Integral Closure in MV-algebras

L. P. Belluce *
Department of Mathematics
University of British Columbia
Vancouver, B. C.
Canada V6T 1Z2
Submitted by S. Sessa

Abstract

We study the consequences of assuming on an MV-algebra A that $\Sigma_n nx$ exists for each $x \in A$

Given an MV-algebra A, it has a reduct L(A) which is a bounded distributive lattice. A is then complete, or α -complete, provided the reduct L(A) is complete, or α -complete respectively. As the basic MV-algebraic operations are not idempotent, we have a third type of possibility for the supremum of certain sets.

Thus, given an MV-algebra A, and a non-empty subset $X \subseteq A$, we say that X is *integrally-closed*, or ω -closed, provided, for each $x \in X$, that $\Sigma_n(nx)$ exists in X.

Here, $\Sigma_n(nx)$ denotes the least upper bound in L(A) of the set $\{nx \mid n = 0, 1, 2, \ldots\}$

Clearly every \aleph_0 -complete MV-algebra A is integrally-closed. On the other hand, if \mathcal{Q} is the MV-algebra of rational numbers in the unit interval, and Y a non-empty set, then \mathcal{Q}^Y is integrally-closed but not \aleph_0 -complete.

Complete MV-algebras are also related to a class of MV-algebras called strongly-stonean (sstonean). If A is complete, then A is sstonean; A sstonean implies B(A) complete, where B(A) is the Boolean subalgebra of idempotents of A.

In this work we shall study some properties of being integrally-closed on an MV-algebra A. We shall show, for example, that ω -closed is also intimately related to stonean, and to the weaker notion of stonean.

For reasons to be seen below, we will be dealing with only semi-simple algebras.

Consider a commutative ordered monoid $< A, +, \le, 0 >$ on which is defined an order reversing involution *. We denote such a system by its underlying set A.

Define on A a product by: $a \cdot b = (a^* + b^*)^*$. Then the system $< A, \cdot, \le, 1 >$ becomes a commutative ordered monoid where $1 = 0^*$. We always assume that $0 \ne 1$.

^{*}This paper was prepared while the author was visiting the Center de Recerca Matemàtica, Institut D'Estudis Catalans, Bellaterra, Spain.

Next define on A the operations: $a \wedge b = a \cdot (a^* + b)$ and $a \vee b = a + (a^*) \cdot b$. Recall, then, that an MV-algebra is a system as above that satisfies the identity: $a \vee b = b \vee a$ or, equivalently, $a \wedge b = b \wedge a$.

The induced system $L(A) = \langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice. An ideal in an MV-algebra A is a subset $I \subseteq A$ such that $0 \in I$, I is closed under +, and if $a \in I$, $b \leq a$, then $b \in I$.

MV-algebras have the usual universal properties of algebraic systems, that is homomorphisms, quotient algebras, subalgebras, etc.

We assume familiarity with MV-algebras, but will give the meanings of some special notation.

Thus, for an MV-algebra A, Spec(A), Max(A), Min(A) will denote respectively the space of prime ideals, maximal ideals, and minimal prime ideals. For a subset $X \subseteq A$, $id_A(X)$ will denote the ideal in A generated by X. (If there is no confusion, we may just write id(X). By X^{\perp} is meant the set $\{y \in A \mid x \land y = 0 \text{, for all } x \in X\}$. If $X = \{x\}$, we just write x^{\perp} . The set $U(X) = \{P \in Spec(A) \mid X \not\subseteq P\}$ is the open set in Spec(A) determined by X. We note that U(X) = U(id(X)).

Let A, A' be MV-algebras, $A \subseteq A'$ a subalgebra of A'.

Definition. We shall say that A' is an integral extension or an ω -extension of A provided for each $a \in A$, we have that $\Sigma_n(na)$ exists in A'. (We point out that by [1], if $\Sigma_n(na)$ exists, it is always an idempotent.)

Definition. We say that A is integrally closed or ω -closed, if A is an integral extension of itself.

If $A \subseteq A'$ and A' is integrally closed, we shall refer to A' as an integrally closed or ω -closed extension of A.

Definition. If I is an ideal of A such that for each $x \in I$, $\Sigma_n(nx)$ exists and is in I, we will say that I is ω -closed.

It was established in [1], Theorem 6, that if A is integrally closed, then it is semi-simple. In fact,

Proposition 1 If A has an integral extension, then A is semi-simple.

Proof. Suppose that $a \in Rad(A)$. Let A' be an integrally closed extension of A. Then $\Sigma_n(na) = e$ exists in A'. We know that e is idempotent. Hence $e = e^2 = \Sigma_{n, m}(na \cdot ma)$. Since na, $ma \in Rad(A)$, we also know $na \cdot ma = 0$. Therefore e = 0 which implies a = 0.

We also have the converse,

Proposition 2 If A is semi-simple it has an integrally closed extension.

Proof. A is a subalgebra of $\Pi\{A/M \mid M \in Max(A)\}$. Each A/M is locally finite, thus integrally closed. Clearly the product of integrally closed MV-algebras is integrally closed.

We say that a in an MV-algebra A has ultrafinite order if $\Sigma_n(na) = 1$. We have,

Proposition 3 If every non-zero element in A has ultrafinite order, then A is locally finite.

Proof. Since A is integrally closed, it is semi-simple. Thus we need only show it is linearly ordered. Suppose, then, that $a \wedge b = 0$, $a, b \neq 0$. We have by assumption, $\Sigma_n(na) = \Sigma_m(mb) = 1$. Therefore, $1 = \Sigma_n(na) \wedge \Sigma_m(mb) = \Sigma_{n, m}(na \wedge mb)$. But $na \wedge mb \leq mn(a \wedge b) = 0$. Hence 1 = 0 which is absurd.

Corollary. If A is integrally closed and linearly ordered, then A is locally finite.

Sometimes a quotient of an integrally closed MV-algebra is integrally closed.

Proposition 4 Suppose that A is integrally closed and that I is an \aleph -closed ideal. Then A/I is integrally closed.

Proof. Let $a/I \in A/I$ and let $e = \Sigma_n(na)$. Then for each n > 0 we have $n(a/I) \le e/I$. Suppose that $n(a/I) \le b/I$ for all n > 0. Then $na \cdot \bar{b} \in I$ for all n > 0. Hence $\Sigma_n(na \cdot \bar{b} \text{ exists in } I$. But ([1]) $\Sigma_n(na \cdot \bar{b}) = \bar{b} \cdot \Sigma_n(na) = \bar{b} \cdot e \in I$. Thus, $e/I \le b/I$ so $\Sigma_n(n(a/I)) = e/I$, and A/I is integrally closed.

Corollary. If A is integrally closed and P is an \aleph -closed prime ideal, then P is maximal.

The following result shows that in the corollary above, that P cannot be just ω -closed.

Proposition 5 Let A be integrally closed and $P \in Min(A)$. Then P is ω -closed. If $P \in Spec(A)$ is ω -closed, then $P \in Min(A)$.

Proof. Let $P \in Min(A)$. Let $x \in P$. Since P is minimal, $x^{\perp} \nsubseteq P$. Let $e = \Sigma_n(nx)$. Then $x^{\perp} = id(\bar{e})$. Therefore $\bar{e} \notin P$. But P is prime, so $e \in P$. Thus P is ω -closed. Conversely, suppose that $P \in Spec(A)$ is ω -closed. Let $m \subseteq P$ be a minimal prime. Let $x \in P$. Then $e = \Sigma_n(nx) \in P$. Hence, $\bar{e} \notin m$. But m is prime, so $e \in m$. As $x \leq e$, we see that $x \in m$. Therefore, $P = m \in Min(A)$.

Now let $A = \mathcal{Q}^X$ for an infinite set X. Then A is integrally closed but not quasi-boolean [1]. Thus there are minimal primes that are not maximal. That is, there are ω -closed primes that are not maximal.

We can improve the situation in Proposition 4 and its corollary in the following manner.

Call an ideal plus- ω -closed, in symbols, $^+\omega$ -closed, if for each $x, y \in A$, if $y(nx) \in I$ for each n > 0, then $y \cdot \Sigma_n(nx) \in I$. It easily follows that,

Proposition 6 If A is integrally closed and I an $^+\omega$ -closed ideal, then A/I is integrally closed.

Corollary. If A is integrally closed and P is a $^+\omega$ -closed prime ideal, then P is maximal.

We make the observation that if A is integrally closed, and J is any ideal, then J^{\perp} is ${}^{+}\omega$ -closed. From this observation we have, letting $MinMax(A) = Min(A) \cap Max(A)$.

Proposition 7 If A is integrally closed, then $Min(A) = \mathcal{E}(A) \cup MinMax(A)$, where $\mathcal{E}(A) = \{m \in Min(A) \mid m^{\perp} = 0\}$.

Proof. From Proposition 10 of [5], we know that if $m \in Min(A)$ and $m^{\perp} \neq 0$, then $m = a^{\perp}$ for some $a \in A$. Hence, for $m \in Min(A)$, either $m^{\perp} = 0$ or m is $+\omega$ -closed.

An MV-algebra A is stonean iff for each $a \in A$ the annihilator ideal $a^{\perp} = \{b \in A \mid a \wedge b = 0\}$ is generated by an idempotent. In symbols, $a^{\perp} = id(e)$ for some $e \in B(A)$, where $id(e) = id(\{e\})$. The following two lemmas are well known and easy to show.

Lemma 1 Let $x, y \in A$ and let $e \in B(A)$. Then,

```
i) e \cdot x = e \wedge x.
```

$$ii\ e + x = e \lor x.$$

$$iii) e \cdot (x + y) = ex + ey.$$

Lemma 2 Lemma Suppose that $\Sigma_n(nx)$ and $\Sigma_n(ny)$ exist in A. Then

- i) $\Sigma_n(n(x \wedge y))$ exists and $\Sigma_n(n(x \wedge y)) = \Sigma_n(nx) \wedge \Sigma_n(ny)$.
- ii) $\Sigma_n(n(x+y))$ exists and $\Sigma_n(n(x+y)) = \Sigma_n(nx) + \Sigma_n(ny)$.

Lemma 3 Lemma Let $e, e' \in B(A)$ with e + e' = 1. Let $x \in A$. Then there is an integer n_0 such that $x \le xe + xe' \le n_0x$.

Proof. We clearly have, $x \le xe + xe' \le x + x \le n_0 x$ for $n_0 \ge 2$. The lemma is evident for $n_0 = 1$.

Converse to Proposition 5 above, we have

Proposition 8 Suppose that A is such that every minimal prime is ω - closed. Then A is stonean. Moreover, if A is not linearly ordered, then A is integrally closed.

Proof. It suffices to show that A is regular and that Min(A) is compact [6]. A will be regular if for each maximal ideal M of B(A) we have that $id_A(M)$ is prime in A [6]. Thus, let M be maximal in B(A). By the lying over theorem [4], there is a

prime P of A such that $M = P \cap B(A)$. Let $m \subseteq P$ be a minimal prime. Then $m \cap B(A) \subseteq M$. Therefore $m \cap B(A) = M$. Then $\hat{M} = id_A(M) \subseteq m$. Let $x \in m$. Then $e = \sum_n (nx) \in m \cap B(A) = M$. We then have that $e \in \hat{M}$. But $x \leq e$, and so $x \in \hat{M}$. Thus $\hat{M} = m$, and it follows that A is regular.

Suppose now that Min(A) is not compact. Then for some ideal I of A, we have $Min(A) \subseteq U(I)$ but $Min(A) \not\subseteq U(F)$ for any subset $F \subseteq I$. In particular, $Min(A) \not\subseteq U(x)$ for any $x \in I$. Therfore, if $x \in I$, there is an $m \in Min(A)$ with $x \in m$. As m is ω -closed by hypothesis, we see that $e_x = \sum_n (nx)$ exists and is in m. Let $I' = id_A(\{e_x \mid x \in I\})$. Assume that $1 \in I'$. Then there are $x_1, x_2, \ldots, x_n \in I$ with $1 = e_{x_1} + \cdots e_{x_n}$. By Lemma 2 ii), we see that there is an $x \in I$ with $1 = e_x$. But then, $1 \in m$ for some $m \in Min(A)$. Hence I' is proper. Thus $I' \cap B(A)$ is a proper ideal of B(A) and so is contained in a maximal ideal M of B(A). Since I' is generated by idempotents, we see that $I' = id_A(I' \cap B(A))$. Therefore $I' \subseteq id_A(M)$. Since A is regular, $id_A(M) = m$ for some $m \in Min(A)$. We now have $I \subseteq I' \subseteq m$ and so $m \notin U(I)$ which is absurd. Hence A is stonean.

Suppose further that A is not linearly ordered. Then A contains two distinct minimal primes, m, m'. Since A is stonean it is hypernormal, therefore m+m'=A. So for some $a \in m$, $b \in m'$ we have a+b=1. But then we have $1=e_a+e_b$. By the preceding lemma, there is an n_0 such that $x \leq xe_a + xe_b \leq n_0x$.

Since $xe_a \in m$, we have that $\Sigma_n n(xe_a)$ exists. Similarly, $\Sigma_n n(xe_b)$ exists. By Lemma 2 above we now see that $e = \Sigma_n n(xe + xe')$ exists. Now certainly, $nx \le e$ for all positive integers n. Suppose that for some $y \in A$ that $nx \le y$ for all n. Then we obtain, for any n, $n(xe_a + xs_b) \le nn_0x \le y$. We can now conclude that $\Sigma_n nx = e$ and thus A is integrally closed.

From the above propositions we see that in an integrally closed MV-algebra A, if I is the intersection of a set of minimal primes, then I is ω -closed. We claim the converse as well.

Lemma 4 Lemma Let I be an ideal, and P a prime ideal minimal over I. If I is ω -closed, the so is P.

Proof. We know that $P = I_P = \{x \mid \text{for some } y \notin P, \ x \land y \in I\}$ [6]. Let $x \in P$ and let y be such that $x \land y \in I$ but $y \notin P$. Now, $\Sigma_n(n(x \land y)) \in I$ since I is ω -closed. But $\Sigma_n(nx) \land \Sigma_n(ny) = \Sigma_n(n(x \land y))$. But $y \notin P$ implies $\Sigma_y(ny) \notin P$. It follows that $\Sigma_n(nx) \in P$. Hence P is ω -closed.

Proposition 9 Let A be integrally closed. Then I is an ω -closed ideal iff $I = \bigcap \{m \in Min(A) \mid I \subseteq m\}$.

Proof. We saw above that if I is the intersection of minimal primes, then I is ω -closed. Suppose then that I is ω -closed. Since I is the intersection of all the primes that contain it, clearly, $I = \bigcap \{P \in Spec(A) \mid P \text{ is minimal over } I\}$. Now let $x \in m$ for every minimal prime m, $I \subseteq m$. Suppose $P \in Spec(A)$ and $I \subseteq P$. There is a prime ideal $P' \subseteq P$ with P' minimal over I. By the lemma above, P' is ω -closed. By Proposition 5, P' is a minimal prime. Thus $x \in P' \subseteq P$. We see then that $x \in I$.

Proposition 10 If A is integrally closed, then it is stonean.

Proof. Let $a \in A$. Let $e = \Sigma_n(na)$. Clearly we have $a^{\perp} = (id(e))^{\perp} = id(\bar{e})$. Since $e \in B(A)$ so is \bar{e} . So, A is stonean.

The converse is false in general, (just take A to be the special Chang algebra C, [7]) but we have,

Proposition 11 If A is stonean and semi-simple, then A is integrally closed.

Proof. Let $a \in A$. We know that $a^{\perp} = id(e)$ for some $e \in B(A)$. Hence $na \leq \bar{e}$ for all n > 0. Suppose that $b \in A$ is such that $na \leq b$ for all n > 0. Let M be a maximal ideal of A. If $a \in M$, then $a \wedge \bar{b} \in M$. Suppose that $a \notin M$. Then a/M has finite order in A/M. Since $n(a/M) \leq b/M$ for all n > 0, we see that b/M = 1. Therefore $\bar{b} \in M$ and so $a \wedge \bar{b} \in M$. Since A is semi-simple, $a \wedge \bar{b} = 0$; so $\bar{b} \leq e$. Therefore $\bar{e} \leq b$. It follows that $\Sigma_n(na) = \bar{e}$ and so A is integrally closed.

Corollary. A is integrally closed iff A is stonean and semi-simple.

An MV-algebra A is strongly stonean if for each ideal $I \subseteq A$, $I^{\perp} = id(e)$ for some $e \in B(A)$. Integral closure relates to strongly stonean in the following manner.

Proposition 12 If A is integrally closed and B(A) is complete, then A is sstonean.

Proof. Let I be an ideal of A. For each $a \in I$, let $e_a = \Sigma_n(na)$. Now let $e = \Sigma\{e_a \mid a \in I\}$. Clearly, if $a \in I$, then $a \wedge \bar{e} = 0$. Thus $id(\bar{e}) \subseteq I^{\perp}$. Now let $b \in I^{\perp}$. Then $b \wedge e_a = 0$ for all $a \in I$. Therefore $b \wedge e = \Sigma\{b \wedge e_a \mid a \in I\} = 0$. Hence $b \leq \bar{e}$. That is, $I^{\perp} = id(\bar{e})$ and A is sstonean.

Corollary. An MV-algebra A is sstonean and semi-simple iff A is integrally closed and B(A) is complete.

Proof. Suppose A is sstonean and semi-simple. Then A is stonean and semi-simple, thus integrally closed by Proposition 11. From [2] we know that B(A) is complete.

We note that for the MV-algebra $C=\{0,\ c,\ 2c,\ \dots,1-2c,\ 1-c,\ 1\}$ of [7], that C^X is setonean and $B(C^X)$ is complete. C^X is neither semi-simple nor integrally closed

Given, then, a semi-simple MV-algebra A, we can look for three types of integral extensions. Let A be a subalgebra of A'.

Type 1) A' is sstonean and semi-simple.

Type 2) A' is stonean and semi-simple.

Type 3) For each $a \in A$, $\Sigma_n(na)$ exists in A', where A' is semi-simple.

Definition. Suppose A is a subalgebra of \hat{A} . We shall call \hat{A} an *integral closure* of Type k if \hat{A} is a minimal integral extension of A of Type k, k=1, 2, 3.

In [9] it is shown, using sheaf theoretic methods, that each MV-algebra A has a unique minimal sstonean extension. (In [9] these are called Baer- extensions.) Semi-simplicity is not examined in [9], nor is integral closure. Since every semi-simple MV-algebra is contained in a complete algebra, it automatically has a semi-simple sstonean extension. We shall show (without sheaf theory) that every semisimple MV-algebra has a minimal such extension. As mentioned above, a result of A. Filipou [9] shows that the minimal extension is unique up to isomorphism.

Proposition 13 Let \hat{A} be an arbitrary MV-algebra. Then there exists a minimal sstonean MV-algebra \hat{A} with $\hat{A} \subseteq \hat{A}$.

Proof. Let $A_0 = \Pi\{A/P \mid P \in Spec(A)\}$. Then A_0 , being a direct product of linearly ordered MV-algebras, is sstonean. Let $\mathcal{S} = \{A^n \mid A \subseteq A^n \subseteq A_0, A^n \text{sstonean}\}$. Let $\mathcal{C} \subseteq \mathcal{S}$ be a chain (under \subseteq). Let $A' = \bigcap \mathcal{C}$. Then $A \subseteq A' \subseteq A_0$. Clearly, $B(A') = \bigcap \{B(A_u \mid A_u \in \mathcal{C}\}\}$. Let I be an ideal of A', and for each $A_u \in \mathcal{C}$, let $I_u = id_u(I)$ be the ideal in A_u generated by I. Let $e_u \in B(A_u)$ be such that $I_u^{\perp} = id_u(e_u)$. Clearly, if $A_u \subseteq A_w$ in \mathcal{C} then $I_u \subseteq I_w$. Now $e_u \wedge a = 0$ for all $a \in I$. If $b \in I_w$, then $b \leq a$ for some $a \in I$. Therefore, since $e_u \in A_w$ and $e_u \wedge a = 0$, we have $e_u \wedge b = 0$. That is, $e_u \leq e_w$. Let $A_w \in \mathcal{C}$ and let $e = \Pi\{e_u \mid A_u \subseteq A_w\}$. As $B(A_w)$ is complete, we see that e exists. Moreover, we must have that $e = \Pi\{e_u \mid A_u \subseteq A_v\}$ whenever $A_v \subseteq A_w$. Consequently, $e \in \bigcap \{B(A_u) \mid A_u \in \mathcal{C}\}$. It is clear that $e \in I^{\perp} \subseteq A$. Now let $a \in I^{\perp}$, $a \in A$. Then for each $A_u \in \mathcal{C}$, we have $a \in I_u^{\perp}$. Thus, $a \leq e_u$ for all $A_u \in \mathcal{C}$ and so $a \leq e$. Therefore we infer $I^{\perp} = id(e) \subseteq A$. Ergo A' is sstonean. By Zorn's Lemma we conclude that \mathcal{S} has minimal elements.

Comment: In the proof above, the only role played by A_0 , aside from avoiding set theoretical difficulties, is to guarantee that S is non-empty. In fact we have proved,

Proposition 14 If A is a subalgebra of a sstonean algebra A', then there is a sstonean algebra \hat{A} minimal over A with $\hat{A} \subseteq A'$.

If A is semi-simple, then the algebra A_0 can be taken to be $\Pi\{A/M \mid M \in Max(A)\}$, which is also semi-simple. Since subalgebras of semi-simple algebras are semi-simple, we see that we can find a minimal sstonean extension \hat{A} of A which is semi-simple. Thus,

Proposition 15 If A is semi-simple, then A has an integral closure \hat{A} of Type 1.

We next show that if A is bipartite, then so is \hat{A} . Recall that A bipartite means that for some maximal ideal $M \subseteq A$, that $A = M \cup M^*$ where $M^* = \{x \in A \mid x^* \in M\}$.

Lemma 5 Lemma Suppose that an MV-algebra A is a subalgebra of a sstonean algebra A'. If $B(A') \subseteq A$, then A is also sstonean.

Proof. Let I be an ideal of A. Let $J=id_{A'}(I)$ be the ideal of A' generated by I. Then $J^{\perp}=id_{A'}(e)$ for some $e\in B(A')$. Since e is also in A, we have $I^{\perp}=id_{A'}(e)\cap A=id_a(e)$. Hence A is sstonean.

Proposition 16 Let A be an arbitrary MV-algebra, I an ideal of A. Let $S(I) = \{a \in A \mid a \wedge a^* \in I\}$. Then, ([3], [4])

- i) S(I) is a subalgebra of A, and I is an ideal of S(I).
- $ii) B(A) \subseteq S(I).$
- iii) If P is a prime ideal of A, then S(P) is bipartite.

From this we now have,

Proposition 17 If A is a bipartite MV-algebra, and \hat{A} a minimal setonean extension of A, then \hat{A} is bipartite.

Proof. As A is bipartite, it has a maximal ideal M such that $A = M \cup M^*$. Let $\hat{M} = id_{\hat{A}}(M)$. Then $\hat{M} \neq \hat{A}$ and $S(\hat{M})$ is a subalgebra of \hat{A} and by Proposition 11, $B(\hat{A}) \subseteq S(\hat{M})$. If $a \in A$, then $a \in M$ or $a^* \in M$. Thus $a \wedge a^* \in M$ and therefore $a \wedge a^* \in \hat{M}$. It follows that $A \subseteq S(\hat{M})$. By the preceding lemma, $S(\hat{A})$ is sstonean. By the minimality of \hat{A} , we may infer that $S(\hat{M}) = \hat{A}$. From Proposition 16 we conclude that \hat{A} is bipartite.

OPEN PROBLEM:

What is the integral closure of C([0, 1], [0, 1]), the algebra of continuous functions from [0, 1] to [0, 1]?

References

- [1] L. P. Belluce, Semi-simple and Complete MV-algebras, *Algebra Universalis* **29**(1992), 1-9.
- [2] L. P. Belluce, α-complete MV-algebras, in Non-classical Logics and their Applications to Fuzzy Subsets: A Handbook of the Logical Foundations of Fuzzy Set Theory, (U. Hohle and E. P. Klement, Eds.), Kluwer, Boston (1994), 23-32.
- [3] L. P. Belluce, Symmetric MV-algebras, preprint.
- [4] L. P. Belluce, The Going Up and Going Down Theorems in MV-algebras, to appear. J. Math. Anal. and Applications.
- [5] L. P. Belluce, S. Sessa, Ornogonal Decompositions of MV-spaces, Mathware and Soft Computing, 4 no. 1 (1997), 5-22.

- [6] L. P. Belluce, A. DiNola, S. Sessa, The Prime Spectrum of MV-algebras, Math Logic Quarterly 40, (1994) 331-346.
- [7] C. C. Chang, Algebraic Analysis of Many Valued Logics, Trans. Amer. Math. Soc. 88 (1958), 371-384.
- [8] A. Di Nola and S. Sessa, On MV-algebras of continuous functions, Non-classical logics and their applications to fuzzy subsets (U. Hohle and E. P. Klement, eds.), vol. 32, Kluwer Academic Publishers, 1994, 23-32.
- [9] A. Filipou, Baer-extensions for MV-algebras, Math. Japonica 40, no.2 (1994), 235-241.
- [10] D. Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.
- [11] S. Sessa and E. Turunen, On complete and strongly stonean MV-algebras, $Scientiae\ Math.\ 1\ (1998)$, to appear.