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Abstract

Stochastic token theory is a new branch of mathematical psychology. In
this paper we investigate algebraic properties of token systems defined on
finite lattices.

1 Introduction

Studies in the area of token theory were originally undertaken by Falmagne in [3]
and generalized in [5]. The reader is referred to [3-6] where token theory and its
applications are discussed in detail. The following excerpt from [2] presents some
motivations from the point of view of cognitive sciences.

“In many important empirical situations, subjects are repeatedly asked to pro-
vide judgments concerning commodities or individuals. It is also typical that these
judgments take the form of binary relations such as rank orders, quasi orders or
some other types of binary relations. For example, the subjects may be required,
at times tq,...,t5, to rank order in terms of personal preference the candidates
in a political election. Quantitative modeling of the temporal evolution of such
judgments requires a thorough understanding of the combinatorics structure of the
particular class of ordering considered. Indeed, it is reasonable to suppose that the
judgment at time ¢ will much resemble that at time £+ 4 if § is small, and will tend
to wander away from it if 0 grows larger. Accordingly, if we want to understand
the details of this evolution, we must research the structure of relevant families of
orderings from the standpoint of the resemblance between particular orderings.”

Such a study is a subject of the token theory. A significant part of this theory
deals with temporal evolution of token systems and is based on the theory of
stochastic processes. Here, we are concerned with the underlying algebraic model
of token systems. First, we introduce some of the very basic algebraic concepts of
the token theory.

Let V be a finite set of states. A token is a function 7 : § — S7 mapping V
into itself. We use abbreviations ST = 7(5), and S71...7, = 7. .. [11(S)] for the
function composition. We suppose that the identity function on V is not a token.
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Let 7 be a distinguished set of tokens on V. The pair (V,T) is called a token
system. A token 7’ is a reverse of a token 7 if for all distinct S,V € V

Str=V&Vr=_8

In general, a token may have one or several reverses, or may not have any reverse.
A finite composition m= 7y ...7, of not necessarily distinct tokens 7y,...,7, € V
such that Sm= V is called a message producing V from S. A message is called
consistent if it does not contain both a token and its reverse.

There are many other interesting and important concepts in the token theory.
The reader is referred to [3-5] for an elaborate theory of tokens.

A simple example of a token system can be constructed as follows. Let A be a
finite set and B = 24 be the Boolean lattice of all subsets of A. For every a € A
we define functions 7, and 7, by

S1, =S U{a} and S7, = S\ {a}

for all S € B, respectively. Clearly, 7, and 7, are unique reverses of each other.
Let T be the set of all such functions. The token system (B, 7T) is called a universal
token system.

This example motivates our studies of token systems that have certain lattice
L as a set of states. We show that any such token system is essentially a universal
one.

The paper is organized as follows. Our second section recalls some standard
facts about atomic lattices. Although these facts are basically well known, there
are subtle differences between our statements and others found in the pertinent
literature. Thus we give complete proofs whenever it is necessary. In Section 3, we
introduce lattical token systems and establish their properties including the main
result of the paper. The paper ends with some final remarks.

2 Atomic lattices

In what follows, L is a finite lattice with operations A and V. We use 0 to denote the
least element of £ and 1 to denote the greatest element; x' denotes a complement
of z in L.

An element a € £ is an atom iff x < a implies z = 0. An element a € L is a
dual atom iff > @ implies z = 1. Let A = {aq,--,a,} be the set of all atoms in
Land J=A{1,---,n}.

Lemma 1. If a is an atom with a unique complement o', then o’ is a dual atom.

Proof. Let 2 > a'. Then aVx = 1 so that a A 2 # 0, since a’ is unique. Hence,
a Az = a which implies aVz = z. Thus z = 1.
|

Lemma 2. ([1, p.121]) If a,b are distinct atoms with unique complements, then
v > a.
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Corollary. If p ¢ X C J and all atoms in {a;};. y have unique complements, then

>\ a. 1)

i€ X

Lemma 3. If X C J, all atoms in {a;};. y have unique complements, and
ap S \/ @ 5
ieX

then p € X.

Proof. Suppose p ¢ X. Then, by (1),
Ve<a,
ieX

implying a, < a;, , a contradiction.

A lattice £ is atomic if every element in £ is a join of atoms.

Lemma 4. Let £ be an atomic lattice such that every atom has a unique comple-
ment. Then every element x € £ has a unique representation

x = \/ a; (2)
ieX
for some X C J. If x = \/,.x a; and y = \/, .y a;, then

rVy= \/ a; and zAy = \/ a; .
iEXUY ieXny

Proof. Suppose = = \/;cx ai = \/;c xs @i For any p € X, we have
ap < \/ a; = \/ a; .
ieX iex’

By Lemma 3, p € X'. Thus X C X’. By symmetry, X = X'.

Clearly, z Vy = V;cxuy -
Let z=x Ayand z =\/;.,a;. Then

Ve Veon V.
1€Z i€eX €Y

For p € Z we have a, < \/,;., a;. Hence, a, <V, ya; and ap < \/,;oy ai. By
Lemma 3, p € X NY. Hence, Z C XNY. Forpec XNY, a, <V, xa; and
ap < V;ey ai- Hence, a, <V, , a;. By Lemma 3, p € Z. Hence, X NY C Z.
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(|

Theorem 1. Let £ be an atomic lattice such that every atom has a unique
complement. Then £ is isomorphic to the Boolean lattice 24 where A is the set of
all atoms in L.

Proof. By Lemma 3,  — X in (2) establishes an isomorphism between £ and 24.
]

3 Lattical token systems

Let £ be a lattice. For any given a € £ we define functions ¢, and 1, (cf. [1, p.73]
by

do(x) = zAaforallzel
Yolz) = zVaforalzel.

Let (£,7) be a token system such that any 7 € T is either ¢, or 1, for some
a € L. We call such a system a lattical token system. Since the identity function
on L is not a token, a # 1 in ¢, and a # 0 in 1),.

A token 7’ is a reverse of a token 7 if for all x # y in £

xT=y & yr ==z

Lemma 5. If ¢, € T has a reverse 7 € 7, then 7 = 1), where b is an atom in L
and a = b’ is a unique complement of b.

Proof. Suppose 7 = ¢. Then 1¢, = a # 1 implies agp =aAb=1. Thusa =1, a
contradiction. Hence, 7 = 1/ for some b € L.

For any = > a we have ©¢, = t Aa = a # z. Thus z = ay, = a V b. Since
1 >a, x = 1. Hence, a is a dual atom and a Vb= 1.

For any = < b we have z¢, =z Vb =0+ z. Thus © = b, = bAa. Since 0 < b,
z = 0. Hence, b is an atom and a A b= 0.

Suppose ¢, has two reverses, 1, and .. We have bp, = bAa =0 # b. Thus
b=0y, =c.

O

Lemma 6. If ¢, € T has a reverse 7 € T, then 7 = ¢ where b = o’ is a unique
complement of a.

Proof. The proof is dual to the previous one. Note that b is a dual atom, by Lemma,
1.
O
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The next theorem follows immediately from lemmas 5 and 6.

Theorem 2. Suppose any token in (£, 7) has a reverse. Then T = {(0a; $a’) }oe a
where A is a set of atoms such that any a € A has a unique complement a’. ),
and ¢, are mutual reverses in (£, 7).

Remark. The theorem does not claim that such a token system exists. Moreover,
there are lattices with no token systems on them. Examples include nonmodular
lattices N5 and M3. On the other hand, there is a token system on the nonmodular
lattice N5x Cs.

Theorem 3. Let (£,7) be a lattical token system such that every token has a
reverse and for any x € L there is a consistent message m= 7y - - - 7, transforming 0
into z. Then £ is a Boolean lattice and 7" = {(¢a, #a’) },c 4 Where A = {ay,-- -, a,}
is the set of all atoms in L.

Proof. Suppose z = O0m= 07y -+ -7, We may assume that there is k& such that
Ti =Y, for 1<i <k Ifk=m,then z=0a; V---Vay. Otherwise, 7411 = ¢a;€+1~
Since m is consistent, agy; is different from all aq,- -, ax. By (1),

07'1-~-Tk7'k+1:(al\/~-~\/ak)/\a§€+1:al\/---\/ak:Oﬁ-~-Tk.

Thus = 0m’ where m’ is a consistent message obtained from m by removing token
Te+1. We keep applying this process until we obtain z = On where n contains no
tokens in the form ¢,/. Then z is a join of atoms. Hence, £ is an atomic lattice.
Clearly, T = {(%a, ®a’) } 4c 4- By Theorem 1, £ is a Boolean lattice.

|

This theorem states that any lattical token system satisfying the two conditions
of the theorem is isomorphic to the universal token system introduced in Section
1.

4 Concluding remarks

We have shown that under some simple conditions any lattical token system is a
token system based on the Boolean lattice of all subsets of a finite set. Thus each
token acts on a given state S as an addition (subtraction) of a single element to
(from) S. This fact is in compliance with the stochastic token theory where tokens
are considered as quantum items of information transforming individual states.
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