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Abstract

Most models for the time series of stock prices have centered on autore-
gressive (AR) processes. Traditionaly, fundamantal Box-Jenkins analysis [3]
have been the mainstream methodology used to develop time series models.
Next, we briefly describe the develop a classical AR model for stock price
forecasting. Then a fuzzy regression model is then introduced Following this
description, an artificial fuzzy neural network based on B-spline member ship
function is presented as an alternative to the stock prediction method based
on AR models. Finnaly, we present our preliminary results and some further
experiments that we performed.
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1 Introduction

The paper compares the forecasts from autoregressice (AR) model of stock prices
and fuzzy neural network (FNN) specification. Our motivation for this comparison
lies in the recent increasing interest in the use of neural networks for forecasting
purposes of economic variables. Several studies [2], [8] have compared nonfuzzy
neural network and traditional Box-Jenkins model. There are only a few compar-
ative analyses betwen FNN and standard statistical approaches [12].

In [6] the stock price autoregressive (AR) models based on the Box-Jenkins
methodology [3] were described. Although an AR model can reflect well the reality,
these models are not suitable for siuations where the quantities are not functionally
related. In econonics, finance and so on, there are however many situations where
we must deal with uncertainties in a maner like humans, one may incorporate the
concept of fuzzy sets into the statistical models. The fuzzy regression is another
efficient approach for computing the parameter of the structure for an uncertain
situation and for predicting of uncertain events following the decision.

The fuzzy regression models have been in use in analyses for many years. Lots of
issues of journal Fuzzy Sets and Systems as well as many others have been articles
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whose analyses are based on the fuzzy regression models. From reviewing of these
papers, it becam clear that in economic applications the use of method is not
on the same level as analyses using classical linear regression. Computers play an
important role in fuzzy regression analyses and forecasting systems. The widespreat
use of the method is influenced by inclusion of fuzzy regression routines in major
computer software packages and selection of appropriate forecasting procedure.

The primary objective of this paper is a focused introduction to the fuzzy
regression model and its application to the analyses and forecasting from classical
regression model of view. In Section 2, we briefly describe some basic notions of
fuzzy linear regression. Following this description, we present evaluation of fuzzy
linear regression model in the context of a practical application in comparison to
the AR model presented in [6]. In this paper we primarily concern with short-term
forecasting, say one period in the future. The data set used in this paper (163
observations, stock price) is available, and is depicted in [6]. To build a forecast
model we have defined the sample period for analysis y1, ..., y128 , i.e. the period
over which we will be bulding or estimating the forecasting model and the ex post
forecast period (validation data set), y129, ..., V163 as the time period from the first
observation after the end of the sample period to the most recent observation. In
order to study the regularities of this process, the observed time series is viewed
as a realization of a stochastic process. To simplify our notes, we suppose that the
times at which the observations are recorded are regularly spaced, which allows
us to consider an index by taking only integer values. The process is denoted by
yt = (v, t€T), where the index set T is Afor analysis data set or Efor ex post
forecast data set.

2 AR modelling

We give an example that illustrates one kind of posible results. We will regard
these results as the referential values for the approach of fuzzy autoregressive and
ANN modelling.

To illustrate the Box-Jenkins methodology, consider the stock price time read-
ings of a typical company (say VAHOSTAV company). We would like to develop a
time series model for this process so that a predictor for the process output can be
developed. The data was collected for the period January 2, 1997 to December 31,
1997 which provided a total of 163 observations (see Fig. 1). To build a forecast
model the sample period for analysis y1, ..., y12s was defined, i.e. the period over
which the forecasting model was developed and the ex post forecast period (vali-
dation data set), yi29, .., V163 as the time period from the first observation after
the end of the sample period to the most recent observation. By using only the
actual and forecast values within the ex post forecasting period only, the accuracy
of the model can be calculated.
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Figure 1. The data for VAHOSTAYV stock prices (January 1997 - August 1997)
and the values of the AR(7) model for VAHOSTAYV stock prices
estimated by GL algorithm

After some experimentation, we have identified two models for this series (see
[3]): the first one (1) based on Box-Jenkins methodology and the second one (2)
based on signal processing.

Yy =&+ a1yi—1 + agyr—2 + & (1)
t=1,2, .. , N2
7
Y = — Zakytfk + &t (2)
k=1
t=1,2, . N-7

The final estimates of model parameters (1), (2) are obtained using OLS (Or-
dinary Last Square) and two adaptive filtering algorithms in signal processing [1].
The Gradient Lattice (GL) adaptive algorithm and Last Squares Latice (LSL) al-
gorithm representing the parameter estimates of the predictors (1), (2) were used.
In Tab. 1 the parameter estimates for model (2) and corresponding RMSE’s are
given. The Fig. 1 shows the GL prediction results and actual values for stock price
time series in both analysis and ex post forecast period.

3 Fuzzy autoregressive (FAR) modelling

Next, we examine the application of fuzzy linear regression model [11] to the stock
price time readings used in (1) and (2). Recall that the models in (1) and (2) fit
to the stock prices were the AR(2) and AR(7) processes. In the fuzzy regression
model proposed by Tanaka et al. [11], the parameters are the fuzzy numbers.
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Tab. 1
OLS, GL and LSL estimates of AR models
Model | Order | Est. | a1 Qs as Q4 as ag ar RMSEH
proc
(1) 2 oLs | 1.113 | -0.127 € =26.639 67.758
(2) 7 GL |-0.7513(-0.1701 |-0.0230(-0.0128 [-0.0028 | -0.0472 [ 0.0084 [ 68.540
2) 7 LSL [-0.8941(-0.6672 |0.7346 |-0.2383(0.1805 |-0.5692]0.4470 | 94.570

*ex post forecast period

The regression function of such a fuzzy parameters can be modeled by the following
equation

Yy = Ag * @o (o) © A1 * @1 (210) D, oo, DA+ 01 (xhe) = Ay (3)

where Ag, A1,..., Ax are fuzzy numbers, & and * are fuzzy addition and fuzzy
multiplication operators respectively, Y; is fuzzy subset of y,. This kind of fuzzy
modelling is know as fuzzy parameter extension.

The problem to find out fuzzy parameters gives the following linear program-
ming solution [11]

mins=c¢+c1+ .. +ci
subject to c; > 0
and
(h— 1)< Ja] — (g — @) > 0 (4)
1-n)|z|— (g —2'a) >0
fort=1,2,....N
where ¢; , j =0, 1, ... , k is the width or spread around the center of the fuzzy

number, @ = («ag, 1, ..., ag )denotes vector of center of the fuzzy numbers for model
parameters, z+ = (zo, 71, ...,:z:k)+ denotes vector of regressor variables in (3), h
is an inposed threshold A € [0, 1] (see [9]). A choice of the h value influences the
widths ¢; of the fuzzy parameters. The h value expresses a measure of the fitting of
the estimated fruzzy model (3) to the given data. The fuzzines of ¢’ = (co, ¢1, ..., k)
of the parameters Ay, Ay, ... , Ay for the models (1) and (2) are given in Tab. 2.
The forecast for future observation is generated sucessively throught the Eq.
(3) by replacing the functions of the independent variables (¢; (), j=0,1, ..
, k by observations y;_ ;. Then the forecasting function of the fuzzy AR process is

Yrin(T) =A@ A1 xyr ® As * yr—1B, ..., DAk * Y7kt (5)

where Y1 (T) is the forecast for period T+41 made at origin 7. We observe that
the forecasting procedure (5) produces forecast for one period ahead. As a new
observation becomes available, we may set the new current period T+1 equal to T
and compute the next forecast again according to (5).



Stock Price Forecasting: Autoregressive Modelling... 143

Tab. 2
h=05Ark: | 0 1 2 3 4 5 6 7
Model AR(2)
Modal
values({ ) 26.639 | 1.113 | -0.127
Spread (c) 0 0 0.229008
Model AR(7)
Modal
values(Q) 45.930 | 1.085 | 0.0861 -0.2531 | 0.0836 -0.0057 | 0.2081 | -0.2281
Spread (c) 0 0 0 0 0.209587 | 0 0 0

4 B-spline neural network approach

The concept of fuzzy neural network (FNN) can be approached from several dif-
ferent avenues. The one that we have used for stock price forecasts is shown in
Fig. 2. This figure shows the FNN with p x n input neurons (input layer), a single
hidden layer with p processing units (fuzzy neurons) and one output unit.

Figure 2. The neuro fuzzy system architecture

Input selection is of crucial importance to the succesful development of FNN
models. In models (1) and (2) potential inputs were chosen based on traditional
statistical analysis: these included the raw stock price series and lags thereof. The
relevant lag structure of potential inputs was analysed using traditional statistical
tools: ACF, PACF and the MSE criterion. All the above techniques are in reality
inprecise (we developed parsimonious models, that is, models which adequatly
describe the time series yet contain relatively few parameters, the theoretical ACF
was estimated by the sample ACF, etc.). In fact we obtain a certain number of
input values, but we are sure that these values are one of many other possible
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values. Thus, we will further suppose that the potential inputs, which were chosen
based on statistical analysis, are fuzzy numbers characterized by a membership
functions (the uncertainty is modeled as a possibility distribution) belonging to a
class of bell shaped functions.

Inputs to the fuzzy neuron in hidden layer are fuzzy numbers denoted Bj y ¢,
j=1,2, ..., p, kidentifies the order of the B-spline basis functions. They express
the neural input signals in terms of their membership functions based on B-spline
basis functions of the data. This concept is often called as B-spline FNN [12].

Now, let us suppose that the system has B}, = [Bik,t, B2kt; -, Bpk,t] as
inputs and ¥’ = [y1, yo, --.] as outputs. Then the information set 1describing process
behaviour may be written in the form

Y ={(Bikt,Bogyt sy Bogt,yr) 1 t€T} (6)

Each the j-th input neuron distribute the inputs to the j-th neuron in the
hidden layer. Neural input signals are then weighted by weights denoted w; ;.
In general, the weights are in the range of (0, 1) Each processing unit performs
internal operations on these neural inputs and computes the neural output signal
a;j. The internal operations are based on aggregation, i.e., the sum of the products
of weights and inputs, and its transformation into the neural output a;. These two
interal operations for j-th neuron in the hidden layer are defined as

Uj = wjtBjns (7)

tecA

for aggregation, where U; is a measure similarity betwen the inputs and weights,
and

a; = f (Uj) (8)

for transformation operation, where f is the type of transfer function. We set this
function to the identity, that is, f (U;) = Uj.

The neuron in the output layer provides simply the computation of Egs. (1),
(2) and produces output signal ;.

The learning algorithm is based on error signal. The neural network modifies
the weights w;; in synaptic connections with respect to the desired fuzzy system
output y;. The error of the fuzzy system, i.e., the difference between the fuzzy
system forecast ¢; and the actual value y; is analysed throught the RMSE. Let ¢,
be a linear function

P
U =a1ys-1 +aoyr2+ .. FapYrp = Z ij,tBj,k,tytfj (9)
j=1 teA

such that

S —90* < ) — il (10)

teT teT
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for any other linear function y(z;). It is clear that such function can be derived
by using the Normalized Back-Propagation (NBP) algorithm which minimizes the
term of the left-hand side of the relation (10) by adjusting the weights w;; in Eq.
(9). The proof of the convergence of the NBP algorithm can be found in [8].

The measure of similarity (7) may be defined as the inner product of vectors
B;  (Yt—j) and w,_; (§) , that is

Uj= wi—; () Bk (ye—;) (11)

where : wl_; (§) = [w;; (4) ,wi_jy1 (4)s @i jyn (4)] is an 1 x n row vector of
the weights and

By (i—3) = [Bjk (%1—3) s Bjk (Ye—j41) s s Bk (Ye—j+n)] is an 1 x n row vector
of the B-spline functions.

Next we show that the B-spline neural network may be considered as a fuzzy
linear controler. We now define the vectors as follows:

Let zJT be an 1 X n row vector of the regressor variables

ZJT = Wt—5 Yo+, Ye—jin] J=12,.p

yT be an 1 x n row vector of the observations

yT - [ylava vyn]

and a7 be an 1 x p row vector of the parameters
AT PO
a* = a1, a1, ..., ap)

Then the concept of B-spline FNN may be also considered as a well known
Sugeno and Takagi [10] linear fuzzy controler which (in our notation) has the
following form

R =1if Ui=d1 and Uy =a2 and .. and U, =4

then Ggi=a2; t=1,2 ..,n (12)
where the fuzzy linear control rules R has been derived by neural network purely
from the database describing previous or next behaviour of the system.

5 Empirical results

The network described in Section 3 was trained in software at the Faculty of Man-
agement Science and Informatics Zilina. The statistical forecast accuracy of the
FNN according to Fig. 2 depends on the type of transfer function in Eq. (8) and
the formulation of the B-spline curve in Eq. (6). The approximation is better the
higer the value of £. All B-spline basis functions are cubic ones. Assume that the
mesh points of B-spline basis function is z;, i = 1, 2, 3, 4. Then the cubic B-spline
basis functions (k=3) for ¢ = 1 have the form as follows
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) R (ye—j—:)* ) o
Bis (ye—j) = Titz—®i  (Tit2—®:)(Tit1—T5) for yi—j € (i, Tit1)

) N Wi mi) | (Wi m) (@igo—yr—5) | (Wi —Tiy1)(Tigs—vs—j)
Bis (yi-;) = Tiy3—2; | (@ir2—z:)(@it2—xi+1) | (Tir3—Ti41) (@it2—Tit1) +
+ (Tita—Yr—5) (ye—j—wit1)®
(Tiga—zir1) | (Tig3—@sa1)(Tito—Ti11)

for yej € (wiy1, xit2)

Bis (y—j) = (Yo —j—m4) {( (iys—xi)® } +

Tiy3—T; Tiy3—@ip1)(Ti13—Tiq2)
(Ti4a—24) [ We—j—®it1)(@iys—ve—j) | (Tita—Ys—j)(Ye—j—Tito) }

Tipa—xir1 | (Tia3—i11)(Tit3—Tign) (Ti4a—xip2)(Tir3—Tiq2)
for yi—; € (Tiy2, Tits)

e sra—ve_ )2

Bi:?’ (yt*j) = (zziileri) + {(zi+4£§;42)(y;ij4)7“+3)} for Y- © ($i+3’$i+4>
Biz(yi—j) = 0 othewise

where 3, ;,j =1, 2, ..., p, t € A are observations. These mesh points are given as

1 =min{y—;} x5 =max{y._;} tcA

To = (Q?57$1)/4+Q?1 x3 :2[(1'57271)/4]4*271 1'4:3[(1'57271)/4]+ZE1

Our FNN was trained on the training data set. Periodically, during the training
period, the RMSE of the FNN were measured not only on the training set but also
on the validation set. The final FNN chosen for the stock price prediction is the
one with the lowest error on the validation set. Note also, the training phase was
finished after 5.103epochs, the best model being obtained after 2,3. 10% epochs (see
Fig. 3).

The RMSE’s of our predictor models are shown in Tab. 3. From this table can
be seen that the basic (non fuzzy) artificial neural network architecture described
in [7] does not support its use for daily frequencies. The initial results of the FNN
forecasting model are clearly better.

Tab. 3
Model RMSE*
AR(2) 67.7
Basic (non fuzzy) neural network (see [7]) 67.2
FNN 63.5

* Validation set
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Figure 3. RMSE’s - validation set
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