Mathware & Soft Computing 7 (2000) 99-123

Denotational Semantics of Languages with Fuzzy
Data,

D. Sanchez Alvarez and A.F. Gémez Skarmeta
Depto. de Informatica, Inteligencia Artificial y Electrénica

Universidad de Murcia
daniel@dif.um.es

Abstract

The denotational semantics of a programming language which manages
fuzzy data is presented. The introduction of blocks poses problems regard-
ing transmission, both for the degree at which the work is carried out and
for triangular operations necessary for the evaluation of the degrees of the
fuzzy data. We propose some solutions. The possibility of defining linguistic
variables is provided.

1 Introduction

A very simple, nondeterministic imperative language is proposed in [5] which we
wish to extend in two ways : through the enriching of its structuring and by
consideration the needs of the fuzzy calculations. Extension in the case of the
former would be useful in order to :

1. Provide it with a blocks structure.

2. Provide it with functions and procedures.

In the case of the latter, it is interesting to :

1. Choose the way of representing the fuzzy sets and the operations defined on
them.

2. Be able to define linguistic variables.

To this end we will present in the following sections the extensions and modifications
to be performed in the abstracts, control and types. We will give the abstract
syntaxis of the language and the different valuation functions. Finally we will give
an example to demostrate the language’s possibilites.

99

100 D. Sanchez Alvarez & A.F. Gémez Skarmeta

2 Global Aspects
2.1 Blocks and Abstractions

In the language mentioned there exist two elements necessary for the evaluation of
a sentence :

e The fuzzy index, an element of [0,1], hereinafter referred to as Ind_Fuz and

o One of the s functions obtained when defining the lambda calculus_b [4], i.e.
a T-norm or an S-conorm. Hereinafter we use T_op to represent the three
functions necessary to calculate the belonging values of the intersection and
the union of fuzzy sets.

The first was modified in the branches as a consequence of the result of the boolean
evaluation of the proof and we were able to use it for fuzzy inference (generalised
modus ponens). The second remained somewhat ambiguous and it was never spec-
ified whether it was the same T-norm or S-conorm, although our opinion is that
it was always the same one. When the blocks are introduced these elements have
to be transmitted from one block to another, something which can be performed
using different strategies. Something similar occurs with the environment, and the
way in which environments are managed in programming languages will serve as a
guide to study these strategies.

Virtually all languages include some notion of context. The context in which a
sentence is used influences its meaning. In a programming language the contexts
are responsible for attributing meaning to the identifiers. In denotational semantics
the context of a sentence is modelled by a mechanism known as environment. This
concept was not necessary in [5] since the language dealt with there had exactly
one environment. This environment was linked to the store, giving rise to an
application of the identifiers in the storable values. This very simple model will be
divided into two components - the environment and the store.

The environments are used as arguments in the valuation functions. The mean-
ing of a sentence is determined in principle by the function :

§: Command — Env — Ind_Fuz — T_op — Sto — P(Sto)

such that for a determined index € Ind_Fuz and some determined triangular
operators € T_op, the meaning of a sentence is a function Sto — P(Sto), which
is determined once the environment establishes the context for the sentence. Thus
the environment will belong to the domain

Environment =

Identifiers — Denotable_Values

where Denotable Values is the domain of all the values that an identifier can
represent. For a programme (of a deterministic language) there exists one single
store and several environments - those that are necessary to establish the contexts
of the different blocks, such as functions and procedures. This means that two
possibilities exist when an abstraction is invoked :

e the use of the active environment at the moment the abstraction is defined.

e the use of the active environment at the moment the abstraction is invoked.

Denotational Semantics of Languages with Fuzzy Data 101

2.2 Fuzzy Index and Triangular Operators

The fuzzy index and triangular operator necessary for the evaluation of each sen-
tence are global for each block and, thus, there are several options. For example,
in the case of the index, we can consider :

e That the sentences composing the body of the abstraction take as their index
the one that exists at the moment of invocation (we could say that it has a
dynamic effect).

e That the sentences composing the body of the abstraction take as their index
the one that is defined at the moment of the declaration of the abstraction
(we could say that it has a static effect)

e Yet a third option exists. That the index for the evaluation of the body of
the abstraction is the result of the operating, through a T-norm or S-conorm,
the index wich exists at the noment of the invocations with the index that is
defined at the moment of the declaration of the abstraction.

Something similar occurs in the case of the triangular operators :

e That the triangular operator is the one used at the moment the abstraction
is invoked.

e That the triangular operator is the one established at the moment the ab-
straction is declared.

2.3 Control

We are going to introduce the sentences if E then S el S end if and while E do
S end do. The sentences case G esac and do G od are a generalisation of both.
In order not to lose the orthogonal character of our construction, we will make
the sentences if E then S else S end if and while E do S end do exclusively
control and flow ones. In other words, the degree with which E is evaluated is not
transmitted to the index for the evaluation of S.

2.4 Types

We are going to introduce a compact representation for the fuzzy sets. To do so
we will use trapezoidal numbers and since we wish to deal with the sets directly,
i.e. we want to name them, store them and we want them to be able to be of an
operation or of the call to a function, they must form part of the storable values
as well as the denotable values and the expressable ones. Furthermore, we want to
give the possibility of creating new types, especiaiiiiy so as to be able to treat what
Zadeh calls linguistic values and linguistic variables [7]. With these meanings are
given to colloquial sentences such as barely suitable, suitable, very suitable etc.,
which are used to refer some characteristics of a specific object. The object, in its
simplest form, will be defined from some characteristics observable in determined
scales. We can divide each of these scales in a fuzzy way into different sections

102 D. Sanchez Alvarez & A.F. Gémez Skarmeta

which we will label with a linguistic value. The universe of the discussion for the
object will be the Cartesian product of the characteristics. The fuzzy subsets of
the said product, constructed from the logical operators and linguistic values of
the characteristics, will the basis from which we will be able to establish linguistic
values for the object, see [1] and [2].

For the declaration of these new types we will use Tennet’s qualification principle
[6]. According to this principle any syntactic domain can have a block in order to
admit local declarations. We will apply this specifically to the extension of the
"records”. As the body of a record is a declaration we are going to allow functions
to appear in it also. This is semantically correct, since each record is a species
of environment in which each identifier is linked to a denotable value and it can,
therefore, be a function. Thus we will obtain a kind of class. Furthermore, if to this
structure we add a list of pairs of identifiers, we will be able to define antinomes.

3 The language

Next we present the components and syntax of our language

3.1 Abstract syntax
P € Programs
K € Block
D € Declarations
D. € Constant definition
D; € Type definition
D, € Variable declaration
S € Commands
E € Expressions
G € Guarded commands
T € Types
I € Identifiers
2 € Dyadic operators
T € Monadic operators
Il € Parameters
V; € Linguistic value

G, € Degree

Denotational Semantics of Languages with Fuzzy Data

3.2

T, € T_op
N € Numerals

B ¢ Boolean

Grammar
P =K.
K ::= D begin S end
D ::= const D}
| var D}
| type D;
| function I (I1*) T ; G, T, K
| procedure I (IT*) ; G, T, K
D.:=1=E
D,:=IT
D; =1 = lity IT* li_va (V;)* anti (I I)* end

II::=1T

T ::= integer | boolean | real | c_fuzzy | fuzzy | I

Vyu=I1{I")T,; G, T, K
| as I

Su=1:=E
1(E)
| if E then S else S end if
| while E do S end do
| print(E*)
| case G esac
| do G od
| K
| skip
| return
‘ I <- I
|S;S

G:=E->8|GOG

E:=I1|N|B|EQE|TE|LE")|LE

103

104 D. Sanchez Alvarez & A.F. Gémez Skarmeta

3.3 Semantic algebras

As we indicated above, we are going to describe the dynamic denotational seman-
tics. In this semantics the assignation of a symbol to represent errors is irrelevant
since we suppose that the programs which contain them have been rejected as il-
legal. Thus we reserve | to represent the non-termination, and no symbol will be
introduced to represent errors in all the domains and we will not even specify the
treatment of such errors.

NOTE.- From here on, the notation given in [3] and is used for semantic
domains. Furthermore, since we make use of the “lambda-calculus_b” [4], we must
consider that each time we talk about functions, these will always have to carry a
degree, and in the case of the degree being the unit n of D, we will omit it. For
example, in the elements p € ¥, we must consider it as (p,n). The index that
we have introduced to reflect the degree with which we are working, since it is
not an element of the ”lambda-calculus_b”, we substitute for a family of functions
I = (Az.z,q) where q € D.

I LITERALS
(LITERAL)
L:=B|N|R|G|C|CC
(BOOLEAN)
B ::= true | false
(NUMERAL)

N ::= unspecified

(NUMERAL REAL)
R ::= unspecified

(DEGREE)
Grd ::= unspecified
(CHARACTER)

C ::= unspecified

(CHARACTER-STRINGS)
CS ::= unspecified

(a) Domain Bool = T
Operations
- true, false: Bool
- or, and: (Bool ® Bool) o Bool
- not: Bool o— Bool
(b) Domain Num = unspecified
Operations
- zero, one, ...: Num
- add, minus, times, div:
(Num @ Num) o—+ Num

Denotational Semantics of Languages with Fuzzy Data 105

II

111

v

VI

VII

(¢) Domain Grd = [0, 1]
Operations
- zerog, oneg, zerofiveg, ...: Grd

- Operador_triangular:
(Grd ® Grd) — Grd

— According to strategy
(d) Domain Real = unspecified
Operations
- zeror, oner, ...: Real
- addr, minusr, timesr. divr: (Real ® Real) o+ Real
(e) Domain Char = unspecified
Operations
- ord: Char o— Num
- chr: Num o— Char
(f) Domain String = unspecified
Operations
- str: Char* o— String
- chrs: String o— Char*

IDENTIFIERS
It is supposed that there exists a flat domain Ide that corresponds to a class
called IDENTIFIERS.

Fuzzy BOOLEANS
Domain Bg = Bool ® Grd

Fuzzy NUMBERS
Domain Ng = Num & Grd

Fuzzy REALS
Domain RealB = Real x Grd

TRAPEZOIDAL NUMBERS
Domain NumT = Real x Real x Real x Real x Grd
Operations

- addt, minust, multt, divt : NumT ® NumT o—» NumT

Fuzzy SETS
Domain C_fuzzy = P(Num x Grd)
Operations

- union, intersection: C_fuzzy ® C_fuzzy o— C_fuzzy

106

VIII

IX

XI

XII

XIII

XIv

D. Sanchez Alvarez & A.F. Gémez Skarmeta

STORAGE LOCATIONS
Domain Loc
Operations

- first_locn: Loc
— first_locn= Parameter
- next_locn: Loc — Loc
— next_locn= unspecified
- equal_locn, lessthan_locn: Loc x Loc — T
EXPRESSABLE VALUES
We want NumT to be ”first category”, i.e. that it can passed as parameter

to a function or be sent back by it etc. Thus EV, el domain of the result of
the evaluation of expressions, becomes:

Domain EV =
BoolB ® NumB @& RealB & NumT ¢ C_fuzzy

DENOTABLE VALUES

We enrich our language by allowing the existence of constans, functios, types,
etc. Thus the set of values that can be ”denoted” by identifiers takes following
form:

Domain DV =
Const ¢ Loc & Abst ¢ ValL. ¢ TiL
where
Const = EV
and

Abst = Func © Proc
FuNcTIONS

Func = Param o~ Ind_Fuz o T_op o~ (Sto ® Out) o> (EV x ((Sto
® Out), @ 4))"

PROCEDURES

Proc = Param o— Ind_Fuz o— T_op o— (Sto ® Out) o= ((Sto ®
Out), @ (5)h
where Param = EV

LINGUISTIC VARIABLES
VaL, = Ide — (Loc ® Func @© Val)
TYPES

TiL = Env o~ Sto o~ (DV x Sto)

Denotational Semantics of Languages with Fuzzy Data 107

XV ENVIRONMENTS
On giving our language a block structure, we require environments in order
to represent the associations between the identifiers and the denoted values.
The element T €0 is used to indicate the absence of the denoted value.
Domain Env = Ide — (DV & O)
Operations

- empty_env: Env
empty_env = \ide 1ae. ing T
- bound: Ide — Env — DV
bound = Aictde. Aacenv.[idpy, L J(a(i))
- binding: Ide — DV — Env
binding =)\ielde.)\VeDv.)\i/elde.
if i =4, i’ then iny(v) else ing(T)
- overlay: Env x Env — Env
overlay = A(acenv,deenv). Aleide.
[idpy, Axeo. a’(i) [(a(i))
- update_env: Ide — DV — Env — Env
update_env = Aiciae. Adepv. Aaceny.
overlay a (binding i d)
- combine: Env x Env — Env

combine = \(aceav,a’ cEav).
AMetde. [Avenv.[Axeo.v, 1], Xeo. idpvgo)

(a(i))(a/(i))
XVI STORABLE VALUES
The Domain SV = EV is used in order to represent the set of values that
can be stored in a single location.
XVII STORE: MEMORY BASED ON A STACK

When administering the stores it is only necessary to know whether a location
is reserved or not, which means, for example, that the function asig_loc is left
unspecified and the whole model is simplified.

Domain Sto = Loc — (SV ¢ O) x Loc

Operations

- empty_sto: Sto
empty_sto = (Aleroc.ing(T),first_locn)
- access_sto: Loc — Sto — SV

access_sto =
AlELoc.A(mapeLoc%(SV@O),lleLoc).
if 1 lessthan_locn 1’ then (map(l))
else iny(T)

108 D. Sanchez Alvarez & A.F. Gémez Skarmeta

- update_sto: Loc - SV — Sto — Sto

update_sto =
AleLoc.AVESV.A(mapELoc%(SV@O),lleLoc).
if 1 lessthan_locn 1’ then
(A" if] =, 1” then v

else ((map,1')(1)),l')
else (Mleros.ing(T),l)

- mark_loc: Sto — Loc
mark_loc =)\(mapELoc%(SV@O),IELoc).1
- aldoc: Sto — Loc x Sto

al_loc = A(maperoc—(sveo),lcLoc).
(I, (map, next_locn(l)))

- deal_loc: Loc —+ Sto — Sto

deal_loc =
AIELoc.A(mapeLoc%(SV@O),lleLoc) .(map,l)

XVIII OuTpPUT
Domain Out = (SV @ String)*

Operations
- empty_out: Out
empty_out = {)
- put_val: ((Const @ String) x Out) — Out

put—val = A(\76(301mst€¢}String7S€Out)' sV

3.4 Valuation functions
3.4.1 Program and blocks

In the classical languages the programs to be executed need only one parameter,
the first direction of the memory that they can use. Our language also requires
that when a program is invoked, what we have globally called strategy be passed
to it as parameter. This would be made up of:

e The t-norm or conorm chosen to be used instead of the s operation of the
lambda-calculus_b.

e The order to be considered in Grd.
o The unit € Grd of s.
e The initial value at which the evaluations are to be made.

It is supposed that points 2 and 3 are coherent with point 1 and that the initial
value is the unit one of the selected norm. Thus, we propose to introduce the
following parameters :

Denotational Semantics of Languages with Fuzzy Data 109

1. Ind_Fuz. This used at the moment of storing any value in the store. It
will alter as result of the execution of a stored command or the execution of
a function or a procedure. This alteration will only affect the body of the
function, procedure or command stored

2. T_op. This is used at the moment of evaluating expressions. It will consist
of the triangular operators necessary for the union and intersection of fuzzy
sets.

P: PROGRAM — Env — Ind_Fuz — T_op —
((Sto ® Out), @ 4)*

P [[K]] = /\eeEnv.)\gelnd_Fuz/\t ET_op.K[[K]]

K: BLock — Env — Ind_Fuz — T_op —
(Sto ® Out) — ((Sto ® Out), @ §)F
K[D begin S end]] =
)\eeEnv.)\iglnd_Fuz.)\teT_op./\aesm@;om.
AleLoc.A(GlEEnv,SlGSto).AaQESto®Out.
smash((deal_loc 1)* onjay, ongas))
S[[S]] €1 i t smash(s;,onga))
(on;(D[|D]]e onya)
ony(D[[D]]e onja)) mar_loc onja

3.4.2 Declarations

In this section we define the classical evaluation functions for the declarations in
any imperative language.

D: DECLARATION — Env — Sto —
Ind_Fuz — T_op —(Env x Sto)

Dlconst I=E]| =
)\eeEnv.)\aesm.)\gelnd_}‘uz/\teT_op
A(deEV,al esm).
((update_env I inpv(d) e),a1)E[[E]le a
D[var1:T]] =
)\eeEnv.)\aesm.)\ielnd_}‘uz.)\teT_op.

A(deDv,alesm).
((update_envIde), a;) T[[T]] e a

D[[procedure I (II*); K g]| =
AEcEnv. \acsto. AleInd_Fuz. \beT_op
((update_env T inpV (ingvrst (Ad* cev+.
)\Cesn@om. (/\(eleEnv,CleStc)@om).
(/\agesm@om./\ielnd_Fuz.’C[[KH €1 (t(i,g),t) ag)
R T]| d) o1)@ ([T] € ¢) o), a)

110 D. Sanchez Alvarez & A.F. Gémez Skarmeta

where

Q*:PARAMETERS — Env — Sto —

(Env x Sto)
Q* [[IT*]] = AecEnv.\aesto.
)\(eleEnv,alesm))\(eneEnv,anGSto).
(oo (DI Tz Ty NP Loz Tt 1) -
D[[Li: Ty 1)

and

R*:PARAMETERS X EXPRESSIBLE VALUES
— Env — Sto — Sto

R* [[I*]] d* = Aecenv.Aacsto.
)\a,l €Sto. . .)\anesm.
(... (R[1I,]]dn ean)
R[[In,1 dn,1 € a,n,l]]) R[[]:1 d1 € ayl H)

where

R:PARAMETER X VALOR EXPRESABLE
— Env — Sto — Sto

R [[I]] d=)\eeEnv./\aesm.
[T,[Meroe if T'(1) = T7(d)
then mod_alm 1d a
else T],T,T,T] (bound I e)
D[[function I (IT*): T; Kg]] =
)\eEEnv.AaESto.AiEInd_Fuz.)\tET_op
((update_env I inpv (inavst
()\d*eEv.)\Cesm@om.()\(e1eEnv,CleSto®0ut).
(/\agesm@om./\.ielnd_}‘uz.
€ [[1]] e (K[[K]] e1 (t(i,g),t) a2))
(R[] d7) e1 1) Q" [[II"::(LT)]] e c))e),a)
D[[type 1= li_ty D]] = AecEnv.\acSto.
((update_env I inpv
(Majesto. (T ti1 D]] € a1)) e), a)

D[[Dl; D2]] = AE8cEnv.Aacsto.
D[[Dz]] ony(D[[D1]] e a) ony(D[[D1]] e a)
3.4.3 Types

In this section, as well as classical evaluation functions for the types in any imper-
ative language, we define the evaluation functions of the linguistic types.

T: Types — Env — Sto — (DV x Sto)

Denotational Semantics of Languages with Fuzzy Data 111

T[] boolean || = Aecknv.Aacsto.
A(leLoc,al esm).(in?v(in{-OC(l)),al) al_loc a

T[integer]] = Aecknv.Aaesto.
A(leroc,aq esto). (inPV (inge=(1)),a;) al-loc a

Tl

Aleroc,aq esto). (inPV (inge=(1)),a;) al-loc a

I‘eal]] -)\eEEnv.)\avGSto.

T[[borroso || = Aeceav.Aacsto.
A(leroc,aq esto). (inpPV (inte=(1)),a;) al-loc a

T[[cfuzzy]| = Aeceav.Aaesto.
A(IELoc,m esm).(inZDV(ingOC(l)),al) al_loc a
T[[TiL D]] = A€cEnv.\dcSto.
A(eleEnv,alesm).(in}?"(el),al) D[[D]] ea

T[[I]] = MAe@cEnv.\acsto.
[T,T,T, T, Meston (bvxen.f alacc_env I e

7" TYyPES — Env — (EV & O)

T'[T]] = Aecenv.
[T,Mleroc.idgy, T,T,T] acc_env I e

3.4.4 Sentences

As we have already indicated for the programmes the evaluation functions for the
sentences require, besides the classical store and environment, what we have called
Ind_fuz and T_op. Neither will be modified during the execution of the sentences.
The consequence of the execution of a sentence will be a subset of the stores. This
subset will be formed by a single store except in the case of the sentence being a
guarded command.

S: CoMMAND — Env — Ind_Fuz — T_op
— (Sto ® Out) — ((Sto ® Out), @ §)

S[[I:=E]] =
)\eEEnv.AiEInd_Fuz.AtET_op.AaESto@)Out.
A(VeEv,alesm@om).)\leLoc.
((update_sto 1 iy(v,i;) on; aj),ony a;)*
(bound (1] ¢) (€[[E]] ¢ t a)
S[[if E then S end if |] =
A€cEnv. A eInd_Fuz. AbeT_op. A\aestogout.
(A(tlEBool,itEGrd). if t; then S[[SH eita
else { a [})(B[[E]] et a)

S[[while E do S end do |] =

)\eEEnv.AiEInd_Fuz.AtET_op.AaESto@)Out.
ﬁX()\fGSto%(Sto(@Out)h .)\aesm.)\(tl €Bool,i1 EGrd) .

112 D. Sanchez Alvarez & A.F. Gémez Skarmeta

if t1 then ext(f)(S[[S]] eit a)
else { a [)(B[[E]] et a)

SIIIE")] =
AeEEnv.AiEInd_Fuz.AtET_op.AaESto@)Out.
[T,T,[T,Apeproc.(p (E[[E*]] e t a) i t a)],T,T]
(bound][I]] e a)

S[[case G esac || =
)\eeEnv.AiEInd_Fuz.)\tET_op.)\aESto@)Out.
(A(tl eBool,ileGrd).if t1 then g[[G]] eita
else {0 })) V[[G]] e a

S[[do God]] =
)\eeEnv./\il EInd_Fuz.)\tET_op.AaEStc)@Out.
ﬁX(A(t1 €Bool,i1 EGrd).)\fESto%(Sto@Out)h.
Adestogout.
if t; then ext(f)(G[[G]] eit a)
else { a HV[G]] e a)

S[[K]l =
)\66Env.)\iEInd_Fuz.)\tGT_op.)\avGSto®Out.
Kl[K]leita
S[[81; 82] =

)\eé Env.)\iEInd_Fuz.)\tGT_op.)\avG Sto®@Out.

ext(S[[Sz2]]eit) S[[S1]]eita
S|l skip || =

)\ee Env.AiEInd_Fuz.)\tET_op.)\aE sm@om.ﬂ a ﬂ

S[[return || =
)\eeEnv.Aielnd_Fuz.)\tET_op.)\aESto@)Out.ﬂ a ﬂ
S[L <L] =

)\eé Env.)\iEInd_Fuz.)\tGT_op.)\avG Sto®0ut.{] a H

S[[print E |] =
)\eeEnv.Aielnd_Fuz.)\tET_op.)\(&ESto,SEOut).

{(a,put_val E([E]] e t a)) }

3.4.5 Guarded commands

As indicated in [5], due to the intrinsic paralelism of the language we need the use
of guarded command. For it we define two valuation functions V and G. The first
decides whether any branching exists which must be followed, the second executes
the sentences associated to the cases whose test is true. The Ind_fuz. which will
affect these sentences will be the consequence of the global Ind_fuz., the degree of
evaluation of the test and the T_op. As we have already indicated, the exit of the
guarded commands may be a multiple one.

Denotational Semantics of Languages with Fuzzy Data 113

V: GUARDED COMMAND — Env — Sto —
BoolB

V[[Gl g G2]] = AecEnvAacsto.
(VI[G1]] e a) or (V[[G2]] e a)

V[[E — S]] = Aeeenv.Aaesto. B[[E]] € a

G: GUARDED COMMAND — Env — Ind_Fuz
— T_op — (Sto ® Out)—
((Sto ® Out), @ 4)*

GlG1 0G| =
)\eeEnv.)\iglnd_Fuz.)\teT_op./\aesm@;om.

(GllGil] eita)d (G[Ge]leita)
GlE—=S] =

)\eeEnv.)\iEInd_Fuz.)\.tET_op.)\&ESto@Out.
(/\(tl eBool,iteGrd).
if t; then S[[S]] e t(i,iz) t a
else { a })(B[[E]] et a)

3.4.6 Expressions

In this section we define the classical evaluation functions for the expressions in any
imperative language. It is not necessary to know the Ind_fuz. but it is necessary
to know the T_op. for the calculation of the degree of the result of the expressions.

&: EXPRESION — Env — T_op — (Sto ® Out)
—(EV x ((Sto ® Out), @ §))"
8[[L]] =)\eeEnv.AteT_op./\aesw@)out.
{ (ZI[L]Ja) [
8[[TE]] = AecEnv.\.teT op.Aaestogout.
fr)]t(E[E]eta)a)]
5[[E, Q E,]] = A€cEnv.A\teT op. A\dcstogout.
{BI[Q] t (E[[E1]leta) (E[[Ez]] et a)a) |

E[[T]] = Aecenv.AteTop.Aacstogout.
{([(idgv,a),({Al.eoc.acc_alm 1 a),a)
,1,7,T] (bound I e a),a)f
5[[ILE]] = Ae€cEnv.\eT op. \acstogout.
{ (T, T T.EEJetaT]
(bound I e a),a) |}

5[[I(E*)]] = AecEnv.AteT op. Adcstogout.
[T, T, [Aperunc.(p(E[[E* |] € t a) a),T],T,T] (bound([I]] e a)

114 D. Sanchez Alvarez & A.F. Gémez Skarmeta

Monadic operators

U: MONADIC OPERATORS — T_op — EV o—
EV

U[[not]] = Atetop.A(berool,gecra).
if b then (false,g’) else (true,g’)
where g’ is such that t(g,g’) = unit

U[[-]] -)\tGT_op.)\(néNum,gGGrd).(—n,g)
Dyadic operators

BI: DYADIC OPERATORS — T_op —
(EV @ EV) o> EV
BI[[and]| =
)\teT_op./\(t1 eBool,gleGrd,tgeBool,ggeGrd).
if tl then (tg,t(gl,gg))
else (false,t(g1,82))
Bl or]| =
)\.tET-op.)\(tlEBool7g1EGrd,tQEBool,gQEGrd).
if t; then (true,t’(g1,g2))
else (to,t'(g1,82))
BI[[op-arit || =
)\.tET_op.)\(HlENum7g1 eGrd,ngeNum,ggeGrd).
(op-arit(ny,nz),t(g1,82))
where op_arit € {add,minus,times,div}
BI[[op-rel || =
)\teT_op./\(HleNum,gleGrd,ngeNum,ggeGrd).
(op_rel(ny,nz),t(g1,82))
where op_rel € {<,>,<=,>=,=,!=
BI[[op-arit, || =
)\teT_op.)\(n1eRea1,g1 eGrd,ngeReal,gzeGrd).
(op-arit, (ny,n2),t(g1,82))
where op_arit,: addr, minusr, timesr, divr
BI[[op-rel, |] =
)\teT_op.)\(rleReal,gleGrd,rzeReal,gzeGrd).
(op_rel,(r1,r2),t(g1,82))
where op_rel,: <, >, <=, >=, =, 1=
BI[[op-arit; || =
AteT-op. A(111 eNum, g1 eGrd, o eNumT,gocCrd).
(op-arit(n1,n2),6(g1,82))
where op_arit,: addt, minust, timest, divt
BI[| op-arit, || =
AteT-op. A(leNum, g1 eGrd,TeReal,goccrd).

Denotational Semantics of Languages with Fuzzy Data 115

(op-arit,(n,r),t(g1,82))
where op_arit;,:
addtr,minustr,timestr,divtr

BI[| op_con || =
)\t eT_op./\C_f1 ec_fuzzy./\C_fQ €C._fuzzy.
(op-con(c_fy,cIy, t))
where op_con: union,intersection

BI[[in]] = AeToop. AleNum.AC_fec_fuzzy.
(in(n,ct))

4 Example

The example that follows aims to show the potential of the language. We have
decomposed it into three files in order to show the reusability of the code. The
programme has been executed with what we have called strategy 1, i.e. that the
initial Ind_fuz es 1 and the T_op is the function maz

4.1 Header file 1

The possibility of constructing functions for the labels about and similar is shown
in this file. These functions return a trapezoidal number.

\ Similar and about.
\ For strategies 1,2,3 use _y
\ for strategies 4,5,6 use _yl

const _y ={0.,0.,0.,0.};

const _yi= {1.,1.,1.,1.};

function similar (INTEGER x1):FUZZY;
const al=5., b1=10.;

var FUZZY z; REAL co;

begin
if UNIT = 1.0 then z:=_y
else z:=_y1
end if;

co := EXTR(x1);

z{1}:=co-al-bl;

z{2}:=co-al;

z{3}:=co+al;

z{4}:=co+al+tbl;

similar <- z
end;

function about (INTEGER x1): FUZZY
const bl= 4., al=bh.;
var FUZZY z; REAL co;

116

begin

D. Sanchez Alvarez & A.F. Gémez Skarmeta

if UNIT = 1.0 then z:=_y

end
co

else z:=_y1
if;

:= EXTR(x1);

z{1}:=co-al-bl;
z{2}:=co-al;
z{3}:=co+al;
z{4}:=co+al+tbl;
about <- z

end; end INCLUDE

4.2 Header file 2

In this file the capacity of the language to program one the possible algorithms
for the comparison of trapezoidal numbers is shown. Only the kernel, and not the
supports, are taken into account here.

\ Test fuzzy b and r

function cmp_bor(FUZZY b, r): BOOLEAN
function cmp_rea(REAL rel,re2) :BOOLEAN
begin

cmp_rea <- rel < re2

end;

function cmp_coin(FUZZY b1l,b2) :BOOLEAN

var

REAL m1,m2,m3;
BOOLEAN v1,v2;

begin

end;

ml :
m2 :
m3 :=ml / m2 ;
v2 := true;
vl := false;
if UNIT = 1.
then DEGREE(v2)
DEGREE(v1)
else DEGREE(v2)
DEGREE (v1)
end if;
vl := vl; v2:=v2;
CASE

b1{3} - b2{2};
b1{3} - b1{2};

m3;

1. - m3

1. - m3;
= m3

true -> cmp_coin <- vl

[1 true -> cmp_coin <- v2

ESAC

Denotational Semantics of Languages with Fuzzy Data

function cmp_coinl(FUZZY b1,b2) :BOOLEAN

var

REAL ml,m2,m3;
BOOLEAN v1,v2;

begin

end;

b2{3} - b1{2};
m2 := b1{3} - b1{2};
m3 :=ml / m2 ;

vl := true;

ml :

v2 := false;
if UNIT = 1.
then DEGREE(v1) := m3;
DEGREE(v2):= 1. - m3
else DEGREE(v1l) := 1. - m3;
DEGREE(v2) := m3
end if;
vl := vi;
v2:=v2;
CASE
true -> cmp_coinl <- vl
[] true -> cmp_coinl <- v2
ESAC

function cmp_conte(FUZZY bl,b2) :BOOLEAN

var
REAL ml,m2,m3;
BOOLEAN v1,v2;

begin
ml := b2{3} - b2{2};
m2 := b1{3} - b1{2};
m3 :=ml / m2 ;
vl := false;
v2 := true;
if UNIT = 1.

end;

then DEGREE(v1) := m3;
DEGREE(v2):= 1. - m3

else DEGREE(v1l) := 1. - m3;
DEGREE(v2) := m3

end if;
vl := vi;
v2 1= v2;
CASE

true -> cmp_conte <- vl
[1 true -> cmp_conte <- v2
ESAC

117

118 D. Sanchez Alvarez & A.F. Gémez Skarmeta

var
BOOLEAN bol,bo2,bo3,bo4,bo;
begin
bol:= cmp_rea(b{3},r{2}); \Test kernel
bo2:= cmp_rea(r{3},b{2}); \
bo3:= cmp_rea(b{3},r{3}); \
bod:= cmp_rea(b{2},r{2}); \

if (bol or bo2) then

\ Case |--—-b-—-——| |--r—--| or opposite
cmp_bor <- false
else
if bo3 then
\ Case e |
\ | ————- r———-- |

if not(bo4) then
cmp_bor <- true

else

\ Case |-—b——-]|

\ e |
bo := cmp_coin(b,r);
cmp_bor <- bo

end if

else

if not(bo4) then
\ Case | ——b——|
\ | ==-z---|
bo := cmp_coinl(b,r);
cmp_bor <- bo

else
\ Case |-——b—~|
\ |-z~
bo := cmp_conte(b,r);
cmp_bor <- bo

end if

end if
end if

end; end INCLUDE

4.3 Program file

The capacities of the language from the viewpoint of the definition of linguistic
variables are shown with this programme. Three linguistic types are declared :
Age, Weight and Person.

The type Age has an age field of type fuzzy and three linguistic variables :
young (), middle() and 01d().

Denotational Semantics of Languages with Fuzzy Data 119

The type Weight has a weight field of type fuzzy and three linguistic variables :
thin(), average () and fat().

Each of the above linguistic variables has the same structure : a constant t
which is used to test an entry and a variable va which will the result. We use them
to model similar cases to the following fuzzy set:

The type Person has two fields : ed of type Age and pe of type Weight and a
linguistic variable: suitable().

We declare pel of the type Person, we assign to it a fuzzy age and weight and
by using the previous functions, we try to classify it as suitable. We try to model
the following situation:

type Age = ty_li
FUZZY age
va_li
young: ()

const t={17.,20.,40.,60.%};
var BOOLEAN va;

begin
va:= cmp_bor(age, t);
young <- va

end |

middle: ()
const t={20.,40.,60.,65.};

120

D. Sanchez Alvarez & A.F. Gémez Skarmeta

var BOOLEAN va;
begin
va:= cmp_bor(age,t);
middle <- va
end |
old : ()
const t={40.,60.,85.,85.%};
var BOOLEAN va;
begin
va:= cmp_bor(age,t);
old <- va
end
end,
Weight = ty_li
FUZZY weight
va_1li
thin: ()
const t={40.,45.,70.,90.};
var BOOLEAN va;
begin
va:= cmp_bor(weight,t) ;
thin <- va
end |
middle: ()
const t={45.,70.,90.,110.};
var BOOLEAN va;
begin
va:= cmp_bor(weight,t);
middle <- va
end |
fat: O
const t={70.,90.,130.,130.3};
var BOOLEAN va;
begin
va:= cmp_bor(weight,t);
fat <- va
end
end,
Person = ty_1i
Age ed;
Weight pe
va_li
suitable: ()
var BOOLEAN p_d,p_m,e_j,e_m;
begin
e_j := ed.young();

Denotational Semantics of Languages with Fuzzy Data

var

e_m := ed.middle();
p_d := pe.thin();
p.m := pe.middle();
CASE
e_j or p_d -> suitable <- true
[] em and p_m -> suitable <- true(0.7)
[] default -> suitable <- false
ESAC
end
end;
Person pel ;
BOOLEAN bol,bo2,bo3;
INTEGER n,m;

begin

end.

pel.ed.age:=similar(26);

pel.pe.weight:=about(51);

n:= 58 ;

m:= 71 ;

pel.ed.age:=similar(n) ;

pel.pe.weight:= about(m);

bol:=pel.suitable();

print ("Age-weight = ",pel.ed.age,
pel.pe.weight," Suitable = ",bol,nl)

Producing 9 outputs:

<1>:
Age-

<2>:
Age-

<3>:
Age-

<4>:
Age-

:
Age-

<6>:
Age-

<7>:

weight={43,53,63,73}(1){62,66,76,80} (1)
Suitable FALSE(1)

weight={43,53,63,73}(1){62,66,76,80} (1)
Suitable FALSE(1)

Weight={43,53,63,73}(1){62,66,76,80}(1)
Suitable TRUE(1)

weight={43,53,63,73}(1){62,66,76,80} (1)
Suitable TRUE(1)

Weight={43,53,63,73}(1){62,66,76,80}(1)
Suitable TRUE(0.6)

weight={43,53,63,73}(1){62,66,76,80} (1)
Suitable FALSE(1)

121

122 D. Sanchez Alvarez & A.F. Gémez Skarmeta

Age-weight={43,53,63,73}(1){62,66,76,80}(1)
Suitable TRUE(0.6)

<8>:

Age-weight={43,53,63,73}(1){62,66,76,80} (1)
Suitable TRUE(1)

<9>:

Age-weight={43,53,63,73}(1){62,66,76,80}(1)
Suitable TRUE(1)

as a consequence of the execution of the programme, whose flow we try to reflect
with the following diagram. (We only show those aspects of the programme that
can give rise to a multivaluation).

5 Conclusions

In this paper we have formally designed and specified a programming language that
takes into account the fuzzy paradigm. The definition is complete and usable in
an industrial environment. This language allows for a large number of extensions:
pointers, arrays, modules, etc. However, more interesting would be:

To develop in depth the class and objects as support for the linguistic vari-
ables.

To introduce some improvement that would prevent an excessive proliferation
of stores.

To introduce time, since in general the correspondence between linguistic
values and class fuzzy is not static.

To introduce some methods of inference.

Denotational Semantics of Languages with Fuzzy Data 123

To study the parallelization of the language on executing the guarded com-
mands.

References

1]

2]

J.M. Adamo. L.p.l. a fuzzy programming language: 1. syntactic aspects. Fuzzy
Set and Systems, 3:151-179, 1980.

J.M. Adamo. L.p.l. a fuzzy programming language: 2. semantic aspects. Fuzzy
Set and Systems, 3:261-289, 1980.

P.D. Moses. Denotational semantics. In Formals Models and Semantics. (Ed
Jan van Leewen). Elsewier. pag.575-629, 1990.

Daniel Sanchez Alvarez. El lambda célculo_b. En Actas del VII Congreso
Espaniol sobre Tecnologia y Légica Fuzzy. pag.311-316, 1997.

Daniel Sanchez Alvarez y Antonio F. Gémez Skarmeta. Seméanticas de lenguajes
con datos borrosos. En Actas del VIII Congreso Espatiol sobre Tecnologia y
Légica Fuzzy. pag.271-278, 1998.

R.D. Tennent. Principles of Programming Languages. Prentice-Hall, Englewood
Cliffs,N.J., 1981.

L.A. Zadeh. The concept of a linguistic variable and its applications to approx-
imate reasoning-1. Information Sciences, 8:199-249, 1975.

