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Abstract

The convergence behavior of (11 X)-ES is investigated at parabolic ridge,
sharp ridge, and at the general case of the ridge functions. The progress rate,
the distance to the ridge axis, the success rate, and the success probability
are used in the analysis.

The strong dependency of the (14+\)-ES to the initial conditions is shown
using parabolic ridge test function when low distances to the ridge axis are
chosen as the start value. The progress rate curve and the success probability
curve of the sharp ridge is explained quite exactly using a simple local model.
Two members of the corridor model family are compared to some members
of the ridge function family, and they do not seem to be the limit case of the
ridge function family according to our measures for convergence behavior.

Keywords Evolution Strategy, progress rate, convergence analysis, ridge func-
tions, corridor model

1 Introduction

The convergence behavior of evolutionary algorithms is not as intensely considered
as the usage of them for optimization. The analysis of convergence is done on
specific landscapes, which are models of the parts of general fitness landscapes.
Such models must therefore be typical, they must present a specific property of
possible landscapes. Therefore, the results obtained from typical landscapes are
assumed to be useful in analyzing the progress behavior of evolutionary algorithms
on more complex landscapes. Moreover, this analysis cannot be done generally
directly on complex landscapes. As a result, the analysis of simple test functions
becomes an important part of the theoretical analysis of evolutionary algorithms.

In this work, the convergence behavior of the (11 A)-ES is analyzed on different
ridge functions. The whole work mainly consists of simulation results. In several
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cases, they are supported by theoretical results. The derivation of the missing parts
of the theoretical results is an essential part of our future work.

The underlying work is based on [OBS97], in which the parabolic ridge function
is analyzed, which is a member of the ridge family. Here, the analysis continues on
the general case. We give the simulation results on the sharp ridge test function.
However, most of the underlying work consists of the results obtained for other
members of the ridge function family (for o > 2).

The algorithm used is described in Section 2. The definitions of the Evolution
Strategy, the (1, A\)-ES, and the (14+A)-ES are given in the same section. The ridge
function as well as other functions are defined in Section 3. The functions which are
used or referred to in this work are explained there (parabolic ridge, sharp ridge,
corridor model, rectangular corridor, cylindrical corridor, etc.).

The measures used in the analysis of the convergence behavior are the expected
mean distance to the progress axis (R(°)), the progress rate (i), the success rate
(sr(A)), and the success probability (P, ). These measures are used already for
the parabolic analysis of the ridge [OBS97]. In this work, they will be used for
different members of the ridge family. These convergence measures are defined in
Section 4.

In Section 5, the convergence behavior of (1, A)-ES is explained at the family of
ridge functions (« > 2). The analysis is repeated in Section 6 for the (1 + A)-ES,
where the results are also compared for the two selection strategies.

We compare the progress behavior of the (1 T A)-ES at the parabolic ridge
in Section 7, for greater number of offspring (A = 100 and A = 500). In all the
other sections of this work, A = 10 is used. Section 8 is dedicated for the worst
initial condition of the (1 + A)-ES at the ridge functions: The ridge axis. Some
simulation results at the parabolic ridge are given for #(%) = 0 at A = 10, and also
for 7(0) < Rgio/)\

The simulation results obtained for the (11 10)-ES are summarized at the sharp
ridge in Section 9; the progress rate formula for (1, A\)-ES is derived analytically.
The two corridor model functions, namely rectangular corridor model and cylin-
drical corridor model, are investigated in Section 10 and Section 11, respectively.
It has been conjectured that these functions might be regarded as the limit case of
the ridge functions (as a — 00). Mainly the progress rates of these corridor model
functions are compared with the ¢, values of the ridge functions with high a.

Section 12 concludes this work with a short summary of the results and of the
research planned for the near future.

2 Algorithm definition

The algorithm used in the simulations is shown in Figure 1. It belongs to the
class of Evolutionary Algorithms, which imitate the processes of natural evolution.
These processes are (among others) mutation, crossover (or recombination), and
selection. The evaluation is done by the environment, in our case the objective
function is used for this purpose. A more detailed description of the imitation of
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this biological phenomenon is described in [FOW66, Rec73, Rec94, Hol75, Gol89,
Sch95, Fog95, Bey96, Rud96].

The Evolution Strategies (ES) is the name of the Evolutionary Algorithm
“species” developed in 1960s in the Technical University of Berlin [Sch95]. It imi-
tates the mutation, selection, and recombination processes in the nature, by using
(mostly normal) probability distribution functions for mutation, a deterministic
mechanism for selection (which chooses just the best set of offspring individuals for
the next generation), and a broad repertoire of recombination operators.

The principle in ES is to generate an excess number of offspring from the current
generation. With excess we mean that the number of offspring produced is larger
than the size of the population in the next generation. In early 1970s, the following
notation was introduced for this case [Sch95]: i represents the number of parents,
and A represents the number of offspring. The parent individual (or individuals
for the recombination) are selected arbitrarily from the current generation. The
simplest case here is ;1 = 1, but then one has a parent individual and not a parent
population.

The simplest case for the mutation is used in this work, namely isotropic mu-
tation, which has equal properties along all directions (see Equation 1 for the
realization of the mutations).

In ES, the normal distribution is used mostly for generating mutations, but
this is not a must for the algorithm. The mutation operator is explained in detail
further below in this section. One can also use different mutation strengths for each
axis. For a more complex model, one can use a correlation matriz for the mutations
in order to adjust the mutation distribution to the local topology independent of
the coordinate axes. In these three cases, the set of strateqy parameters consists
of a single mutation strength o, of an N—dimensional vector, and of %(N +1)
(co)variances respectively.

The selection scheme used in ES is different from tournament or proportional
selection schemes described in [Gol89]. ES uses a deterministic selection scheme,
which selects the best p individuals as the individuals of the next generation. In
the elitist case, these p individuals are selected from the union set of u parents
and A offspring. This is called plus strategy, and noted as (& + A). If the parent
individuals do not take part in the selection, then the p individuals of the next
generation are selected from the \ offspring, which is named as comma strategy
and notated as (p, A). For the plus strategy, one can even choose A = 1. However,
for the comma strategy, one must fulfill the condition A > u to ensure enough
descendants for the selection operator. The notation (u T A) is used to subsume
both selection schemes.

Recombination means the usage of the “genetic” information of more than one
parent in the generation of each descendant, where one names the complete set of
parameters of an individual as its genetic information. For recombination, several
schemes can be used [BS93]. Along with the discrete or intermediate (weighted)
recombination, where both of which can be considered on global or local scale,
other recombination strategies also exist.

The variable setting (or the “genetic information”) of an individual consists
of its N—dimensional variable vector (which gives the geometrical position of the



38 A.I Oyman, H.G. Beyer & H.P. Schwefel

individual in the N-dimensional search space), and its strategy parameters.

As a characteristic difference from Genetic Algorithms [Hol75, Gol89], the strat-
egy parameters are also considered as part of the evolution process. This means
that also the strategy parameters evolve during the process, they adapt to the (lo-
cal) conditions. This is called the control of the mutation size, and is the first step
towards “self-adaptation”.

Even in its earliest development stage, ES contained self-adaptation methods
for the strategy parameters (such as mutation strength). Self-adaptation is not
considered in this work. However, the investigation done here will be the basis for
the analysis of self-adaptation processes.

In this work, a simple (1, A\)-ES and a (1 + A)-ES are used. The (1, A\)-ES
is outlined in Figure 1. Since we use just one parent, we do not actually have a
parental population. The entity P(9) refers to the parent individual at the gener-
ation number g, and P(® to the starting point. P’9) refers to the X\ individuals
generated from the parent P9,

The (1, A)-ES Algorithm

g:=0

initialize P(©)

evaluate P(©)

while not terminate do
P9 .= mutate P
evaluate P'(9)
ploth) .— select(l’)\)P’(g)
g:=g+1

od

Figure 1: The (1, \)-ES Algorithm without self-adaptation

In Figure 1, subroutines of the algorithm are written in italic. First, we initialize
the parent P(®. The starting point can be chosen arbitrarily, however, in order
to be able to compare the results with different mutation strengths, all the P(©)
are initialized in the same manner. The evaluate function calculates the objective
function value(s) of the parameter setting represented in the individual(s).

The mutate operator generates offspring according to

a; =a; +0Zy;. (1)

This operator uses normally distributed random numbers, Zxs ~ A (0, 1) (with zero
mean and variance one) to generate the \ individuals in P'(9). New random samples
are used for each individual and for each variable of all individuals. We denote the
)\ individuals of the offspring P’(9) as I; such that P'9) = {I;li=1,...,A}. The N
variables of an individual I; are called a;-; I, = {a;|j =0,...,N — 1}, and of P

(the only parent) as P(9) = {aj]j =0,..., N—1}, using the subscript j. The a;- are
therefore N (aj, 0?) distributed. The mutation strength o is provided by the user
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at the beginning of the simulation, i.e. it is considered as an exogenous constant
in this work.

The simulation lasts for a fixed number of generations given by the user, there-
fore the terminate function is also simple. The select operator records the individual
having the highest objective function value among the offspring, and selects it as
the parent of the next generation.

The parent of the offspring does not take part in the selection if one has the
comma strategy. In case of the plus strategy, we denote the selection operator as
select(1+>\)P’(9) UP@. At the last step, the generation counter is incremented, and
the loop restarts for the next generation.

3 Test functions

Several test functions are analyzed in the simulations of this work. In this section,
these test functions will be listed, as well as the definitions of some related test
functions. In this paper, the ridge functions are analyzed, and later the rectangular
and cylindrical corridor model. The hyperplane test function and the sphere model
are used in the comparisons made during the analysis. All the test functions given
in this section are to be maximized by the (17 A)-Evolution Strategy.

The sphere model [Rec73, p.115] comprises all functions with spherically distrib-
uted quality function values. Thus the concentric hyperspheres are ordered around
the optimum, which is chosen to be located in the coordinate origin in order to
make the definition of the function simpler. The quality function value increases
as the distance to the optimum decreases. In the general case, the sphere model
can be expressed as

F(x)=Fo— f

and f(.) stands for any nondecreasing monotonous function. The general case of
the hyperplane test function is defined as

N
F(X) =ao + Zaiﬂ?i, ag € R, a; € RT. (3)
i=1

The coordinate axes can be rotated so that the F(x) in (3) depends only on one
variable, e.g. 1. The ridge function family is defined by

N-1 T
F(x)::vo—d<z:1:§> , (4)

where o € R, d € RT. The positive factor d is used to scale the effect of the
nonlinear part on the progress behavior. It influences the “hardness” of the opti-
mization problem. The o parameter defines the ridge function type, for & = 1 one
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gets the sharp ridge, and for a = 2 the parabolic ridge test function. The parabolic
ridge was already analyzed in [OBS97]. Parabolic ridge and sharp ridge cases are
shown for two variables (N = 2) in Figure 2 and Figure 3, respectively. For a = 0
one gets the hyperplane.

Figure 2: The parabolic ridge test function (i.e. o = 2) for N = 2, d = 0.01. zg values are
shown on the horizontal axis, x1 on the vertical one. In this contour plot, the regions with larger
quality function value are indicated in brighter color. Therefore, the optimum is at far right.

Figure 3: The sharp ridge (ie. a = 1) for d = 0.01 (figure left) and d = 1 (figure right),
respectively. N = 2. See also the legend of Figure 2.

The neighborhood of a point x with F(x) consisting of points with F(x) > F(x)
is called success region. The success region of the ridge functions is not bounded.
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The optimizer of this function is given as

The square root of the sum of the squares is named as the distance to the
progress axis, i.e.

We also analyze the progress behavior of the Evolution Strategy on the corridor
model test functions. The common property of the corridor model functions is the
narrow corridor which is obtained using restrictions in all directions except one:
the progress direction. Two corridor models are investigated, which are named
after the shape of the corridor walls: The rectangular corridor model [Sch95, p.134,
p-351] and the cylindrical corridor model [Sch95, p.361]. In the problem catalog of
[Sch95], the restrictions and the objective function are given for the general case
of these two models. They will be simplified so that one has the zy axis as the
progress axis, and the constraint boundaries parallel to the x( axis. Therefore, the
rectangular corridor model is given as

_ ez if all G(x) fulfilled
F) = { —00 otherwise (7)
Gi(x) : |z <b, be R for j=1,...,N—1 (8)

The cylindrical corridor model is defined as

if G(x) is fulfilled
otherwise

b c Rt (10)

We selected ¢ = 1 for our simulations (in general, c € R™).

Note, linear transformations of the object variables, i.e. arbitrary rotations of
the coordinate system, do not change the nature of the problem for the Evolution
Strategy. Since isotropic mutations are used, the progress behavior (and in partic-
ular progress rate) is not affected by the rotations of the reference frame. This is
a desired property for evolutionary algorithms [Sal96].

4 The progress measures

The behavior of an evolutionary algorithm can be defined as the long term evolu-
tion of the population in the time domain. In order to derive its dynamic behavior,
the behavior of the ES in a single generation must be analyzed. As a result of this
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analysis, one obtains the expected values (first order moments) of respective quan-
tities. If these results can determined for all possible values of the state variables,
one obtains an estimate for the overall behavior of the algorithm. The measures
concerning the changes in a single generation are called local measures (local in
time, not necessarily in space). In this work, the measures of interest are ¢, @,
sr(A), P, 14y, and 7. They are defined below.

The progress rate ¢ is usually defined as the expected change in the distance
of the population to the optimum in a single generation

i = B = x| — % = x@V)} (11)

where %X denotes the optimum vector. That is, ¢ is positive if this distance is
expected to decrease. Without reference to (11), the progress rate ¢ for the hy-
perplane test function (Eq. (3)) is measured in the direction of the normal vector
of the plane. Similarly, for ridge functions (Eq. (4)), ¢ is simply defined as the
expected difference in the zy variable of the successive parental generations, since
the optimum is at infinity.

In contrast to ¢, the other progress measure Q is measured in the scalar domain
of fitness function values. It gives the expected change in the quality function value
of the population in a single generation

Q= E{Ftl) _ p@)} (12)

For the corridor models (defined in (7) and (9)), the relation between the two
progress measures is as follows: GL \ = CP.

The success rate sr(\) is the probability of getting a descendant with a better
quality function value than the parent in a single trial. The computation of sr(\)
and success measures is simpler for the (1, A)-ES case, than for the plus case.

The local quality function (Qx(z)) is required for the formal definition of sr(A).
Qx(z) is defined as the difference of the fitness function values of successive gen-
erations, i.e. Qx(z) := F(xp + z) — F(xp), xp being the position of the parent
individual, and z the mutation vector yielding the best descendant. If the ex-
pected value and standard deviation of Q)x(z) are named as Mg = E{Qx(2)}

and Sg = \/E{Qi(z)} — [E{Qx(2)}]?, respectively, the cumulative distribution
function of being better than the parent can be approximated as (see [Bey94])

w10 (M) g (Ma) -

where “®(.)” denotes the cumulative distribution function of the standard normal
distribution, N(0,1).

The success probability P, 142 is the probability that at least one of the A
descendants will have a better objective function value than the parent. P51 can
simply computed as

Poaar=1-(1—-srQ)) ' ~1— {cp (--)]A . (14)
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The distance r to the progress axis in the ridge function case is given by (6).
It gives the distance of the population mean in the N-dimensional space to the
progress axis, and is needed in the formulae of ¢, @, and sr()).

The value of r fluctuates in a simulation in consecutive generations. If one calls
the 7 value at generation g as 79, the 7(9) values averaged over many generations
give the same value in different simulations of the same ES for the same values of
a, g, d, N, and X after a certain transient period. This mean value for the observed
mean r will be denoted as

R .= E{r} . (15)

5 The (1, \)-ES performance

In this section we will give the simulation results for the general case of the ridge
functions (for oo € {2,3,4,5,8}) using (1,A)-ES, with A = 10, d = 0.01, and
N = 100. The simulation length is chosen as G = 100,000 generations; 2,000
generations are reserved additionally at the beginning of the simulations to avoid
influences from the transient phase.

The results for the measures of the performance behavior are reported in sep-
arate sections. the simulation results are summarized for the distance to the ridge
axis (R(°®)) in Section 5.1. The results on the progress rate (¢*) are given in Sec-
tion 5.2. Lastly, in Section 5.3, the success probability (Ps1,) and success rate
(sr(A)) values observed are reported.

5.1 The distance to the ridge axis, r

This section gives the simulation results for the E{r} values of some ridge function
family members with « > 2. The r value was defined in (6).

The expected mean of r during the simulation runs (ie. R for a > 2)
is around D), for sufficiently large mutation strength. The value of D(*°) is
obtained from the sphere model theory [Bey93, p.186], in the following equation it
is expressed for N — 1 dimensions. A comparison of the definitions of the sphere
model in (2) and of the ridge functions in (4) indicates the similarity of these two
test functions

o(N —1)

R .= E{r} ~ D(*) =
{r} T

(16)

The progress coefficient ¢1x for the (1, A)-ES is the expectation of the A-th
order statistics of \ samples generated using the standard normal distribution,

S B T O
cm_m/_mt [@(EP1dt | (17)

As an example, cq,10 ~ 1.53875.
As already mentioned, the quantity R(°) gives the expected distance to the
optimum of a (1, A\)-ES with fixed mutation strength o as the simulation length
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G goes to infinity. The formula for R(>) for o = 2 (parabolic ridge case) was
derived analytically in [OBS97]. In this section, the condition for the validity of
approximation D(*°) for E{r} (a > 2) will be shown. One uses the normalizations

ot = dﬁ(N
RO — ey

Yo (18)

-1
—1)R>) (19)

in order to be able to compare the simulation results for different a.

PSfrag replacements PSfrag replacements
R()" [normalized] R(®)" [normalized]
o™, sigma [normalized] o™, sigma [normalized]
D(o0) (o)

a=2 a=2

a=3 a=3

oa=4 oa=4

a=>5 a=>5

a=2_8 a=28

Figure 4: Normalized distance to the ridge axis versus normalized mutation strength for the
(1,10)—ES. Three members of the ridge family are displayed in the figures (o > 2). The E{r} value
of the ridge functions with o > 3 can be approximated by D(*°) (Eq. (16)) for ¢* > 2¢1, 10 ~ 3.

Simulations are made for o € {2, 3, 4, 5, 8}; the results for o = 2, 4, 8 are given
in Figure 4. For 0* > 2¢1,19 &~ 3, one can use the approximation E{r} ~ D) The
dependence of the progress rate ¢* to the mutation strength o* will be investigated
in the next section. D(*) will be used in the progress rate formula, and obtain
accurate results for o > 2¢; 19. For 6* < 2¢1 19, the simulation results for the mean
r should be used instead. Therefore, for smaller values of the mutation strength,
one needs a more accurate theoretical formula for E{r}.

Finding an accurate analytic formula for E{r} for small values of ¢* is a part
of our research ongoing. The E{r} value for o < 2 will also be investigated by
simulations. For o = 2, however, E{r} was already derived in [OBS97, p.29]

2 2
1 2cq
=) vy

(c0) — D) 1 1 1
R 7 + + N_1

)

a=2
with D(>) given by (16).

5.2 The progress rate ¢

In this section,the simulation results will be given for the progress rate ¢ of some
members of the ridge family. An approximation with first order partial derivatives
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for the theoretical ¢ is used to explain the simulation results. This formula is
obtained using a local model at the steady state, i.e. when the 79 has a value
around R(%),

The ¢ formula to be derived for in this subsection is very accurate if the R(°°)
values from the simulations are used, if D(°°) in (16) is used instead, the ¢ formula
is valid for sufficiently large o* (see Figure 4 for the reason). The idea of the
following derivation has been published in [OBS98]. Its predictive power has been
tested for the case @ = 2 only. Here, the usefulness of this approach will be shown
for other o values.

5.2.1 On the derivation of the ¢* formula

The analysis starts with substituting r defined in (6) into the ridge function defi-
nition in (4), yielding

F(zg,7r) = 29 — dr®. (21)

At ridge functions, the isometric surfaces can locally be approximated by hyper-
planes for r ~ R(>) (see Figure 2). As a result, the progress rate in the direction of
the gradient vector a is as large as the ¢ of the hyperplane, i.e. ¢, = c1 r0a/|a].
If the unit vector in xg direction is denoted by eq, the resulting progress rate can
be written as @rigge = eg - Pa.

By partially differentiating (21) with respect to z¢ and r, the gradient vector a
at the location (z¢,r) is obtained as

OF

LT 1
a= o = ( _dara—1 > . (22)
or
Using the quantity a, one gets a first estimate for the progress rate ¢
OC1,A OC1. A\

Pridge =~ - ’ (23)
e llall 14 (darafl)Q

and after substituting r by D) for sufficiently large o

O0C1 A

Lridge ~ 5
\/1 + {da(%}”)al]

The approximation r ~ D(*) is valid for o* > 2¢1,x, as shown in Section 5.1.

Now, one can introduce a normalization scheme which allows us to compare the
progress rates of different ridge functions. This scheme is actually a generalization
of the scheme introduced for the parabolic ridge test function in [OBS97]

p* =d=T(N — 1)p. (25)
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The normalization of ¢ has been given already by Eq. (18). Using this scheme, the
approximate formula for the progress rate reduces to

*
<p*4 - g CL)\
ridge , 2
o*
1+« (201,A)

5.2.2 Simulation results

(26)

PSfrag replacements

©*, progress rate [normalized]
o*, sigma [normalized]

C%,,\
o =2
a=3
a=4
a=>5H
a=38

Figure 5: Normalized progress rate versus normalized mutation strength for the (1,10)-ES.
Five members of the ridge family are displayed. The theoretical ¢* curves for parabolic ridge (i.e.
a = 2, Eq. (28)) and hyperplane function (o« = 0) are also indicated for comparison, as well as
the horizontal asymptote ci e

In Figure 5 the normalized progress rate curves are given for normalized muta-
tion strength. Firstly, all of the ridge functions (like other function classes) have
progress rate values less than ¢}, ...14ne- This can also be seen from (24), since
the denominator is never smaller than one. The value ¢7;, . is always nonnegative,
since there is always a component of the mutation vectors in direction toward the
optimum. Secondly, the progress rates of all ridge functions for o > 2 start to

decrease, for sufficiently large o* values. For o« > 3, this decrease starts at o* <
The ¢* value for the cases & = 2 + ¢ (¢ < 1, i.e. for a values very near to two) are
investigated using (26). Simulation runs are also made for @« = 2.1 and o = 2.5,
and obtained results supporting this claim. Therefore, the limit value of ¢* using
the (1, A)-ES for increasing mutation strength is

. * _ . * —
algnoo @m‘dge = 00, Ulli)n(x) soridge =0. (27)
a<2 a>2
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For a = 2, one has ci , as the limit value (see Figure b and Section 7 for details).
The accurate ¢ , for a = 2 is [OBS97, p.22]

C
= = : (28)
a=2 2 . 2
L343 (1 Fa/l+ (2%) >

After explaining the progress behavior of the ridge family, it will be shown how
good the approximate progress rate formula (26) is for finite 0*. One considers the
two extremes from Figure 5, namely o = 2 and o = 8. In Figure 6, one sees that
the approximate formula in Equation 23 gives accurate results for o = 2 using the
r values obtained from the simulations.

P12

PSfrag replacements

©*, progress rate [normalized]
o*, sigma [normalized]

C%,,\

a=2

Figure 6: Simulation results compared with theory for the (1,10)-ES with a = 2. The simple
estimate from (24) (with the approximation r =~ D(*) indicated as theo) differs much from the
simulation results (a = 2); however, it is asymptotically correct. If one uses the approximation
in (23), and insert the mean value of v obtained from the simulations, one gets the curve ‘“theo
|r”. The analytically derived formula for ¢* (Eq. (28)) is indicated as “theo2”.

The same idea can be tested for @« = 8. As one sees in Figure 7, one can
compute the ¢* value by inserting the mean of the r values from the simulations
in Equation (23) (and applying the normalization afterwards) quite accurately.
This is quite surprising since this simple estimate for ¢* was obtained by using
first order partial derivatives only. One can expect this method to work also for
a wide range of a values. The other theoretical curve obtained using (24) gives
poor results. Therefore, finding a theoretical (if possible an analytically driven)
equation for R(°) i.e. the expected mean value of r for a given o remains as a
future work.

The p*—versus—c* plots for @ < 2 have as their asymptotes curves with a
positive slope. The slopes of the asymptotes increase up to ci x as « is decreased
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PSfrag replacements

©*, progress rate [normalized]
o*, sigma [normalized]

C%,,\

a=38

Figure 7: Normalized progress rate is plotted versus normalized mutation strength for the
(1,10)-ES and « = 8. Again, the simulation results are almost exactly explained by “theo |r”.
See also the legend of Figure 6.

down to zero (remember that ©pyperpiane = €1,00). For a < 0, the simulation
results coincide with the theoretical progress rate curve of the hyperplane.

Therefore, one can say that the parabolic ridge test function is the only member
of the ridge function family with a horizontal asymptote (c% ), which is somewhat
obvious after considering (26).

5.3 The success rate sr(\) and the success probability P,

The “success” is measured using two measures: The probability of having a de-
scendant which has a better quality function value than its parent is called success
rate (sr(\)). The probability that at least one of the A offspring will have a better
quality function value than its parent is called success probability (Ps1,x).

The sr(X) and P;1 ) values were investigated in [OBS97] for the parabolic ridge
case (o = 2). The analytical formula for the success rate using the comma selection
strategy is [OBS97, p.31f]

1 1 2¢12\ >
st )R @ || =+ g |11+ (%) (29)
1A

with the theoretical limit given as

lim sr(A) = ®(—cq,0). (30)

o*—00
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The analytical formula for the success probability P x is [OBS97, p.31f]

1 A
1 1 2eia\? |\
Poa~1-(®||—Z+— |1+ 1+(¢) (31)
o* 2¢7 5 [ o* J
with the theoretical limit given as
lim P,y =1—[®(c )] (32)

o* =00

In this section, the simulation results are given for o = 2, 4, 8. We also made
simulation runs for & = 3 and a = 5. Since the success curves changed gradually
as « is increased, these two intermediary curves are removed from the pictures.
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a=14
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theo a =2

Figure 8: The success rate curves versus normalized mutation strength for different members of
the ridge family, A = 10. The analytically obtained curve for the parabolic ridge is also indicated
in the figure ( theo a = 2, Eq. (29)): The asymptote ®(—ci1,10) (Eq. (30)) is reached faster at
larger o values.

For A = 10, one obtains s7(10,«) > 0.062 and Psq,19 > 0.472. Therefore, the
limits for the parabolic ridge seem also to be valid for the other members of the
ridge family (see [OBS97, p.31] for the analytical derivation of sr(A) and P; 4 for
the parabolic ridge). The limit value is attained faster (i.e. at smaller o* values)
for larger values of a.

The limit value of Py x in (32) changes very little as X is increased. For A = 3
it is around 0.485, for A = 10 it decreases to 0.472. For A = 1,000 and 100, 000 one
gets the values 0.448 and 0.441, respectively.
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Ps 1,10, success probability
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Figure 9: The success probability curves versus normalized mutation strength for different
members of the ridge family, A = 10. The analytically obtained curve for the parabolic ridge is
also indicated in the figure ( theo a = 2, Eq. (31)). The asymptote 1 — [®(c1.10)]® (Eq. (32)) is
reached faster at larger o values.

6 The (1+ \)—ES performance

The simulation results obtained using (1, A)-ES are reported for @ > 2 in Sec-
tion 5. We will report here the simulation results for R(>) (Section 6.1), P
(Section 6.2), and ¢* (Section 6.3). In these sections, the (1, A\)-ES and (1 + \)—
ES, will be compared and investigate the limit behaviors of these strategies. The
simulation runs were done for a € {2,3,4,5,8,64}, d = 0.01, N = 100, and A = 10.
In order to make the diagrams more readable, the results are not displayed for all
these « values. Each simulation run lasted G = 100, 000 generations, and additional
2,000 generations are reserved for the transient phase.

6.1 The distance to the ridge axis, Riio;
00)
A

we will show the dependence of Rgio; on « and the selection strategy. The Riio;

values are normalized according to (19).

In Figure 10, the R(>) values of plus and comma strategies are compared.
For o = 64 and 0* < 2¢1,10 = 3, this value is roughly the same at both selection
strategies. On the figure left, the same comparison is done at o = 8, and the curves

separate from each other at lower ¢* values than for @ = 64. In both figures, one
)
A

Here the dependence of the Rg values on ¢* will be investigated. Furthermore,

can see that the Rgcf/)\ value is smaller than the Rg value. For small ¢* values,

the R(>)" value gets larger for larger a as can be seen in Figure 11.
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R(>) ) [normahze(ﬁ’igure 10: Norma]ized’%g'g(t)gmce %%%%ngis versus normalized mutation strength for the
(1+A)-EB + 10)-ES. The R(>)" values ard kompdrddTor the two selection strategies at oo = 8 (figure
(1, \)-E®ft) and a = 64 (figure right). The (X ptldBegy has a lower R(®)* value for larger ¢*. See

a:6£tl9) for the definition of R(®)" . o — 64
a =64 a =64
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Figure 11: Normalized distance to the ridge axis versus normalized mutation strength for the
(1 1 10)-ES. The Rgio/)\ and Rgoi) values are shown next to each other (figure left and figure right,
respectively). The R(‘X’)’E sm} values are also shown in both pictures to ease the comparison. In

general, for 6* > 2¢1,10 ~ 3, the R() value is larger for the comma strategy.

For the comma selection strategy, the R(°)” values are compared for increasing
a (Figure 4). As seen in that picture, the Rgoi) values are very near to D(°) for
a > 3 and 0* > 2c1,10 ~ 3. In Figure 11, the R values are compared (i.e.
for plus and comma strategies). The R(*) value increases in both cases for

0* < 2¢q,10 if o is increased, where the o = 64 curves seem to be very near to the
value (R(>)(2¢ 10)).

6.2 The success probability P, .,

The success probability P_,, for comma and plus strategies is investigated in [OBS97,
p-45, p.49] at the parabolic ridge. In Section 5.3, the simulation results obtained
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using (1,10)-ES are given for several o values. Here we will compare the P_ .
results for a € {2,3,4,5,8,64}. The results for « = 3 and a = 5 are not displayed
in Figure 13, in order to reduce the number of curves per diagram.
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P, 1+10) Success probability
o =64

comma
plus

PSfrag repla,cementg igure 12: The successpsqﬁza%il{;‘é/pqaﬁx%gﬂﬁgfs nor.malized n.lutation jtrength for o = 64. The
N - —hmit value for Ps 110 o};t—m—;ﬁ—zt—?m—pm-a-bphe—;rdge is also valid for « = 64. On the other hand,
o, sigma [normahzedf he Ps 1410 value coffinueS¥ d@c poxnabzed|increased.
Ps 1,10, success probability Ps 1,10, success probability
’s1+10, success probability The succedd; prababilitged3 propdbility— 64 is shown in Figure 12. The curves
(1+ A)-Efor both selection strategies differ-fddnE8ach other essentially for o* > 2¢ 19 & 3;
(1,A)-Efnd the P14 continues to decréhsd alllbugh P51\ goes to the limit predicted by

o = 632). o= 64
a =64 a =64
a=38 a=38
a=38 a=38
a=>5 a=25
a=>5 a=5
a=4 =
a=4 o=
a=3 a=3
a=3 a=3
a=2 a=2
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Figure 13: The success probability curves versus normalized mutation strength for different
members of the ridge family. The Ps 1410 curves (figure left) and the Ps 1,19 curves (figure right)
are plotted next to each other for different values of ac. The tendency at the comma strategy is
easier to see: for very large values of o, P; 1,10 decreases suddenly near o* = 2c¢1,190 = 3 to the
asymptotic limit. The Ps 1410 value, however, decreases enormously for increasing o*.

The success probability curves differ enormously for plus and comma selection.
In Figure 12, one observes the difference for o = 64; in Figure 13, one can see the
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difference for several increasing o values. The P; 1\ curve has an asymptotic lower
limit, which is attained almost at ¢* ~ 2¢1,19 =~ 3 for & = 64. The P14 curve,
however, goes to zero for larger o*.

6.3 The progress rate ¢,

In this section, the progress rates of the ridge function family (with oo > 2 ) will be
compared for plus and comma selection strategy. This convergence measure was
compared for the a = 2 case (parabolic ridge) in [OBS97, p.44]. In Section 5.2, it
was investigated for 2 < a < 8 using (1, 10)-ES.
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comina comina
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Figure 14: Normalized progress rate versus normalized mutation strength. The comparison of
the ridge functions for « = 3 and o = 5. The value c% 10 Is also shown in the pictures. The

progress rate of the plus strategy surpasses the ] 1o and also the ¢7 1o for =5 (figure right).

The ©l4, curves are compared for « = 3 and o =5 in Figure 14. The comma
strategy has better progress rates for any ¢* value at a = 3. For o = 4, the peak
values of these selection strategies are very near to each other; however, the comma
strategy shows larger progress rates for any o*.

For a = 5 (Figure 14 right), the ¢7, , value is slightly larger than @7 ,. The

©7,, is larger in the interval 1.6 S o* &~ 4.5. The shape of the 7, curve does
change only a little bit as « is increased from three to five; however, the change
at the o] \ curve foretells us that the plus strategy will give comparably better
progress rates for larger a.

The progress rate of plus and comma strategies for @« = 64 are compared
in Figure 15. For small mutation strengths, both strategies give almost the same

results; otherwise (for o* 2 1.4), the @7, value is definitely better.
The drastic difference at ¢* = 2¢1, 19 =~ 3.08, where the plus strategy is more
than five times better than the comma selection strategy, will be examined more

thoroughly. The P_ ., values are almost the same at this o* value (P, ~ 0.51,
0)

Py145 =~ 0.53, Figure 12). The Ricf; values are also almost the same (the Rg’/\ is

about five per cent greater than Rg(f))\, Figure 10). Neither the success probability
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o Lo Progress rate [normalized]
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Figure 15: Normalized progress rate versus normalized mutation strength for the ridge function
with a = 64. The value c% 10 1 also shown in the picture. For o* = 1.4, both selection strategies
give similar results; otherwise, the plus strategy is better.
figures nor the R(°) figures can explain the progress rate difference between these
two strategies. For this purpose, Figure 16 can be used.
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R1T10 RlTlO
P1+10 P1t10
a=38 a=38
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Figure 16: The progress rate versus distance to the ridge axis. Both axes are unnormalized.
The ¢ values are compared for the selection strategies at o = 8 (figure left) and o = 64 (figure
right). The 1410 value is greater than 1,10 on the figure right, for R(®) > 1.

The -versus—R(*) plots for o = 8 and o = 64 are given in Figure 16. Both axes
are unnormalized. For a = 64, the progress rate values decrease after R(™) ~ 1,
and one sees that ¢ » < @14 for the same R°) yalue (please note that same R(e°)
does not necessarily mean same o). For a = 8, P+, Is attained at a larger R()
value, and the plus strategy shows smaller progress rates than the comma strategy
for larger R(>) values. As a conclusion, one sees that the 9514: , value depends on

the R(*®) value (to be more precisely, it depends on the ¢ value at which the critical
R(*) magnitude is reached). The a value indicates how large the effect of R(>) is
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Figure 17: Normalized progress rate versus normalized mutation strength, for different values
of a. The ¢, 1, values are shown on the figure left. The o7 |, values on the figure right decrease

>
to zero suddenly after 6* ~ 2c1,10 ~ 3.

The normalized progress rates @7, and ¢j , are plotted next to each other
in Figure 17 for different values of . The case a = 2 is discussed in depth
in [OBS97, p.48f]. The results for comma strategy are given already in Section 5.2.
In Figure 17, one can compare the shapes and the asymptotics of the progress rate
figures for the plus and comma strategy. For o > 5, the plus strategy gives better
results (since a € R, one has to note here that the exact value for the change where
@14, becomes larger than @7 , should be between four and five). The negative 7
term in the objective function makes the progress in the z( direction for the comma
strategy very hard (see (22)), since Rf;) increases faster than jo_o; The plus

strategy profits from the lower R(*®) values, and ©1, decreases more slowly.

7 On the influence of the number of offspring

The theoretical formulae describing the convergence behavior of the (1, A)-ES at
the parabolic ridge test function will be verified here using larger values for the
number of descendants (A > 10). The formulae for @1 A0 Rfi), and P are
derived analytically in [OBS97]. The derivations do not emphasize a specific value
for A; however, since it is assumed that N (the number of dimensions) is sufficiently
large, we doubt the formula to be valid for higher values of A if N is kept constant.

In this section, simulation results obtained for three different A values (10, 100,
and 500) at the (1, A)-ES will be compared with the theoretical formulae, and with
the results obtained using (1 + A)-ES. One keeps d and N constant (d = 0.01
and N = 100). The simulation length is G = 100,000 for the (1,10)-ES and
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G = 50,000 for the others, reserving additional 2,000 generations before collecting
data. One does not have any theoretical results for the plus strategy, since it is
not possible to evaluate the respective integrals analytically.

The limit value for the progress rate at the parabolic ridge test function is

. * _ 2
Ullgloo P10 = C1,a- (33)
Therefore, in order to be able to compare the results for different A, the normalized
progress rates are divided by ci y- Therefore, the horizontal asymptote becomes

simply 1. This horizontal line is also indicated in the figure for the plus strategy.
The ¢ and ¢ are normalized according to (18) and (25), respectively.
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Figure 18: The normalized progress rates divided by c%  are plotted versus the normalized

mutation strength. The values used for A are 10, 100, and 500 (d = 0.01, N = 100, (11 \)-ES).
The simulation results for the comma strategy are shown in the figure left, and for the plus
strategy on the figure right, respectively. The curves obtained using the theoretical ¢, » formula
(Eq. (28)) are also indicated for the (1,A)-ES case, the simulation results deviate from these
values for A = 100 and A = 500. The ¢7 , values exceed the c%)\ value for larger values of \. The

peak value of the progress rate for the plus strategy (¢} A / ci ) Increases as X is increased.

In Figure 18, the progress rate values for both selection methods are given next
to each other. We have chosen d = 0.01 and N = 100, and for A the values 10, 100,
and 500. The simulation results for the comma strategy are in the figure left, for
the plus strategy in the figure right. The ¢* values for A = 10 are almost equal
for both strategies for approximately ¢* < 1. If X is increased further to 100 and
500, this range increases further to ¢* < 3.5 and ¢* < 6, respectively.

The ¢7 /C%A value obtained at large ¢* values increases as A is increased,
i.e. the horizontal asymptote is not valid for these large A values (N = 100). The
progress rate value goes to a greater limit. An explanation of this limit behavior for
large A will be investigated in the future. However, the progress rate curve obtained
from the simulations with large A does not differ much from the N-independent
theoretical formula for larger values of N. For instance, in a simulation run with
N = 1,000 and A = 500, one observes that the horizontal asymptote ci \ is again
valid. This indicates that a more accurate ¢\ formula must be developed which
incorporates an N-dependence. Also the values for ], decreased for this case.
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The simulations for the plus strategy (Figure 18 right) showed us that the peak
value for the progress rate @7, , increases as A is increased. The mutation strength
at which this optimum progress rate is attained (6*) also increases. However, the
$74 value does not seem to surpass the c1 » value. Some values for comparing
these two strategies are given in Table 1. This table summarizes Figure 18 and
Figure 20.

A C1,) C% A 951 A | GTia 57“(6T+>\» A) Plia ¢T+>\/C§ A ¢T+)\/¢T A
10 | 1.539 | 2.368 | 2.368 2.5 0.09 1.59 0.67 0.67
100 | 2.508 | 6.288 | 6.54 4.4 0.02 4.82 0.77 0.74
500 | 3.037 | 9.222 | 9.90 6.2 0.01 7.73 0.84 0.78

PSfrag replacements

Table 1: Comparing the (11 \)-ES for large A (o = 2). The value of 67 is infinity. The table
was generated using Figures 18 and 20. The values for 7 (A =100 and A = 500) are obtained
by averaging the simulation results for * > 24. The table entries which have one or two digits
after the decimal point are obtained empirically.

Several valuable informations are repeated in Table 1. The entries with one
or two digits after the decimal point are approximate, and are obtained from the
simulations. In summary, one can see that 6], , increases as A is increased. The

C PO . o
ratio ¢7, ,/ $7,, increases at the same time. The success rate at 67, , decreases as
A is increased.
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Figure 19: The distances to the ridge axis multiplied by ci y are plotted versus the normalized
mutation strength. The values used for \ are 10, 100, and 500 (d = 0.01, N = 100, (1T X)-ES).
The line labeled by “R.,,,” stands for ¢1 y D(%®) = ¢*(N —1)/2. D(*) is defined by Eq. (16). The
simulation results for the comma strategy are shown in the figure left and for the plus strategy
on the figure right, respectively.

The Rg?go value does not differ much from the Rgiofoo for o* < 6 (approximately), although

the ¢* values for both selection methods differ remarkably even for c* = 5 (see Figure 18). This
peculiarity becomes more evident for A = 500: R§°§())O = Rﬁ-ogoo foro* < 15, and 7 500 > ¥7 4500
for o* > 10. The progress rate values do not seem to be related to R(°°) values for higher values

of .
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The distance to the progress axis (R(>)) is another quantity which is used in
describing the progress behavior on the ridge functions. In Figure 19, this value for
the higher values of A is investigated for both selection methods. The simulation
results are multiplied by ¢ 5 in order to be able to compare the results for different
A in the same picture.

As the number of descendants increased, the plus strategy attained the same
R(*°) values up to larger values of o* as the comma strategy. To give an example,
one has nggo ~ Rgc_fgoo for o < 15, whereas Rg?f()) ~ Rﬁofo for o* < 1. The
strange observation is ] 509 > ¢ 500 for o* > 6, i.e. also when Rf;) = Rﬁo))\

As a result, one can say that the ¢* values are not necessarily related to the
R(>) values. The success probability P, 1, gives us the necessary explanation for
the difference between the progress rate values of these two selection methods.
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Figure 20: The success rate values are plotted versus the normalized mutation strength. The
values used for \ are 10, 100, and 500 (d = 0.01, N = 100, (1T X\)-ES). The simulation results for
the comma strategy are shown in the figure left, and for the plus strategy on the figure right,
respectively.

The theoretical sr(\) curve (Eq. (29)) and the theoretical asymptote (Eq. (30)) are displayed for
the comma strategy. The success rate values for the plus strategy case continue to decrease
as o* increases, and they are always smaller than the values obtained by the comma selection
method.

Success rate value is a measure on the local curvature, i.e. it gives us the ratio
of the success volume to the total local volume. The success volume consists of
points having a better quality function value than the parent, and which are within
the distance of the normalized mutation strength ¢* to the parent individual.

The success rate curves for high values of A (10, 100, and 500) are shown in
Figure 20. For the curves obtained using (1, A)-ES, one sees that the asymptotic
value is valid for A = 10; however, for A = 100 and A = 500, it does not seem to
be a sharp lower limit. The theoretical curve for sr(500) is also not correct, either.
However, it describes the tendency correctly.

For the plus strategy (figure right), the curves for these three A values do not
deviate much from each other. For ¢* < §, one can say that the larger A\ the
smaller sr(A). This result is somewhat surprising, but one should remember that
the success rate is also a function of A, and the equilibrium condition changes if A
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is changed.

The sr()) values are the same for both selection strategies at small o* values,
to be more precise, for ¢* < 1, 0* < 4, and ¢* < 5 for A = 10, A = 100, and
A = 500, respectively.

An interesting result obtained from Figure 18 and Figure 20 is the following:
The progress rate of the plus strategy cannot be greater than the one of the comma
strategy at the parabolic ridge test function. The success rate is always less than %
for the 6 value where 7 , is reached (for any A). The plus strategy has a success
rate values which are less than or equal to the ones of the comma strategy. For
o* values less than 67, ,, the plus strategy cannot surpass the comma strategy.
As the number of offspring goes to infinity, the plus strategy will attain progress
rate values closer to ¢*1‘ \; however, it cannot surpass.
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Figure 21: The success probability values are plotted versus the normalized mutation strength.
The values used for A are 10, 100, and 500 (d = 0.01, N = 100, (1T A)-ES). The simulation results
for the comma strategy are shown in the figure left, and for the plus strategy on the figure right,
respectively. The figure on the left side has a linear scale on the vertical axis, whereas a logarithmic
scale was necessary on the figure right.

The theoretical P, 1 5 curve (Eq. (31)) and the theoretical asymptote (Eq. (32)) are plotted in
the figure left. It differs from the simulation results for larger \ values. The P ) values have
the same asymptote for increasing o*. The success probability values for the plus strategy case
(Ps 14 ) continue to decrease as o* increases, and they are always smaller than the Ps 1_ values.

The success probability P, 14y 18 defined as the probability to have at least
one descendant out of A offspring which has a better fitness value than the parent
individual. The success probability curves for different values of A (10, 100, and
500) are shown in Figure 21. The theoretical curve obtained for P;1,x deviates
for A = 100 and A = 500 from the simulations. However, all curves seem to
have almost equal asymptotic values, which is a remarkable difference to the plus
strategy (figure right). Moreover, the Psq x values are much larger than Ps 14y for
larger values of o*.
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8 The parabolic ridge with (1+10)-ES for 7 =0

In this section, the effect of the (special) initial position 79 = ( in the search space
to the progress behavior of the plus strategy will be investigated. The (1+ 10)-ES
algorithm is used for this purpose. The parabolic ridge is used as the test function
(d=10.01, N = 100).

In [OBS97, pp.48], the two selection strategies ((1 T A)-ES) are compared at
the parabolic ridge, and explained the progress deficiency of the plus strategy. It
has been concluded that the low Rﬁo))\ and P14 values caused the low ] 4 rates
(for 0* > 1). In Section 7, one has seen that Ps 14 gives more information on the
progress behavior. In the simulations done, 7(©) = D(°°) ig used, which is a good

estimate for the comma strategy, and Rgcf/)\ < Rfi) is observed at the end of the
simulation. A period of 2,000 generations is reserved before starting the statistics,
and observed later that this was a sufficient length for reaching the steady state
for r(9) for both selection strategies. The aim here was to start collecting data at
the steady state for both algorithms. The question remaining unanswered was on
the influence of a much smaller (¥ for the (1 + \)-ES.

In order to have a fair comparison, the initial position in the search space should
not favor either of the algorithms compared [Bey96, p.213]. It is the intention to
show here how the initial conditions can affect the comparison.

The first test aims to verify the existence of Rgo_:;\ for different values of o; i.e.

different values for (®) are chosen. For very large values (up to r0 = 2OOD(°°)),
the same Rg:_o;\ value is obtained, however, it took just a longer time in generations

to reach the steady state, e.g. for o = 20 and 7(®) = 10D(*), 1,000 generations

were sufficient to reach Rgcf/)\

However, for (9 < Rﬁ(f))\, the results are a bit different. The r(9) values fluc-

tuate around the same Rgof/)\ value; however, an (9 value chosen smaller than the

lower end of this fluctuation interval results in a very long adaptation time. Several
generations pass by without a single movement in the search space if 7(©) is chosen
too small.

For o = 20, some experiments are made for 7(0) < RE:_O; (d =0.01, N = 100,

G = 5-10%), which has R§°+°))\ ~ 250. If r(® = 181 is chosen, the first move
in the search space (ga1 in short) was the 2,342, 082th, and after 13 moves (at
g = 2,956, 830) the vicinity of the stationary state was reached (r =~ 240). In short,
more than two million generations were necessary for the first move in the search
space, and thereafter, about 6 - 10° generations to reach the vicinity of the steady
state. If we started at 7(©) &~ 198, “only” 176,365 generations were necessary to
reach r &~ 242, i.e. at least an order of magnitude faster. On the other hand, for
7 ~ 165, more than four million generations were necessary for the first move.

Therefore, it is recommended to choose a large start value 7(©) (such as D(>))
as long as the Rﬁ(f))\ is unknown. Otherwise, the (1 + 10)-ES needs too many
generations to reach the stationary state for r.

The worst value for 7 is zero, since the Ps 14 has its smallest value in this
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case. Some simulation runs are made for different values of o between 1 and 8,
and recorded g, a:(()g), r@, and F(X)(g) values for the first 400 moves in the search
space. The simulation length was further limited to G = 5 - 105, The results are
summarized in Table 2.

The P_,., value gives an estimate for the probability to get at least one de-

scendant better than the parent individual in the next generation. The formula
[OBS97, p.31{]

A
o Mg >\_ ~ (N —1)do
Priasd [q’< SQH - [¢<¢1+<2dr)2+202d2<N1>>] !

is also applicable to the plus strategy, as long as the correct R(°) value is inserted.
We insert r(® = 0, and get

Poiarl— {(I) ((0*2+2(N—1)_1)%)])\. (35)

The decrease in the Ps14) values explains the increase in gp1, the number of
generations necessary for the first move.

o gmi gm2 plonm) | plons) Rﬁ‘fi R§°§) P14
1 2 3 8.801 | 13.259 | 44.62 46.412 0.827
2 3 6 19.293 | 27.910 | 67.29 75.547 0.241
3 22 23 28.780 | 41.067 | 86.14 | 104.655 0.028
4 23 56 35.143 | 49.423 | 100.02 | 134.318 | 2.49 - 10~3
5| 24,198 24,472 | 44.308 | 57.191 | 114.47 | 164.446 | 2.23 - 10—*
6 | 222,510 | 225,254 | 51.225 | 66.783 | 130.94 | 194.907 | 2.38 - 10—°
7 | 629,625 | 644,050 | 56.117 | 70.056 | 139.16 | 225.599 | 3.27-10°6

Table 2: The results of the simulation run with (1 4+ 10)-ES with 7(®) = 0 for 1 < o < 7
(N =100,d=0.01, and G=5- 106). The simulation for ¢ = 8 could not generate any movement
in the search space, i.e. all of the 50 million descendants generated had a smaller quality function
value than the parent individual P(9). The symbols gps1 and r(9M1) stand for the generation
count at which the first move in the search space is made and the distance to the ridge axis
attained hereby, respectively. For larger values of o one sees that gpro — gyp1 <€ gnvi- The
movements thereafter occur even more frequently. The Ps 1, values are added to the table to

show why the gpsq values increase so rapidly. One also sees that RS_O; < R§°§).

From Table 2 one sees that the Rgio/)\ is smaller than Rf;); however, the plus
strategy requires much more time than the comma strategy to reach that mean
value when started at a low (% value.

Another observation obtained from Table 2 is that one did not need to wait for
the second move in the search space so long as for the first one. The reason for it
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is that the r(931) value is remarkably larger than r0 = 0, and therefore the Ps 142
value is also much larger.

For o = 8 (i.e. ¢* = 7.92), one could not register any moves at all in five million
generations. This would mean a progress rate ¢7,, = 0. The actual value at the

appropriate Rgio/)\ is a bit smaller than 0.5 [OBS97, p.48], obtained by averaging
the results of only 100,000 generations. Therefore, the careful selection of initial
conditions is necessary to obtain correct observations.

9 The sharp ridge

A special case of the ridge functions is the sharp ridge test function to be obtained
by using the value oo = 1 in (4). After substituting r from (6) it reads

F(xg,r) = 29 — dr-. (36)

The sharp ridge has interesting progress properties. The progress rate @sparp is
proportional to the mutation strength o, and the proportionality constant depends
only on d and A. The R(®) value for it also increases linearly with o, and it does
not have a nonlinear region for small ¢ values (compare here the R(>) values for
a > 2 in Figure 4). Therefore, these early results can be summarized as

Csharp X O R « ¢. (37)
PSfrag replacements PSfrag replacements
d d
@, progress rate , progress rate

c1,10/V1+ d? ci,10/V1+d?

Figure 22:  Progress rate versus d at the sharp ridge test function on the (1,10)-ES with
o =1, N = 100. The simulation results are compared with the analytical formula obtained from

the local model, Equation (38). For d < 0.1 one has ¢ = 0C1,10 & Phyperplane, and for the

> . . .
other extreme, d > 100, one gets ¢ ~ 0, since the influence of the N — 1 variables other than zg
dominate the objective function. For the d values in between and also for these two extremes the
formula c¢1,10/V1+ d? produces quite exact results.

The proportionality constant for ¢,44-p can be calculated using d and ¢; 5. The
(00)

sharp TEMAINS still to be done. Therefore, we will show here only

calculation of R
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how the progress rate for the sharp ridge can be calculated simply from the local
model mentioned in Section 5.2.

The normalization scheme for ¢* and ¢* suggested for the ridge functions in
(18) and (25), respectively, cannot be used for the sharp ridge. Anyway, the lin-
ear response to the change in ¢ makes the p—versus—o and R(°™)—versus—o plots
unnecessary. Therefore, the mutation strength is kept constant (¢ = 1) and used
different values of d in our simulations (1075 < d < 1,000).

The values A = 10 and N = 100 are used for the (1, A\)-ES simulations. The
simulation length was G = 200, 000; additional 2,000 generations were reserved at
the beginning of each simulation before collecting the statistics. A different seed
value was used for the pseudo-random number generator in each simulation run.

The ¢—versus—d curve of the (1,10)-ES at the sharp ridge is given in Figure 22.
The analytical formula for the progress rate at the sharp ridge (also shown in this
figure) is obtained from (23) for a =1

0C1, A 0C1, A

g & T _TAA 38
o Xl T Ve %

This progress rate formula uses just the first order derivatives at the local model.
It reflects the linear dependency of @sparp on the mutation strength and gives
surprisingly good results.

PSfrag replacements

sharp

()

Figure 23: The distance to the ridge axis versus d at the sharp ridge test function. (1,10)-ES,
o =1, N = 100. The simulation results are compared to the D(°°) value (Eq. (16)). The relative
difference between the simulation results and this value is less than one per cent for d > 6.

In Figure 23, the simulation results for Riﬁ)rp for different d values are plotted.

The definition of D(>®) is given by (16), which is obtained from the sphere model

theory. The Rg(;;l)rp value is very near to this value for d > 6, in other words, for

@ < 0.26, when the progress rate is very low.
The Ri(;;;)rp value goes to infinity as d goes to zero. This phenomenon was also
observed for the parabolic ridge: A small d value reduces the effect of r in the
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objective function, and the equilibrium for r is established at much larger values.

The performance of the (1 + A\)—ES. In this part, the results obtained using
the (1 + 10)-ES will be compared with the ones using the (1,10)-ES for the sharp
ridge. The simulation uses the same parameters, i.e. A = 10, o = 1, G = 200, 000,
and N = 100. The r(©) value was again chosen large (10D(°) see Section 8 for the
effect of the too small 7(9) value using the plus strategy); and we started collecting
the statistics after the first 2,000 generations.

PSfrag replacements

P, 1+10> Success probability

comma
plus

Figure 24: The success probability versus d at the sharp ridge test function for the two selection
strategies, with A = 10, 0 = 1, N = 100. For d < 1, both the (1,10)-ES and the (1 + 10)-ES
have the same success probability. However, for d > 1 the Ps 1410 decreases enormously, whereas
the Ps 1,10 goes to the same limit which one observed at other ridge functions.

The success probability values for both strategies are indicated in Figure 24.
For d < 1, both strategies have the same success probability curve. For larger d
values, the plus strategy has much smaller success probability values.

In Figure 25, the progress rate curves for the (1 + 10)-ES and the (1,10)-ES
are displayed. For d < 1, both strategies yield almost equal performance. Actually,
one almost has hyperplane conditions for such low d values, and for A = 10, the
progress rate of the plus strategy at the hyperplane is slightly larger than the
one of the comma strategy. If one increases the d value, the plus strategy gives
much worse results than the comma strategy: For d = 4.5 about three order of
magnitudes. Such low progress rates for the plus strategy are explained by low
success probabilities, which are caused by low Rﬁ‘f}o values (see Figure 26).

The R(°®) values of the (1,10)-ES and of the (1 + 10)-ES are compared in
Figure 26. The plus strategy has smaller R(>®) values for d > 1. For d < 1, both
selection strategies attain nearly the same R(>) values.

To summarize these three figures, one can say that the behavior of the two
selection strategies differ for d > 1. For these d values, the plus strategy attains
smaller values for R(°) and the success probability, as a result, it has a lower
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Figure 25:  Progress rate versus d at the sharp ridge test function of the two selection strategies,
with A = 10, ¢ = 1, N = 100. For d < 1, the simulation results are almost equal to each
other (¢ < oci,10), whereas the (1 + 10)-ES exhibits worse results for larger d. For d > 4.5,
the simulation results for the plus strategy were not reliable since the Ps 1410 values decreased
enormously (see Figure 24).
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Figure 26: The distance to the ridge axis versus d at the sharp ridge test function, for the
two selection strategies, the (1,10)-ES and (1 4+ 10)-ES, 0 = 1, N = 100. The Rgﬁ% value goes

approximately to the limit D() (see Figure 23 for the larger d values), whereas the plus strategy
attains smaller R(°°) values. For d < 1, the R(®) values are almost equal.

progress rate performance.
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10 The rectangular corridor model

The rectangular corridor model (Equation (7)) is analyzed in this section. We
investigate whether it can be used as the limit case of the ridge functions or not.
The measure ¢* is used in this comparison, it will also be mentioned the comparison
results for R(>) and for success measures. The simulation length was 50,000
generations, plus 2,000 generations at the beginning before collecting statistics.
The values A = 10 and N = 100 are used in the simulations.

In order to compare the simulation results with the normalized values for the
ridge functions, the normalization in [Sch95, p.138]

N-1

A— 77 (39)

N-1

= - 40
® Y (40)

has been used. Early simulations showed that the shape of the ¢*-versus-c* curve
for the rectangular corridor model seems to be similar to the curve for the ridge
functions with a > 2. However, there remained some questions on the compa-
rability of these two functions. The corridor models contain constraints in their
definition. What should be done if all the A descendants of the (1, A)-ES are in-
feasible, i.e. outside the lethal restriction boundaries? One can use the idea given
in [Sch95, p.137], and select the parent individual as the parent individual of the
next generation. This requires a small but important modification in the algo-
rithm: The new selection strategy is not a comma strategy anymore, since the
parent individual can live more than one generation.

Another alternative is to continue generating descendants until one has A feasi-
ble, offspring (i.e. generating an unknown number of offspring until this condition is
satisfied), and applying the selection operator thereafter. However, this requires a
more radical change in the algorithm, since the (11 \)-ES algorithms are compared
based on the number of descendants actually generated.

As has been mentioned at the beginning of this section, we want to compare the
behavior of the rectangular corridor model with ridge functions having larger values
for a, in order to see whether it can be a limit case for the ridge functions or not.
The parameters of the ridge functions chosen for the comparison are N = 100, d =
0.01 and o € {8,64}. The normalization scheme given in (18) and (25), respectively
is used. For the rectangular corridor, the parameters ¢ = 1 and b € {15, 150,450}
are used, and the normalization given above in this section.

The normalized progress rates of the rectangular corridor model and of two
members of the ridge family are compared in Figure 27. If one considers the
change in the ¢* figure from o = 8 to & = 64, one can infer that the rectangular
ridge cannot be the limit case for the ridge functions. For both of the normalization
schemes used in this figure for the rectangular corridor model, the ¢* value and
the shape of the progress rate differ for both function classes.

The change in the R(>*) values with respect to ¢* shows the difference between
these function families from another point of view. The R(°®) value is the result
of a different dynamics. For the rectangular corridor case, R(°) is dictated solely
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Figure 27: Normalized progress rate versus normalized mutation strength. The simulation
results for the rectangular corridor model are compared to the ridge function with o« = 8 and
o = 64. The figure right is obtained using (N — 1)/2b as the normalization constant for the
rectangular corridor, the left one using the regular scheme given above in this section.

by the restrictions. The observed value for this distance is not affected by the
objective function at all. It increases much faster than in the ridge case, and it
stays at a value governed by the restrictions for larger ¢* values.

The sr(A) and P51, curves with respect to o* also differ for both strategies.
There exists a lower limit for the ridge functions with & > 1 (i.e. Ps1x > 1 —
[®(cq, M) > 0); however, the success probability for the rectangular corridor goes
to zero as ¢* is increased. The shape of the curves also differ for smaller o*.

The rectangular corridor model cannot be the limit case for the ridge functions:
One observes characteristic differences in the behavior. In Section 11, we will
examine whether the cylindrical corridor can be the limit case. The distance to the
progress axis occurs explicitly in the definition of this function.

11 The cylindrical corridor model

In Section 10, the convergence behavior of the rectangular corridor model is com-
pared with the ridge functions. The rectangular corridor has rectangular edges
at the boundaries described by the N — 1 restrictions. The cylindrical corridor,
however, has a single restriction based on the distance to the corridor axis, i.e. its
boundary has a cylindrical shape. In this section, it will be shown how well the
cylindrical corridor may correspond to the limit case of the ridge functions with
(1,A)-ES. The values A = 10, b = 450, and N = 100 are used in this compar-
ison. The simulation length is G = 200,000 generations, with additional 2,000
generations before starting to collect statistics.

11.1 Ignoring infeasible descendants

The first possibility to handle constraints is to ignore infeasible descendants and
to generate only A descendants per generation. This case will be considered in this
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subsection.

The cylindrical corridor is defined by (9), and the restriction applied to it by
(10). The results are normalized similar to (39) and (40) for the rectangular corridor
as follows:

o = o (41)

Pt =—¢p (42)

Just as in the rectangular corridor model case, one selects the parent as the parent
individual of the next generation if all A offspring were beyond restriction bound-
aries. This produces a progress picture similar to the plus strategy.
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(1,10)-ES, a = 64 (1,10)-ES, a = 64
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Figure 28: Normalized progress rate versus normalized mutation strength. The simulation
results for the cylindrical corridor model are compared to the ridge function’s with « € {5, 8, 64}.
The figure on the left shows the comparison of the cylindrical corridor with the members of the
ridge family for the comma selection strategy (d = 0.01, N = 100). On the figure right, it is
compared with the progress rate figures of (11 10)-ES at the ridge function with o = 64.

The figure left shows that the cylindrical corridor does not correspond to the tendency of the
®r dge with large a. The figure right shows that it is similar to the curve of the plus strategy;
however, the ¢* and 6* values do not seem to reflect the values obtained for the ridge functions.

We compared the normalized progress rate obtained at the cylindrical corridor
with the ridge family, for large values of « and for both selection strategies. The
results are displayed in Figure 28. On the figure left, one can see (after comparing
the curves for different ) that the cylindrical corridor model does not reflect the
tendency of the ridge functions. The magnitudes of ¢* are not comparable, and
the shape of the curve for ¢y, . differs more from the cylindrical corridor model
as « is increased.

On the figure right, one sees that the cylindrical corridor model has a progress
behavior which is more similar to the (1410)-ES than to the (1, 10)-ES, for a = 64;
however, the ¢* is smaller for the cylindrical corridor. Since one knows that ¢*
increases for the ridge functions as « is increased (for a > 3), the cylindrical
corridor cannot be regarded as the limit case also for the plus selection strategy.

The R(>), P, 1430 and sr(\) figures are also compared for both function fami-

lies. The R(>) figures are much more different from each other, since the dynamics
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governing the distance to the progress axis are different in both function families.
The ridge family has the r value explicitly in the objective function, whereas the
cylindrical corridor model has to obey the restriction r < b'. The success prob-
ability figure (and hereby the sr(\) figure) of cylindrical corridor is very similar
to the one of the (1+10)-ES at the ridge function with o = 64 although comma
selection strategy is used at the cylindrical corridor. To summarize the results in
this section and in Section 10, one can say that the corridor models are not the
limit cases of the ridge functions.

11.2 Considering )\ feasible offspring per generation

The algorithm investigated in Section 11.1 works usually with less than A individu-
als per generation since A feasible individuals were not guaranteed per generation.
The algorithm considered now will be upgraded such that one continues gener-
ating individuals until really X\ feasible descendants have been produced [Sch95,
Appendix B3].

Therefore, the statistics collected for the progress rate should be interpreted as
follows: Since the progress is measured in xg direction, one can denote the progress
towards optimum in one generation as Azg. One has to multiply this number with
A/ Aactual, Where Agetuar is the number of offspring generated to obtain A feasible
descendants. The progress rate @cyiinder is Obtained as usual by averaging these
measurements over (G generations. If one omits this adjustment, one obtains a
progress rate curve which is similar to the one at the hyperplane, since the effect of
the cylinder-shaped restriction is canceled out by the excess number of descendants
generated.

Once one has A feasible offspring, one can apply the (1, 10)-ES and compare the
observed progress behavior with those of the ridge functions and those obtained
in the previous section. The other parameters of the simulation were selected as
follows: G = 50,000 (with maximal 107 fitness evaluations), b = 450, N = 100.
One started at 7(*) = 0, and started collecting data from the first generation on.
The results did not change significantly when collecting data started after the first
2,000 generations in another simulation set. Since Agctuq; is much larger for larger
o, the simulation length may be shorter than G. The number of offspring gener-
ated was limited in a simulation run by 107 in order to limit the simulation length
in time. In other words, if more than 20 offspring should be generated on average
for a nonlethal descendant, the simulation length G is decreased accordingly. The
R(OO), P; 1,10, and ¢ values are measured for this algorithm.

The progress rate curve obtained is compared in Figure 29 with the one of the
previous algorithm in the Section 11 above; and to the one of the ridge function
with @ = 64. Obviously, also the algorithm described in this subsection has a
different progress behavior than the one of the ridge functions.

We also compared the R(°)—versus—¢* curves of both function families. The
members of the ridge function family (with o > 1) have Rgoi) values which are

3

proportional to the o* used, and the proportionality constant (N —1)/2¢; 5 can be

observed in all the simulations (see e.g. Figure 10 for o* > 2¢1 19). The Rg:_o;\ values
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Figure 29: Normalized progress rate versus normalized mutation strength. The simulation
results for the cylindrical corridor model are compared to the ridge function’s (o = 64). The
Phyperplane line is also plotted. The simulation for the cylindrical corridor with effective A = 10
is labeled as cylinder new, the other one as cylinder. Both algorithms for the cylindrical corridor
differ remarkably from the ridge functions with high « value. The ¢* values obtained are also
smaller than the one obtained for the ridge function.
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Figure 30: The simulation length G and the ratio of the Aqciuar/X versus a*, for A = 10. The

(1,10)-ES is applied to the cylindrical corridor model (N = 100, b = 450). For o* > 4, the
simulation length is less than 50,000 generations since the total number of function evaluations
was restricted by 20 - 10 - 50,000 = 107 generations. The Aactual /A rate increases exponentially
in o*: For ¢* = 2 it is around 3.2, and e.g. for 0* = 4 around 22.

also increase proportionally in ¢*. Moreover, the R(>) values are not restricted
for the ridge functions. The cylindrical corridor shows another R(>) profile for
increasing ¢*. It attains values very near to b already for very small ¢* values
(o0* = 0.5), and changes very little for larger o*.
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The actual simulation length G and the ratio Agctuar/A are shown in Figure 30.
The number of offspring which should be generated to obtain A nonlethal de-
scendants increases exponentially. This increase causes a reduction in the actual
simulation length for ¢* > 4. The results for ¢* > 6 are therefore not accurate.

The success probability figures are similar to the P11 figures of the ridge
functions, although the (1,10)-ES was used here for the cylindrical corridor. For
the ridge functions, the P51 19 curve is very different from the Psq419 curve (Fig-
ure 13). Therefore, one can say that the Py 19 curve for the cylindrical corridor
differs very much from the P51 10 curve for the ridge functions (for any «).

After considering the P; 1 10, R and ¢* figures, one can say that the behavior
of the cylindrical corridor differs much from that of the ridge functions. Therefore,
the cylindrical corridor model does not seem to be the limit case of the ridge
functions for o — oc.

11.3 Comparing both corridor models without normaliza-
tion

In this subsection, the progress rate figures of cylindrical corridor will be compared
with the rectangular corridor. These test functions (Equations 7 and 9, respec-
tively) do only differ from each other in the applied constraints. In the comparison,
one will use the same size for the cross section in N — 1 dimensions other than .
The size of the cross section of the cylinder is the volume of the N — 1-dimensional
hypersphere. This volume is given in [Smi77, p.326-327].

The cross section volume for the rectangular ridge is given as

Urectangular = (2b)N71a (43)

and for the cylindrical corridor as

N-1

Veylinder = CNflb 3 (44)
where the ¢y_1 value is
¥
CN_1 = , cog A~ 9.4714 - 10749, 45
ey o

From the equality veyiinder L Urectangular, O0€ gets for b = 450 the corresponding
b value as approximately 90.783. The simulations for the rectangular ridge are
made using this value, and using the double and half of it to show the effect. We
also generated Agctnar > A offspring to have A = 10 nonlethal individuals for the
rectangular ridge as well. The results are shown in Figure 31.

All the curves depicted in the figure are unnormalized. One can conclude that
the (1, A)-ES has higher progress rates at the cylindrical corridor than at the rec-
tangular ridge for the same cross section size and ¢. Moreover, @cyiinder is still
greater if one doubles the width of the rectangular corridor.

The geometry with sharp angled constraint edges makes the progress very hard.
This can be seen easier on the success rate curve (Figure 32). The success rate
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Figure 31: Progress rate versus mutation strength. Both axes are unnormalized. The simulation
results obtained using (1,10)-ES by rectangular and cylindrical corridor models are compared.
The simulation results at the cylindrical corridor are obtained for b = 450, displayed as “cyl
b = 450”. For the rectangular corridor, the results of three different b values are displayed for
181.566, 90.783, and 45.39. One obtains smaller progress rates for the rectangular corridor if one
uses the same cross section of the cylindrical corridor.
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Figure 32: Success rate versus mutation strength. The (1,10)-ES attains at the cylindrical ridge
test function larger success rate values than at the rectangular ridge with the same cross section
(b = 90.783) for the same mutation strength values. The rectangular corridor model has lower
sr(10) values even when one doubles its corridor width.

values are obtained by dividing the number of successful mutations (i.e. the de-
scendants having a quality function value larger than their parent) by the number
of offspring actually generated (Asctuar)-
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12 Summary and Outlook

Several experiments were performed in this work in order to understand the progress
behavior of the (1T A)-ES at the ridge functions and corridor models. At the ridge
functions, the plus selection strategy does not give better progress rate results for
smaller o values (o < 4). The P, 1+, and R(*) values are also investigated for
both strategies, which are smaller for the (1 + A)-ES. The ¢} \—versus-o™ curves
for the comma strategy are explained analytically by a simple model which uses
just first order partial derivatives.

The parabolic ridge function was revisited for some tests with larger A\ values.
The tests yield similar shapes for the progress rate of the (1 T 10)-ES, where
one observed that the success probability values are more reliable than the R(°°)
values in explaining the progress behavior. The ¢}, /@7 5 ratio and also @5 , /cf
increases for increasing A. The lower limit for the Ps 1 » is almost the same for any
A

The performance of (1 + A)-ES at the parabolic ridge was tested with small
70 values. These simulations showed us how bad the progress performance of the
(1+ A)-ES can be if the initial condition is not selected appropriately.

The results on the sharp ridge were also summarized in this paper. The progress
rate  for this function was derived using the same local model approximation de-
rived for the general case of ridge functions. The resulting formula is astonishingly
simple, and accords to the simulation results. The Ps 1 10-versus—o* curve was ex-
plained almost exactly using an analytically derived formula. The (14 10)-ES was
tested on the sharp ridge, and it has been shown that it has a much worse progress
rate (and success probability) than the (1,10)-ES for larger values of d. For the
parabolic ridge, this was observed for any d value. Therefore, the plus strategy can
perform worse than the comma strategy on some members of the ridge function
family.

The limit behavior of the ridge functions at (11T A)-ES was analyzed for large
«, and it was compared to the corridor models’. The rectangular corridor model
and the cylindrical corridor model do not seem to be the limit case of the ridge
functions. Furthermore, the progress rate curves for these two corridor models are
compared for the same cross section size. One observes that the (1, A\)-ES attains
significantly larger progress rates at the cylindrical corridor model because of its
spherical constraint structure.

Population models (i.e. (p, A)-ES) and the effect of the recombination (i.e.
(1/p, A)-ES) will be analyzed in a future work. These simulations will show the
effect of having a parental population and of the recombination on the behavior,
especially on the progress rate.
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