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                                                    Abstract

This paper presents a new learning algorithm for the design of
Mamdani-type or fully-linguistic fuzzy controllers based on available
input-output data. It relies on the use of a previously introduced
parametrized defuzzification strategy. The learning scheme is supported by
an investigated property of the defuzzification method. In addition, the
algorithm is tested by considering a typical non-linear function that has
been adopted in a number of published research articles. The test stresses
on data-fitting, function shape representation, noise insensitivity and
generalization capability. The results are compared with those obtained
using neuro-fuzzy and other fuzzy system design approaches.

1  Introduction   

Fuzzy controllers design based on interviewing the human expert and transforming
his knowledge into linguistic terms and fuzzy inference rules has often led to
tedious and time-consuming trial and error design procedures [1,2]. This has been
mainly due to the fact that the expert is usually unable to describe linguistically the
kind of actions he takes in a particular situation [3,4]. As a result, most of the recent
research in the above-mentioned design or modeling area has been centered on
devising automatic techniques to build fuzzy controllers using a set of numerical
input-output data representing the expert’s control actions [3]. The majority of these
data-driven techniques rely on the use of Takagi-Sugeno type fuzzy-controllers [3]
and combined fuzzy-neural-network [5-9], fuzzy-clustering, fuzzy-partition and
genetic algorithm approaches [2,10-16]. Takagi-Sugeno type controllers, however,
are not fully linguistic and the use of neural-network and other learning algorithms
has often led to final systems that are difficult to interpret linguistically [2,8,10,13].

In a previous study, a new defuzzification strategy has been developed [17].
Particularly important in this strategy is its containment of a free parameter, which
can be used for adaptation and modification of the crisp defuzzified values to help
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fit the problem of concern. Such parametrization is among the features stated in
[18,19] of a desired defuzzification method. In this study, a property of the noted
defuzzification method is investigated. It is also used to support the adaptation
aspects of the method (Section 2), and introduce a new learning algorithm for the
design or construction of fully linguistic fuzzy controllers based on available input-
output data (Section 3). The algorithm requires the setting of an initial fuzzy
controller. Then a consistent modification of the defuzzification parameter and rules
consequents is to be performed in order to reduce the value of some error function,
resulting from the approximation of the available data, and obtain a final fuzzy
system. In Section 4, the algorithm is tested by considering a typical non-linear
function that was adopted in published research. The test stresses on data-fitting,
function shape representation, noise insensitivity and generalization capability. The
results are also compared with those obtained using fuzzy-neural, fuzzy clustering
and partition techniques. Concluding remarks are offered in Section 5.

2 The new defuzzification strategy and its property

Consider a two-input, one-output fuzzy inference system formed by a set of N if-
then fuzzy inference rules. Let the j-th rule, 1 ≤ j ≤ N, be represented by:

.,21 jjj CiszthenBisxandAisxIf

In the above rule, 1x  and 2x  are the input variables and z is the output variable of

the fuzzy system. Also, jA  and jB are fuzzy sets defined over 1x  and 2x

respectively. jC  is a fuzzy set defined over z. The “if ” part of the rule is called

rule “antecedent” and the “then” part is the rule “consequent.” The fuzzy output,
denoted by )(0 zC i and corresponding to some crisp input pair ),( 21 ii xx , can be

obtained using the compositional rule of inference (CRI) [20] as follows:
)1()].()()([max)( 21

1
0 zCxBxAzC jijij

Nj
i ∧∧=

≤≤

The fuzzy OR, AND and THEN are respectively represented by maximum,
minimum and minimum operations. Other operations, such as sum and product, can
also be used [9]. Also, Equation (1) can be generalized easily to systems with more
than two input variables.

Now, the new defuzzification strategy, which was established by generalizing the
standard decision-making criteria for ranking intervals to fuzzy sets [17,21], applies
to the normalized version of )(0 zC i , denoted )(0 zC in , as follows:

)2(.)]()1()([)]([ 1

0 210 ∫ −+= ααδαδδ dcczCF in

The normalization of a subnormal fuzzy set can be obtained by dividing the fuzzy
set membership function by its highest membership grade [22]. In Equation (2), δ is
a parameter that takes values in the interval [0,1]. )(1 αc  and )(2 αc are the lower

and upper values of the bounded interval representing the α-level set of
)(0 zC in when it is convex and has a bounded support (see Property 1 and its proof).

Whether )(0 zC in is still with a bounded support but non-convex, then we consider
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)(1 αc  and )(2 αc as the lower and upper values of the α-level set of )(0 zC in . Thus,

the gap in α)( 0inC , when it occurs for any α-value, is to be bridged to form a

bounded interval. This consists of filling the cavity(ies) that exists in the
membership function of )(0 zC in to convert the non-convex fuzzy set into a convex

one. This procedure is in fact consistent with the basic definitions of left and right
sets used in [21] to reformulate the classical criteria for ranking intervals and make
them applicable to fuzzy sets. This was done by replacing the interval characteristic
function by the fuzzy set membership function.

It is to be noted here that the development of the strategy in Equation (2) was
done in [17] by considering a relative perspective for defuzzification. This was
mainly motivated by the interdependence between the fuzzy outputs and the need to
defuzzify them with respect to each other while permitting flexibility to help meet
various performance objectives. The noted strategy turned out to possess features
stated in [18,19] of a desired defuzzification method, particularly the containment
of a free parameter, and have a useful property, which is addressed in this section.
This property is also shown to support the adaptation aspects of the strategy
represented by its ability to introduce changes in the location of the controller input-
output characteristic (control surface) relative to the range of the output variable,
and in the steepness and shape of this surface. Furthermore, the Property is used to
serve the main objective of this study. It is the production of a learning procedure
where the concern is the consistent modification of the defuzzification parameter
and rules consequents to reduce the data approximation error and deliver a final
fuzzy system  (Section 3).

Property 1   Given any convex and normal fuzzy set C defined over the set of real
numbers, ℜ, (C is not a crisp number) and such that C has a bounded support, then

)(CFδ  is a linear and strictly decreasing function of δ. Also, )(CFδ  decreases

from )(0 CF  to )(1 CF with [ )(0 CF - )(1 CF ]=(Area under C).

Proof
)(CFδ  as in Equation (2) can be written as:

)3(),()]()([

)()]()([)(

010

1
0 2

1
0 12

CFCFCF

dcdccCF

+−−=

+−−= ∫∫
δ

αααααδδ

where

)4()()( 1
0 20 ∫= αα dcCF

and

)5()()( 1
0 11 ∫= αα dcCF

Now, since the fuzzy set C is convex, then the α-level set of C, denoted αC , is

convex for any α ∈(0,1] [23]. Further, since C is defined over ℜ, then αC  is an

interval. But αC  is a subset of the support of C for any α ∈(0,1] [24]. Hence, taking

αC  as the closure of the support of C for α=0 makes αC  a bounded interval for any

α∈[0,1]. As a result, for each α ∈[0,1], )(1 αc and )(2 αc , which are the lower and
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upper values of αC  ( )(1 αc < )(2 αc ), are unique and bounded. They are, therefore,

single-valued bounded functions of α. Consequently, )(0 CF  and )(1 CF exist and

are such that )(1 CF < )(0 CF . By Equation (3), )(CFδ , for any δ∈[0,1], also exists

and it is a linear and strictly decreasing function of δ. The highest value of )(CFδ
over its domain, i.e., the interval [0,1], is attained when δ=0 and the lowest value is
attained when δ=1. Further, )(0 CF  and )(1 CF  as in Equations (4) and (5) are

respectively the areas between the decreasing and increasing parts of the
membership function of C and the membership axis passing by zero. Hence [ )(0 CF -

)(1 CF ]=(Area under C) and Equation (3) can be written as

)6().()()( 0 CFCunderAreaCF +−= δδ

We note here that when C is a crisp number, denoted by p, say, then
)(1 αc = )(2 αc =p for any α ∈(0,1]. Hence, )(1 CF = )(0 CF =p and )(CFδ = )( pFδ =p.

€

Remark

In a fuzzy inference system, the input-output characteristic is obtained from the
defuzzified values of output fuzzy sets resulting from different crisp input points
distributed in the input space. Since the fuzzy outputs are obtained using Equation
(1), it becomes easy to see that these fuzzy outputs and hence the areas under their
membership functions are generally different. Consequently, by Equation (6), the
pair-wise separation between the defuzzified values of these fuzzy outputs will
generally change when δ varies. Hence, Property 1 validates what was previously
stated in this section regarding the effects of parameter change on the input-output
characteristic of a fuzzy inference system.

The following example also demonstrates the adaptation aspects of the strategy
in Equation (2). Let a two-input, one-output fuzzy inference system with rules as
shown below be considered:

1211 ,1 CiszthenBisxandAisxIf         12211 , CiszthenBisxandAisxIf

23211 , CiszthenBisxandAisxIf         11221 , CiszthenBisxandAisxIf

22221 , CiszthenBisxandAisxIf         33221 , CiszthenBisxandAisxIf

21231 , CiszthenBisxandAisxIf      32231 , CiszthenBisxandAisxIf

33231 Ciszthen,BisxandAisxIf        (7)

Figure 1. Input and output membership functions of the fuzzy system given in Eq. (7).
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The membership functions of the input and output fuzzy sets assigned over the input
and output variables of this fuzzy system are shown in Figure 1. The application of
Equation (2), with δ=0.1, 0.5 and 0.9, to the fuzzy system in Equation (7) results in
the control surfaces shown in Figure 2. What has been previously noted regarding
the change in the location and shape of the input-output surface can be observed in
this figure.

                  (a)                                      (b)                                          (c)

3 The design algorithm and its requirements

In this section, the algorithm that can be used to design fuzzy controllers using a
given set of input-output data is introduced. It is based on the property of the
defuzzification function given in Section 2. Emphasis is also placed on the
requirements needed to construct the initial fuzzy system. As will be seen, Property
1 permits  the  conception of  a learning scheme whereby a consistent modification
of the defuzzification parameter and rules consequents is implemented in order to
arrive at a final fuzzy system. This is done through the reduction of the data
approximation error.

It is assumed that the system designer is able to specify the input and output
variables of the fuzzy controller and the ranges of these variables. Having this
accomplished, then overlapping membership functions for the input and output
fuzzy sets are assigned to cover the ranges of the variables of concern. In terms of
overlap, it is recommended, as in most fuzzy applications, that the membership
functions, assigned over a single variable, be such that the membership grades of
any crisp value sum to 1 (Figure 1). This will also be shown helpful in the described
learning process. Further, the number of membership functions to start with,
especially input ones, is to be as small as possible (this reduces the size of the rule-
base as can be seen below) and their shape as simple as possible. Whether the error
value and surface that result after learning are not as desired then an increase in the
number and/or change in the shape of the input and output fuzzy sets could be
considered (Section 4). The number of output fuzzy sets should be increased first to
keep a small rule-base size if possible. Also, the number of these sets has a direct

Figure 2. Input-output characteristics of the fuzzy system given in Equation (7)
                for different values of δ. The Cases are for  δ=0.1, δ=0.5 and δ=0.9.
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effect on the data approximation error as will be seen in the described learning
procedure.

Once the input membership functions are assigned, then all combinations of
input fuzzy sets are considered to form the antecedent parts of the rules. Due to the
learning process described below, the initial rules consequents need to be equal to
the left-most output fuzzy set. This set is required to be formed by a decreasing part
or a flat and decreasing part (Figure 1). This allows the defuzzified value of any
fuzzy output obtained by Equation (1), and through the application of Equation (2)
with δ=1, to be equal to the smallest value of the output range (Equation (5)). For
the same reason, the right-most output fuzzy set is to be formed by an increasing
part, or a flat and an increasing part (see also Figure 1). This allows the defuzzified
value of any fuzzy output obtained using the right-most set to reach the highest
value of the range of the output variable when δ =0 (Equation (4)). Figures 3(a) and
3(b) show the input-output surfaces of the fuzzy system in Equation (7) when all
rules consequents are respectively set to 1C  (δ=1) and then to 3C  with δ=0.

                             (a)                                                         (b)

Given a set of input-output data pairs in the form ( ix , idz ), with i=1, 2, 3,…,n

and ),...,,,( 321 piiii xxxxix = , where p is the number of input variables, the

learning process starts with an initial fuzzy system constructed in the above-noted
manner. The algorithm, whose flow-chart is shown in Figure 4, computes the fuzzy

outputs iC0  for all ix , i=1, 2, 3, …, n using the CRI (Equation (1)) and then

defuzzifies their normalized and convex versions using Equation (2) when  δ =1.
Here, all the defuzzified values are equal to the smallest value of the output range.
Hence, given that idz  are all greater than the smallest value of the output range (this

should always be the case), then idin zzCF <)]([ 01 , for all i=1, 2, 3, …, n. For these

defuzzified values, the error E is computed using some error function; such as the
mean-square error (MSE) [10], root mean-square error (RMSE) [12], etc., and
compared with a desired error value, denoted dE . If dEE ≤ , then the learning

stops. Otherwise, δ  is decreased from 1 to 0 by passing through discrete
intermediate values. For each δ , the error is computed and compared with dE .

Note here that by Property 1 the decrease in δ  results in an increase in the
defuzzified values of the fuzzy outputs. These values are then made closer to the
desired outputs and this causes a reduction in the value of the error. Whether the

Figure 3. Input-output surfaces of the fuzzy system given in Eq. (7). Case (a) rules
                consequents are set to 1C and δ=1. Case (b) consequents are set to 3C and δ=0.
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change in δ  has led to the satisfaction of the error goal, that is, dEE ≤  has been

achieved for some δ∈[0,1], then the learning stops. Otherwise, the algorithm starts
again from 1=δ  but with a new set of rules.

The new set of rules is obtained by raising each rule consequent by one fuzzy set
(the reason for this raise is explained below). This, however, might lead to a
violation of the inequality idin zzCF <)]([ 01 . Whether the noted inequality is

violated for all i=1,2,3,…,n,  then, again by Property 1, the decrease in δ  will not
serve the error reduction objective. Whether the violation is for some of the data
points, then the decrease in δ would not serve the error reduction in the same
manner as when the inequality is satisfied for all i. Thus, if the inequality is
violated, it needs to be reestablished. This can be done by repeatedly lowering the
consequents of the rules, which trigger one fuzzy output whose defuzzified value for

1=δ  is greater than its desired counterpart. Once all defuzzified values become
again smaller than the desired ones, and the obtained new rules differ from the
initial rules, then δ  will be decreased from 1 to 0 and for each δ  the error is
computed and compared with dE .

The learning process described above is to be repeated until either the error goal
is satisfied or no more raise in the rules consequents is possible (when all rules
consequents reach the highest (right-most) output fuzzy set). The learning needs
also to stop when the above-noted raise and lowering of the rules consequents result
in rules that have already been obtained. When the learning stops, the algorithm
delivers the final fuzzy system with the least error value that can be obtained under
the described procedure, the error and the final δ  value.
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What follows is an explanation of the reasons behind the above-mentioned raise
in the rules consequents. Of course, this raise cannot be explained independently of
the other steps in  the  learning  procedure,  particularly, the subsequent  lowering
of some of these consequents to reestablish the inequality idin zzCF <)]([ 01  and

obtain new rules to which the δ decrease is applied. When all the rules consequents
are equal to the left-most output fuzzy set, all fuzzy outputs resulting from the data
input tuples through the application of Equation (1) are truncated versions of this
left-most set. Thus, upon normalization and application of Equation (2), the δ
decrease leads to defuzzified values which can reach no more than the value that is
just below the upper limit of the support of the left-most output fuzzy set (see
Equation (4)). Hence, in order to allow the defuzzified values to reach more desired

S t a r t I n i t ia l  f u z z y  s y s t e m

   S t o r e
    r u le s

C o m p u te  C 0 in  ,  i = 1 , 2 , … , n

     δ = 1

C o m p u te  F 1 ( C 0 in ) ,  i= 1 , 2 , … , n

   C o m p u t e  E .  S to r e  δ ,  E  a n d
  t h e  r u le s  i f  E  is  t h e  s m a l le s t
                   e r r o r .
                 I s  E ≤ E d  ?

   S t o p

   I s  F 1 ( C 0 in )  < z i d  ,
      i= 1 , 2 , … , n  ?

D e c r e a s e  δ  b y  a  s t e p  s iz e
               δ = δ - ∆

Y e s

N o
N o

         L o w e r  b y  o n e
  m e m b e r s h ip  f u n c t i o n
  t h e  c o n s e q u e n t  o f  e a c h
   r u le  t r i g g e r in g  o n e  C 0 j

    s u c h  t h a t  F 1 ( C 0 j)  >  z j d

 U p d a te d
    r u le s

    δ  ≥  0  ?

C o m p u te  F δ ( C 0 in ) ,  i= 1 , 2 , … , n

  C o m p u t e  E .  S to r e  δ ,  E  a n d
  t h e  r u le s  i f  E  is  t h e  s m a l le s t
                   e r r o r .
                 I s  E ≤ E d  ?

   S t o p

Y e s

N o

  W a s  th e  r a is e  i n  r u l e s  c o n s e q u e n t s
      p o s s ib le  f o r  a t  le a s t  o n e  r u l e  ?

N o

  R a is e  t h e  c o n s e q u e n t  o f  e a c h  r u l e
     b y  o n e  m e m b e r s h ip  f u n c t i o n

N o

   S t o p

   A r e  t h e  u p d a t e d
   r u le s  i d e n t ic a l
  t o  p r e v io u s  o n e s  ?

Y e s

   S t o p

Y e s

N o

Y e s

Y e s

Figure 4. Flow-chart of the design algorithm described in Section 3.
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outputs, which are normally distributed over most of the output range (this can be
made to happen by consistency between the available desired outputs and the
specified output range), a raise in the rules consequents is applied.

After the first raise (the one applied to the initial rules consequents), the new set
of rules will be formed by consequents equal to the second left-most output fuzzy
set (if no lowering is necessary) or by consequents some of which are the second
and others are the first left-most output fuzzy set. This makes obtaining fuzzy
outputs formed by truncating the second or the first and second left-most sets
possible. This possibility becomes even higher when the input points are distributed
over most of the input space (this can also be made to happen by consistency
between the crisp input points and the specified range of the corresponding input
variable) and they are large in number. Since, in such a case and with the
previously-noted overlap of the input membership functions and assigned rules
antecedents, most or even all the rules will be triggered by the input tuples. Under
such circumstances, the application of Equation (2) to the normalized outputs leads
to defuzzified values which can reach, through the δ decrease, the value that is just
below the upper limit of the support of the second left-most output fuzzy set. Given
the previously-mentioned overlap of the output fuzzy sets, this upper limit is higher
than that of the left-most set. Thus, more desired outputs can be reached by
defuzzification and δ decrease. The repetition of the described procedure of raise
and lowering of the rules consequents is supposed to lead to having additional
desired outputs with each being within the range of variation of its corresponding
defuzzified value. Thus, an enhancement of the chances for error reduction and
satisfaction of the error goal results.

4 Example

In this example, the following two-variable non-linear function is considered:

)(51)1()( 821
251

2
2

121 .x,x,xxx,xfz . ≤≤++== −−

The plot of the input-output surface of this function is shown in Figure 5. This
function was first considered by Sugeno and Yasukawa in [10] and then in [12] and

Figure 5. Input-output surface of the non-linear function given in Equation (8).
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[13]. 50 input-output data points (listed in [10]) were used in all the noted
references.

In [10], a 6-rule fuzzy system was determined based on fuzzy clustering with
0.318 as a MSE value. The error was then reduced to 0.01 using position gradient.
In [12], which is also a study that relies on fuzzy clustering and aimed at the rapid
prototyping of fuzzy models based on data, the best-obtained MSE was 0.231. 5
rules were considered. The use of fuzzy partition in [13] gave a 6-rule fuzzy system
with 0.351 as a MSE value. This was then reduced to 0.005 by initiating and
training a fuzzy neural network. 

In terms of the algorithm introduced in this study, the same 50 data points were
used. As in Figures 6(a) and 6(b), 3 membership functions were considered over
each of the input variables. Hence, 9 inference rules representing all the
combinations of the input fuzzy sets were adopted. The number of output fuzzy sets,
which was first attempted, was 3. However, compared to the above-noted error
figures, the obtained MSE was higher. The error value of 0.216 was obtained with 4
output fuzzy sets whose membership functions are shown in Figure 6(c). The final
obtained fuzzy rules are as listed below and the final δ value is 1.  The input-output
surface is shown in Figure 7.

3211 ,1 CiszthenBisxandAisxIf       32211 , CiszthenBisxandAisxIf

33211 , CiszthenBisxandAisxIf       31221 , CiszthenBisxandAisxIf

22221 , CiszthenBisxandAisxIf       23221 , CiszthenBisxandAisxIf

31231 , CiszthenBisxandAisxIf     22231 , CiszthenBisxandAisxIf

23231 Ciszthen,BisxandAisxIf   (9)
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Figure 6. Membership functions assigned over the input and output variables of the non-
                 linear function given in Equation (8).
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Hence, the presented results show that the proposed algorithm can provide a better
data-fitting than the clustering and fuzzy partition methods [10,12,13]. The data-
fitting, however, is inferior to that of the combined fuzzy-partition-neural-network
[13] and clustering-gradient-position [10].

Knowing that a smaller error value obtained in the approximation of data does
not necessarily imply a better function shape representation, and since the surfaces
of the obtained fuzzy systems in [10,12,13] were not given, we choose to compare
the results of this example with those obtained by ANFIS [8]. It is a powerful data-
driven fuzzy-system construction methodology based on a combined gradient-
descent and least-squares and available under a MATLAB tool-box. Also the
presented approach will be tested for noise insensitivity and generalization
capability. This is taken in the sense of extrapolation to regions where there are
missing data. ANFIS is not structured to account for various configurations related
to this type of generalization.

The use of the same 50 data pairs [10] and 3 triangular membership functions
over each of the 2 input variables in ANFIS gave a nine-rule fuzzy system with
0.0303 as an MSE under 100 epochs and 0.00001 initial step-size. The input-output
surface is shown in Figure 8. These are the best results obtained after attempting
various combinations of epoch number and step-size value. Since the error value is
smaller than 0.216 obtained in our approach, then ANFIS provided a better data-
fitting. The comparison of Figures 7 and 8, however, reveals that the proposed
approach has a better representation of the shape of the non-linear function.

Concerning the noise insensitivity issue, we considered 3 stages of modification
of output values in the 50 points listed in [10]. In each stage, 4 output values were
modified to result in 4 noisy input-output pairs, denoted as a set, not satisfying the
function in Equation (8) (see Table 1). First, set 1 was used in addition to the
remaining 46 noise-free data pairs. ANFIS gave a nine-rule fuzzy system with
0.0422 MSE and input-output surface shown in Figure 9(a). In stage 2, sets 1 and 2
were used in addition to the remaining  42  noise-free  data  pairs.  A  9-rule  fuzzy
system  was  obtained  by  ANFIS

Figure 7. Input-output surface of the fuzzy system in Equation (9)
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with 0.0415 MSE and surface given in Figure 9(b). In stage 3, sets 1, 2 and 3 were
used in addition to the remaining 38 noiseless data. The obtained 9-rule fuzzy
system had 0.1037 MSE and surface shown in Figure 9(c).

All the above-noted 3 cases of noisy and noise-free data pairs were entered into
the algorithm proposed in this study. The resulting 9-rule fuzzy system was always
as in Equation (9) and with δ=1. The resulting error values were respectively
0.3842, 0.4583 and 0.5056. The input-output surface is just the one shown in Figure
7. The comparison of Figure 7 with Figures 9(a), (b) and (c) reveals that the
presented approach has a better noise insensitivity than ANFIS. This result is also
supported by the MSE values at the 4, 8 and 12 noisy points. They are respectively
0.0352, 0.0185, 0.1762 for ANFIS and 2.1960, 1.5724, 1.2606 for the given
algorithm.

Regarding the error values obtained by considering the original 50 noise-free
data [10], ANFIS gave 0.2292, 0.2925 and 0.3217 respectively after introducing the
4, 8 and 12 noisy data pairs indicated in Table 1. Comparison of these error values
with 0.216 (obtained using the presented methodology), and also Figure 7 with
Figures 9(a), (b) and (c), shows that ANFIS has in this example an inferior
performance efficiency when the learning is based on noisy data. This efficiency is
measured by considering the noise-free data error, noise insensitivity and function
shape representation.

In terms of testing the generalization capability of the presented approach, sets
of data points from among those listed in [10] and located in specific input space
regions were excluded in succession and the remaining data pairs were entered into
the presented algorithm. This was done in order to see whether the algorithm returns
the same fuzzy system and thus the same input-output characteristic obtained with
the whole set of data when a part of the data is missing.  First, data pairs such that
1< 1x <2.5 and 3.5< 2x <5 were eliminated. This resulted in  the exclusion of 5 data

points. The  remaining 45 points

Figure 8. Input-output surface of the fuzzy system obtained from
ANFIS using the 50 data pairs.
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  #   x1   x2    z   #   x1   x2    z   #   x1   x2    z   #   x1   x2    z

1 1.4 1.8 3.7 14 1.67 2.81 2.47 27 2.71 4.13 1.6 39 4.47 3.66 1.42

2 4.28 4.96 1.31 15 2.03 1.88 3.7 *** 28 1.78 1.11 4.7 40 1.35 1.76 3.91

3 1.18 4.29 3.35 16 3.62 1.95 2.08 29 3.61 2.27 1.9 41 1.24 1.41 5.05

4 1.96 1.9 2.7 17 1.67 2.23 2.75 30 2.24 3.74 2.8 ** 42 2.81 1.35 1.97

5 1.85 1.43 3.52 18 3.38 3.7 1.51 31 1.81 3.18 3 ** 43 1.92 4.25 3 **

6 3.66 1.6 2.46 19 2.83 1.77 3.7 *** 32 4.85 4.66 1.3 44 4.61 2.68 3.6 *

7 3.64 2.14 1.95 20 1.48 4.44 2.44 33 3.41 3.88 1.5 45 3.04 4.97 1.44

8 4.51 1.52 4 * 21 3.37 2.13 1.99 34 1.38 2.55 3.1 46 4.82 3.8 3.1 *

9 3.77 1.45 2.7 22 2.84 1.24 4.1 *** 35 2.46 2.12 2.2 47 2.58 1.97 2.29

10 4.84 4.32 1.33 23 1.19 1.53 4.99 36 2.66 4.42 1.6 48 4.14 4.76 1.33

11 1.05 2.55 4.63 24 4.1 1.71 2.27 37 4.44 4.71 1.3 49 4.35 3.9 1.4

12 4.51 1.37 4.2 * 25 1.65 1.38 3.94 38 3.11 1.06 4.1 50 2.22 1.35 4 ***

13 1.84 4.43 2.7 ** 26 2 2.06 2.52 * denotes set 1, ** denotes set 2 & *** denotes set 3.

            (a)                                           (b)                                             (c)

were used for training in the algorithm. The final fuzzy system turned out to be as in
Equation (9) with the same δ value and MSE=0.2355. Second, data points such that
1< 1x <3 and 3< 2x <5 were excluded. The remaining 42 data pairs also gave the

fuzzy system in Equation (9), δ=1 and MSE=0.2468. In both of the above cases, the
error value 0.216 still holds for the original 50 points. The use of 36 data points
obtained by excluding those such that 1< 1x <3.5 and 2.5< 2x <5 did not, however,

return the fuzzy system in Equation (9).
The testing of the capability of the proposed algorithm to combat noise and

generalize simultaneously was done in accordance with the following procedure:
The data elimination process described in the preceding paragraph was again
considered and noisy data from among the 12 points indicated in Table 1 were
introduced. The introduced noisy points were those with input pairs that survived
elimination. Hence, 9 noisy points (set 1, 1 point from set 2 and set 3) were used
among the 45 data pairs, which resulted from the first data exclusion. Also, 8 noisy
points (set 1 and set 3) were used among the 42 data pairs, which remained after the
second data elimination. In both cases, the algorithm returned the final fuzzy system
expressed in Equation (9) with δ=1. The input-output surface is therefore as shown
in Figure 7. It can be seen here that the proposed fuzzy system design algorithm is
able to combat noise and generalize simultaneously.

Figure 9. Input-output surfaces of the fuzzy systems obtained from ANFIS.

Table 1. 50 noisy and noise-free data used in the Example
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5 Summary and Conclusions

In this study, a new algorithm for the design of Mamdani-type and simple-to-read
fuzzy controllers based on a set of input-output data has been presented. It has
relied on the use of a new and parametrized defuzzification strategy. The study of a
property of this defuzzification method has led to the inception of a useful learning
scheme whereby a consistent modification of the defuzzification parameter and rules
consequents is implemented to obtain a final fuzzy system through the reduction of
the data approximation error.

The algorithm has been tested through the use of a typical non-linear function,
which was considered in a number of published papers. In the case of noiseless data,
the data-fitting of the proposed approach has been shown better than the one
pertaining to fuzzy clustering and fuzzy partition. It has been worse, however, than
the data-fitting capability of the combined fuzzy-partition-neural-network,
clustering-gradient-position approaches and ANFIS. Yet, the proposed algorithm
gave a better representation of the shape of the non-linear function than ANFIS.
When the data are noisy, a case that corresponds more to practical situations, the
presented approach has given a smaller noise-free data error, better noise
insensitivity and function shape representation than ANFIS. In addition, the
algorithm has been shown able to extrapolate to regions of missing data and to
combat noise and generalize simultaneously.
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