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Abstract

This work concerns the stability analysis of a non-linear system controlled
by a fuzzy T-S control law. It is shown that the closed loop system is in
general expressed by a T-S fuzzy system composed of rules with affine linear
systems in their consequent parts. The stability of affine T-S systems is then
investigated for a special case using as an example the regulation problem of
a single link robot arm. Stability conditions are derived using the indirect
and direct Lyapunov method and simulation results are presented.
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1 Introduction

The main feature of a Takagi-Sugeno (T-S) fuzzy model is to express the local dy-
namics of each fuzzy implication (rule) by a linear system model. The overall fuzzy
model of the system is achieved by fuzzy “blending” of the linear system models.
Parallel or feedback connections of T-S fuzzy systems which preserve the properties
of each system are possible [1]. Thus a simple and straightforward approach for
the control of non-linear systems has emerged [2]. By representing the non-linear
system by a T-S type fuzzy model, linear feedback control techniques can be uti-
lized to design a linear controller for each local linear model. The overall controller
is a fuzzy blending of each individual linear controller, and therefore, non-linear
but very simple to design. The closed loop fuzzy control system derived in this
way is, in general, a system composed of rules with affine linear systems in their
consequent parts. This design approach for the control of non-linear systems does
not have the local character of a linear control design for the linearized, around
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an operating point, non-linear system, nor the complication and involvement of
feedback linearization controllers. Its appeal is, however, dependent on the stabil-
ity issues involved. While stability conditions have been exploited for T-S fuzzy
systems composed of rules with linear consequent parts, the stability of T-S fuzzy
systems composed of rules with affine linear system in their consequent parts needs
further investigation.

2 Background material

A continuous T-S fuzzy plant model is composed of n plant rules that can be
represented as

Plant rule ¢ : IF x1is M1; AND z9is Moy, ...... z,.is M,;,THEN & = A;z + B;u
(1)

where Mp;, p=1,...,r are fuzzy sets whose membership functions denoted by the
same symbols are continuous piecewise polynomial functions and z = [z;....... :z:r]T
is the state vector. Then, the final output of the T-S fuzzy system is inferred as

follows:
&= wi(z)(Aw + Biu) (2)
where the membership functions
wi(z) = hi(x)/ Z hi(e),  hi(z) = G-y Mji(x;) 3)
j=1
are non-negative and normalized. That is,

D wilz) =1 (4)
i=1
We may also consider a T-S fuzzy control model composed of n rules having the

same premises as those of the above plant, i.e.:

Controller rule i : IF x1is M1; AND x9is Mo ...... x.is M,; THEN h = K;x
(5)

Then, the final output of the T-S fuzzy controller is inferred as follows:
h= Z wi(z) Kz (6)
i=1

A closed loop control system can be constructed with a feedback connection of the
two fuzzy blocks so that the control input of the plant is w = r — h where r is a
reference input (Figure 1).
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Figure 1: Closed loop control system

The resulting closed loop control system is expressed by the fuzzy system:

System rule ij: IF xis (Mp; AND Mp;) THEN & = (A, — B;K;)x + Bir

(7)
where x is Mp; & x1is My; AND ... AND z, is M,,; . The membership func-
tion of the fuzzy set (M,; AND M), ;) is defined as Mp; x M,,; which is a continuous

piecewise polynomial function (not necessarily convex) [1].
Thus, the final output of the closed loop T-S model is

&= wilz)w;(x)[Ayx + Bir] (8)
i—1 j—1

where Aij = Al — BZK] .

The stability of the free fuzzy system (2) (u = 0) has been investigated in
[1] using the Lyapunov direct method. The following stability theorem for the
continuous time system holds.

Theorem 1 : The equilibrium of the free fuzzy system
n
T = Z wi(z) Az (9)
i=1
is asymptotically stable in the large if there exist a common positive definite matriz
P = PT > 0 such that the Lyapunov inequality holds:
ATP+ PA; <0,i=1, ....n (10)

Theorem 1, can be used to derive the stability condition for system (8) when
the reference input is zero (r = 0). That is, the stability condition for the closed
loop system with zero reference

T = Zsz(a:)wJ(:v)A”:v (11)
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is to find a common matrix P = PT > 0 such that the following Lyapunov inequal-
ity holds:

ALP+PA;; <0 i, =1,2,..,n (12)
We can write 11 as [1]:
= Z wi(x)w(x) | Az + 2 Z wi(z) wi(x) Gijx (13)
i=1 i<j

where G;; = , 1<].
Thus, we can state the stability for the closed loop system in the following
theorem [2].

Aij+Aji
2

Theorem 2 : The equilibrium of the fuzzy system (11) or (13) is asymptotically
stable in the large if there exist a common positive definite matriz P = PT > 0
such that the following inequalities hold:

ALP + PA; <0, GLP+PGy <0, i,j=1,2,..,n (14)

Stability theorems 1 and 2 involve the solution of matrix inequalities and are
solved numerically by using LMI convex programming techniques.
An analytical stability solution exists in the following special case:
If (i) (A, B;) are controllable pairs
(i) B; = B and
(iii) we can find K; such that:

with A Hurwitz, then the system is stable.

Note than in this case, G;; = A and we can therefore choose P such that
ATP + PA < 0. However, a choice of K; such that A = A; — BK; may not be
possible even if (A;, B;) is controllable.

The conditions for quadratic stability described by the above theorems are often
found to be conservative. One of the reasons for conservatism is the requirement
that the Lyapunov function be globally quadratic. Many systems do not allow the
finding of such a function. A way to relax these conditions is to take into account
the structural information given by the membership functions and thus require
only that:

el (ATP+ PA)z <0 Vo w; () >0

A procedure to introduce these conditional requirements in the stability analysis
is refered in [3]. An even more powerful relaxation comes from the consideration
of Lyapunov functions that are piecewise quadratic.
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3 Stability of affine T-S systems

So far, stability conditions in theorem 1 and 2 have been derived for T-S free
systems like (9), (11), i.e. systems composed of rules with linear systems in their
consequent parts. In general, however, the bias component in (7) may be either a
non-zero constant (for example, in a regulation problem r = const) or time varying
(in trajectory following r(¢)). Furthermore, fuzzy modeling of a non-linear systems
may result in fuzzy systems composed of rules with an additional constant term
in their consequent parts. As shown in [4] the function approximation capabilities
of the T-S system is substantially improved when constant terms are allowed. We
will subsequently call these systems affine T-S systems.

An affine T-S fuzzy model of a system is composed of n rules that can be
represented as:

System rule i : [IF x1is M1; AND xois Moy ...... r.isM,.; THEN & = A;x +d;

(16)
The final output of the T-S fuzzy system is inferred as:
T = Z w;(x) Az + dy)] (17)
i=1

Let us assume that the equilibrium point of this system is 2 = 0. That is, we
assume that:

i=1

For convenience of notation, we can also express the affine T-S fuzzy system model
as follows:

System rule i : IF x1is My1; AND x5 1s Mo ...... z.is M,; THEN z = A;2 (19)

A d;
0 0
Thus, the final output of the T-S fuzzy system is inferred as:

where A; = and:f;:[a: l]T.

B=Y wi(z)Az (20)

i=1

There is an increasing interest in studying the stability of affine T-S fuzzy sys-
tems. Using piecewise quadratic Lyapunov functions, stability conditions expressed
as a set of LMIs have been suggested in [3] for a class of afline T-S systems which
assume a zero constant term (d; = 0) for all local models whose membership func-
tion contains the equilibrium. Note however, that (18) does not necessary imply
zero d; for the local models interpolated around the origin. Local stability of affine
T-S systems through system linearization around the equilibrium point is examined
in [5].
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Let the Lyapunov candidate function for this system be V(z) = 27 Pz, P > 0 .
Then, the equilibrium x = 0 of the affine fuzzy system is asymptotically stable in
the large if the derivative of the Lyapunov function along the system’s trajectories
is negative definite, i.e. if

2T (AP + PA)x +2df Pz <0 i=1,2,..,n (21)
which can be written compactly as

P 0

gl (ATP+ PANZ <0, i=1,2,..,n, with P:[ 0 p

} , Pe>0 (22)

It is interesting to note from the above relation that the stability of the fuzzy
system with zero bias is not sufficient to guarantee the stability of the affine fuzzy
system.That is, the existence of acommonpositive definite matrix P = PT > 0
such that ATP + PA; < 0, i =1,2,..,n does not imply the satisfaction of (21).
It would be useful however to relate the stability of the affine fuzzy system with
the stability of the corresponding bias free system and thus, investigate the extra
conditions which are required for ensuring the stability of the equilibrium point and
the parameters which influence stability. We will do so with the help of a simple
example.

4 Example: Single-link robot arm

We demonstrate the fuzzy control design for the regulation of a single link robot
arm (driven pendulum). The arm is governed by the equation:

0+ ab + bsinf = u a,b>0 (23)

where corresponds to the lower vertical position, u is the normalised torque input,
the a term corresponds to viscous damping while b depends on the gravity and the
distribution of mass.

As a first step in the design procedure, we must represent the non-linear system
by a T-S fuzzy model. The above system may be approximated by a fuzzy blend of
linear systems in the form of (2). For the regulation problem the model scheduling
is governed by one variable, specifically, the link’s angular position. To minimize
the design effort and complexity we try to use as few rules as possible. Thus, we
approximate the system by a three rule fuzzy model in a circle [, w] which is the
arm’s full workspace, as follows:

0 1

]T
—bsinb,; /0, —a

z=[0 é}T,Aiz{ },QOizo,iw/Zﬂ-,Bi:B:[O 1

(24)

0 1 0 1 0 1
e R N N LT

™

Specifically,
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Clearly, the approximation concerns the sin(.) nonlinearity existing in the sys-
tem (23). The membership functions describing the fuzzy sets are triangular and
are shown in figure 2.

Figure 2. Membership functions
By introducing the following partitioning into the space of the link’s angular
position
Dlz[_%a%] ’ DQZ[%7W]U[_T(7—%]
we define the weights associated with each rule as follows:

1-16/2, 0D 0,0cD
“’1(9):{ 0 ey ’“’3(‘9):{ 021, e p, Ha®) = 1w

Figure 3. Approximation of sin(.) by the three rule fuzzy model
The T-S fuzzy model which approximates the non-linear system is given by the
inferred system:

= En: wi(0)(Aiz + Bu), n=3 (25)
i=1
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The goodness of approximation of the sin(.) nonlinearity by this fuzzy model
is shown in figure 3.

The next step is the design of a linear controller for each local linear model.
The control objective is to reach a desired angle 8, , i.e. x4 = [ 04 0O }T

(i) If the desired angle 64 is zero, the fuzzy control input is defined as

uw = 0— > wi(0)K;x and the closed loop system is a free fuzzy system
i=1

which further belongs to the special case discussed in section 2. Thus, it can
be reduced to a LTI system. Specifically, since B = B; we can define a stabil-
ity matrix A expressing the desired closed loop dynamics of the arm behav-
iour and try to find feedback gains K; satisfying matrix equation (15). Let,
A= _OC —1d , ¢, d >0 and K; are calculated to satisfy A = A; — BK;
. Then, the T-8S fuzzy model of the closed loop system becomes:

&= > wi(0)w;(0)(Ai — BKj)z < &= Az (26)

i=1 j=1

(i) When the desired angle is non zero, we can transform the equilibrium point
of the non-linear system to zero, by providing the torque required at steady
state, us = bsinf, . Thus, if we set u = us+u’ , and define the state variables
ase=x— x4 = [ 6—0, 0 }T , we can write the T-S fuzzy plant model
(25) as follows:

&= z": w;(0)(Aze + Bu' + [A;xq4 + Bug)) (27)
i—1

The quantity into brackets is a constant bias and therefore the system is now
modelled as a fuzzy blend of affine T-S systems. Note that although a constant term
does not appear in the plant’s fuzzy model, the existence of a non-zero reference
input to the control system produced an affine T-S system.

It is easy to show that the free system equilibrium is zero, i.e. (e =0 or z = x4
for v =0):

0= Z w;(04)(A;za + Bus) (28)

i=1

We design the fuzzy controller as before and set:

u=— Zwi(e)Kie (29)
i=1
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The T-S fuzzy model of the closed loop system is then given by:

¢ = Zzwi(g)wj(g) (A; — BK;) + Z’wi(@)(Aimd+ Buy)

i=1 j=1

or é Ae + Zwi(tg)(AifL’d + Bus) (30)
i=1

For asymptotic stability of this system at x4 it is necessary that the linearization
of (30) yields a stable system. Locally, (30) can be described using (28) by the
following linear system:

Ows

¢ = Ay e where Ay, = A+ Z Aizq (’911: (Ta) (31)

In this example, A;z4 = [ bsi,? 0ai g } and after some algebra we obtain that
——g_ *bd
0 0
A4 { 2 2 0q € Dy
b=(1—-2)[0q] 0]~
Ay — (=) 1o (32)

A , 0a€D

+|:b(%)29d| 0} d 2

Note that the derivative in (31) is defined everywhere except +% . The system is
locally stable if

2 2
—c+b— (1 — —> |6a] < 0, 84€ D (33)
o o
2 2
and —c+b (;) ‘9d| < 0, 84€ Dy (34)

In order to ensure local stability in this example, ¢ had to be large enough
to dominate in the above terms. This can be achieved with faster closed loop
dynamics. Therefore, a stable A, (¢,d > 0), is not sufficient for the system
stability. For global stability further analysis is required.

5 Lyapunov stability conditions for the simplified
system

Consider the closed loop equation of a simplified plant like (30):

é = Ae + wai(a:)(Aimd + Bus) (35)
i=1
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We may rewrite this system using the equation of the equilibrium condition (28)
as:

e = Ae + Z Aixa[(wi(x) —wi(xzqa)] or é=Ae+ CalAy(x) (36)

where Cy is a matrix and Ay a vector defined as
T
Cqg=[A12q..... Apzq] and Ag = [(wi(x) —wi(zq)), ..y (wn(z) — wn(zq))]
Let the Lyapunov candidate function be V(e) = ¢?'Pe, P > 0 . Differentiate
over time along system trajectories to obtain:

Vie) = —e'Qe + 2T PCyA 4 () (37)
where () is the positive definite matrix given by:
ATP+PA+Q=0 (38)

Now assuming w;(x) are Lipschitz, and since Ag(xq) = 0, there exists a positive
~ such that

|Calale + za)|| < vllell (39)

for e € D, the domain of Ay, provided that D is a compact set. Then, (39) holds
for the whole of the state-space and from (37) it follows that:

V(e) < —e"Qe + 27| P lle]* = =" (Q — 2y | P| e (40)

Theorem 3 : The equilibrium x = x4 of the affine fuzzy system (35) is asymptot-
ically stable in the large if there exist a positive such that (39) is satisfied and

Awin(Q) — 27| PI| > 0 (41)
where Q) and P are defined in (38).

The above condition is conservative as long as it corresponds to the negative
definiteness of V() in the whole of the state space. We note that this condition
depends on 7 which depends on w;(z) and x4 . Thus, we can relax (41) if we can
find ~, such that [|CyAg(e + z4)|| < v;lle]| Yo € D; where D; corresponds to a
partitioning of state induced by the membership functions and require that

—T(Q-2y |PIe<0  VaeD.

6 Simulation

We have simulated a single link robot arm with dynamics expressed by (23) un-
der the suggested control law consisting of the input torque at steady state and
the fuzzy control law whose gains are designed to achieve a desired closed loop
performance expressed by matrix A.
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We consider two cases in the control design. In the first case matrix A is chosen
so that it corresponds to a second order system with critical damping and a settling
time of 0.5 sec. Figure 4 shows the response of the link’s angular position to a step
input of 1 rad for various initial positions belonging to different regions while figure
5 shows the system response in steps of increasing size covering almost the total
region.

Figure 4. Angular position step responses in different regions

Figure 5. Angular position responses in steps of various sizes

Simulation results show that the system’s response is asymptotically stable in
all cases. Stability conditions are in this case satisfied for every desired position.
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In the second case, matrix A is designed so as to correspond to critical damping
but to a much slower system (with a settling time of 2 sec). Figure 6 shows
the response of the link’s angular position when the desired position is 2 rads.
Despite considering initial positions close to the desired final position, the system
response diverges from the desired value exhibiting an unstable behaviour. Stability
conditions are not satisfied in this case.

Figure 6. Angular position responses in an unstable system

7 Conclusions

Stability issues regarding the T-S fuzzy control of non-linear systems have been
considered and illustrated with the use of the single link robot regulation problem.
Past work on stability of fuzzy systems can be easily extended when the aim is
to stabilize the system at zero reference. However, when a non-zero set-point is
present, stability conditions of the free system can not be carried through. Extra
conditions are needed to guarantee stability. These conditions depend on the choice
of the particular fuzzy set memberships. Future work includes the stability study
for the general case with constant and time varying bias. Also of concern are
robustness issues under modeling errors and parameter uncertainties.
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