its set of implementations:

firs o T — o(P)
ts — {P1,- - Pn}

e < identifies the operator < : beject — domg, 7., Which defines a partial

ordering on Tobject and is used to define the inheritance-based type-subtype
relationships between generalised object types.

An instance £ of the generalised type system G7'S is called a generalised type and
is defined by the triple:

t = [ts, fi2P(ts), Vimonee] with ts € T

impl

As in the crisp case, the third component th'"smme is the set of all the instances
of the generalised type *.

Example 3: With Stfing, Integer and the generalised enumeration type
Enum T Lang(Dutch, French, English)

all being elements of T, the specification £s of a (generalised) object type

GTPerson = [ts, f,'P4(ts), Vimstanee]

impl

can be given as:

Class GT Person(Name ise Str~ing;
Age is Integer;
Languages isv TLang) ©

The generalisation of the definition of an object becomes:

0= [Oida Na fy ’57 HTrues MFalses H L]

Boolean
in which
e 0id remains a unique object identifier,

e N remains a set of object names,

o t=[ts, fI¥P%(ts), th'”““"‘:e] is the generalised object type,

impl

o the state ¥ is an element of dom;, and

Generalised Constraints in Object-Oriented Database Models 251

® [Trues PFalse and p11 . are three elements of the unit interval [0, 1], which
together express the fuzzy truth value

{MTrue/Trruey MFalse/Fa'lsea /J/LBO(;lmn /J‘Boojean}

of the proposition “the object 6 is an instance of the generalised object type
' ie. Wrrue 18 the degree to which this proposition is true, pipgise is the
degree to which this proposition is false and p, ,_; is the degree to which
it is not defined that the object is an instance of the object type.

Example 4: An instance of the generalised object type GT Person is, e.g.

[oidl, 0, GT Person, Struct({(“Ann”, 1)}, {(26,.6), (27, .8), (28,1), (29, 1),
(30,.8), (31,.6)}, {(Dutch, .4), (French, .7), (English,1)}),1,0,0] ¢

2.2 The definition of specific constraints

Specific constraints are used to enforce integrity rules on databases (e.g. domain
rules, referential integrity rules, etc.) and to specify the formal semantics of a
database model (e.g. null values, definition of keys, etc.) [11, 13]. In this approach
a specific constraint is formally defined as an instance of a constraint system.

2.2.1 The crisp constraint system

Each specific crisp constraint is defined as a function p : V;**%" 5 dompoorean,
which indicates whether:

e a given object can exist within the context of a given database (True),
e a given object can not exist within the context of a given database (False),
e or the constraint is not applicable to the given object (L poolean)-

The crisp constraint system C'S, which allows to derive both the specification and
the implementations of the specific crisp constraints, is defined by the quintuple:

CS=1[D,T,C,P, ic;r’bﬁtr]
in which
e ID is the set of the valid identifiers,
e T is the set of the valid type specifications,

e (' is the set of all the valid specific constraint specifications,

e P is the (infinite) set of all the (constraint) implementations and

252 G. de Tré & R. de Caluwe

fondt is the (constraint) implementation function, which maps each con-

straint specification cs of the domain C onto the subset {p1,...,pn} of the
co-domain g(P) that contains all the implementations of cs:

fiamir: C = o(P)

mpl
cs—={p1,...,0n}

An instance ¢ of the constraint system CS is called a specific constraint and is
defined by the couple:

¢ = [es, fioni™ (cs)], with ¢s € C

2.2.2 The generalised constraint system

The generalisation of the constraint system is straightforward: each constraint
function p has been generalised to a function g : Vg”““”ce — dompg, 7 ., Which

associates with each object 0 € Vg"smme a fuzzy set

{MTrue/Trruey MFalse/Fa'lsea NJ-Booiean /J‘Booiean}

that represents the fuzzy truth value of the proposition “the object ¢ satisfies the
constraint p”, i.e. pirrye is the degree to which this proposition is true, prgise is
the degree to which this proposition is false and py is the degree to which
the constraint is not applicable to 6.

This leads to the definition of the generalised constraint system GC'S

Boolean

GCS = [ID, T, C, P, femt
in which
e ID is the set of the valid identifiers,

e T is the set of the valid generalised type specifications,

e C is the set of the valid specific generalised constraint specifications,

P is the (infinite) set of all the (constraint) implementations and

fconstr
impl

is the generalised (constraint) implementation function

Feonstr : C‘f N @(P)

impl

s {p1,.-,Pn}

2.3 The definition of generalised object schemes and data-
base schemes
Both the definitions of a generalised object scheme and of a generalised database

scheme rely on the definition of the generalised types and the specific generalised
constraints.

Generalised Constraints in Object-Oriented Database Models 253

2.3.1 The generalised object schemes

The full semantics of an object are described by a generalised object scheme ds.
This scheme “in fine” completely defines the object, now including the specific
constraints that apply to the object. The object scheme is defined by an identifier
id, an object type t € Tobject (i.e. an instance of the generalised type system GT'S),
a meaning M and a conjunctive fuzzy set of constraints C'g (i.e. a finite fuzzy set
defined over the instances of the generalised constraint system GC'S)

0s = [id, t, M, Cj]

The meaning M is an informal component of the definition and is usually described
in a natural language [14]. The membership degree of an element of C; indicates
to which degree the constraint applies to the object type .

An instance 6 of the object type t is defined to be an instance of the generalised
object scheme ¢s = [id, T, M, C7] if it satisfies (with a truth value which differs from
{1/False}) all the constraints of C; and all the constraints of the sets é? of the

object schemes [z/c\l,tA, M , C'?] which have been defined for the supertypes ¢ of £.
The membership degrees prrue, hFaise and Bl 5o of 0 result from the ag-
gregation of the truth values of the satisfaction of the constraints.

2.3.2 The generalised database schemes

A generalised database scheme ds describes the structure and the behaviour of the
information which is stored in generalised database and is defined as the quadruple

ds = [id,D,M,é[)]
in which id is the identifier of the database scheme,
D = {0~SZ = [ldz,{z,MZ,éfl]|1 <:1<n,i,n € N()}

is a finite set of generalised object schemes, M represents the meaning of ds, and
C 5 is a conjunctive fuzzy set of constraints which imposes extra conditions on the
instances of the set of generalised object schemes D (e.g. referential constraints
between two object schemes). Again, the membership degrees are an indication
for the relevance of the constraints. Every generalised object scheme in D has a
different object type. If a generalised object scheme ds; € D is defined for an object
type t and ' is a supertype of £, or ¥ is binary related with £, then there exists a
generalised object scheme 5], € D which is defined for #'.

An instance of a generalised object scheme ds; € D of a generalised database
scheme ds = [id, D, M, Cp) is defined to be an element of the extent of the gener-
alised object scheme if it satisfies (with a truth value which differs from {1/False})
all the constraints of C’D.

The membership degrees pirrue, fhFaise and [of an element 6 of the
extent of a generalised object scheme are calculated taking into account the aggre-
gation of the truth values of the satisfaction of the constraints of C -

254 G. de Tré & R. de Caluwe

2.4 The definition of a (fuzzy) database
An instance of a generalised database scheme
ds = [id,D,M,C'D]
is called a (fuzzy) database and is by definition the set of all the extents of the
generalised object schemes of D.

3 Conclusion

A formal framework for the definition of a fuzzy and/or uncertain object-oriented
database model has been presented. This framework is based on a type system
and a related constraint system, which is meant to guarantee database integrity.
Zadeh’s extension principle and generalised constraints have been used to support
the database model in which each object has an associated truth value. Finally,
databases have been defined as sets of sets of objects.

In the presented framework, both the data and the semantics of the data can
be modelled. Generalised constraints are provided to support the modelling of the
data semantics:

o Generic generalised constraints, as defined by Zadeh, are applied to specify
the semantics of the domain values of the object types in a database scheme.

e Specific generalised constraints are provided to model the integrity rules,
which are necessary to guarantee the database integrity.

The approach of defining a generalised database model, encompassing the “tra-
ditional” one, allows to define database schemes in a more “natural” way: every
generalised type is suited to handle fuzzy, as well as crisp information. In this way
no extra, specific “fuzzy types” are necessary to define the database scheme.

References

[1] Rossazza, J.-P. (1990), Utilisation de hiérarchies de classes floues pour la
représentation de connaissances imprécises et sujettes a exception: le systéme
“SORCIER”. PhD. Thesis, Université Paul Sabatier, Toulouse, France.

[2] Tanaka, K. et al. (1991), Uncertainty Management in Object-Oriented Data-
base Systems. Proceedings of the International Conference on Database and
Expert System Applications, DEXA 1991, Karagiannis, D. (ed.), Springer-
Verlag, Berlin, Germany, pp. 251-256.

[3] George, R. (1992), Uncertainty Management Issues in the Object-Oriented
Database Model. PhD. Thesis, Tulane University, New Orleans, LA, USA.

[4] Bordogna, G., Pasi, G. and Lucarella, D. (1999) A Fuzzy Object-Oriented Data
Model for Managing Vague and Uncertain Information. International Journal
of Intelligent Systems, Vol. 14, No. 7, pp. 623-651.

Generalised Constraints in Object-Oriented Database Models 255

[5]

[10]

[11]

[12]

[13]

[16]

Van Gyseghem, N. (1998) Imprecision and Uncertainty in the UFO Database
Model. Journal of the American Society for Information Science, Vol. 49, No.
3, pp. 236-252.

Rocacher, D. and Connan, F. (1996) Fuzzy Algebra for Object Oriented Data-
bases. Proceedings of the Fourth European Congress on Intelligent Techniques
and Soft Computing, EUFIT’96, Vol. 2, Elite Foundation, Aachen, Germany,
pp- 871-876.

Na, S. and Park, S. (1997) Fuzzy Object-Oriented Data Model and Fuzzy As-
sociation Algebra. In: Fuzzy and Uncertain Object-Oriented Databases: Con-
cepts and Models, De Caluwe, R. (ed.), Advances in Fuzzy Systems — Appli-
cations and Theory,Vol. 13, World Scientific, Singapore.

Mouaddib, N. and Subtil, P. (1997) Management of Uncertainty and Vague-
ness in Databases: The FIRMS Point of View. International Journal of Uncer-
tainty, Fuzziness and Knowledge Based Systems, Vol. 5, No. 4, pp. 437-457.

De Caluwe, R. (ed.) (1997). Fuzzy and Uncertain Object-Oriented Databases:
Concepts and Models. Advances in Fuzzy Systems - Applications and Theory,
Vol. 13, World Scientific, Singapore.

Cattell, R. G. G. et al. (2000). The Object Data Standard: ODMG 3.0. Morgan
Kaufmann Publishers Inc., San Francisco, CA USA.

De Tré, G. and De Caluwe, R. (1999). A generalised object-oriented database
model with generalised constraints. Proceedings of the NAFIPS’99 conference,
IEEE, New York, NY, pp. 381-386.

Lausen, G. and Vossen, G. (1998). Models and Languages of Object-Oriented
Databases. Addison-Wesley, Harlow, Engeland.

De Tré, G. et al. (2000). A generalised object-oriented database model. In:
Recent research issues on the management of fuzziness in databases, Bordogna,
G. and Pasi, G. (ed.), Studies in Fuzziness and Soft Computing, Vol. 53,
Physica-Verlag, Heidelberg, Germany.

Paredaens, J. et al. (1989). The Structure of the Relational Database Model.
EATCS: Monographs on Theoretical Computer Science, Vol. 17, Springer-
Verlag, Berlin, Heidelberg.

Zadeh, L. A. (1997). Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, Vol.
90, No. 2, pp. 111-127.

Dubois, D. and Prade, H. (1997). The tree semantics of fuzzy sets. Fuzzy Sets
and Systems, Vol. 90, No. 2, pp. 141-150.

