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Abstract

We study the consequences of assuming on an MV-algebra A that X,nz
exists for each z € A

Given an MV-algebra A, it has a reduct L(A) which is a bounded distributive
lattice. A is then complete, or a-complete, provided the reduct L{A) is complete, or
a-complete respectively. As the basic MV-algebraic operations are not idempotent,
we have a third type of possibility for the supremum of certain sets.

Thus, given an MV-algebra A, and a non-empty subset X C A, we say that X
is integrally-closed, or w-closed, provided, for each x € X, that ¥, (nz) exists in X.

Here, 3, (nz) denotes the least upper bound in L(A) of the set {nz | n =
0,1, 2,...}

Clearly every Ng-complete MV-algebra A is integrally-closed. On the other
hand, if Q@ is the MV-algebra of rational numbers in the unit interval, and Y a
non-empty set, then QY is integrally-closed but not Ng-complete.

Complete MV-algebras are also related to a class of MV-algebras called strongly-
stonean (sstonean). If A is complete, then A is sstonean; A sstonean implies B(A)
complete, where B(A) is the Boolean subalgebra of idempotents of A.

In this work we shall study some properties of being integrally-closed on an
MV-algebra, A. We shall show, for example, that w-closed is also intimately related
to sstonean, and to the weaker notion of stonean.

For reasons to be seen below, we will be dealing with only semi-simple algebras.

Consider a commutative ordered monoid < A, 4+, <, 0 > on which is defined
an order reversing involution *. We denote such a system by its underlying set A.
Define on A a product by: a-b = (a* + b*)*. Then the system < A4, -, <1 >
becomes a commutative ordered monoid where 1 = 0*. We always assume that

04 1.

*This paper was prepared while the author was visiting the Center de Recerca Matematica,
Institut D’Estudis Catalans, Bellaterra, Spain.
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Next define on A the operations: a Ab=a-(a* +b) and aVb=a+ (a*) - b.

Recall, then, that an MV-algebra is a system as above that satisfies the identity:
aVb=">bVa or, equivalently, a Ab=>b A a.

The induced system L{A) =< A, V, A, 0, 1 > is a bounded distributive lattice.

An ideal in an MV-algebra A is a subset I C A such that 0 € I, I is closed
under +, and ifa € I, b < a, then b € I.

MV-algebras have the usual universal properties of algebraic systems, that is
homomorphisms, quotient algebras, subalgebras, etc.

We assume familiarity with MV-algebras, but will give the meanings of some
special notation.

Thus, for an MV-algebra A, Spec(A), Maxz(A), Min(A) will denote respec-
tively the space of prime ideals, maximal ideals, and minimal prime ideals. For
a subset X C A, ida(X) will denote the ideal in A generated by X. (If there
is no confusion, we may just write id(X). By X' is meant the set {y € A |
Ay =0foral zec X}. If X = {2}, we just write 1. The set U(X) = {P ¢
Spec(A) | X ¢ P} is the open set in Spec(A) determined by X. We note that
U(X) =U@Gd(X)).

Let A, A’ be MV-algebras, A C A’ a subalgebra of A'.

Definition. We shall say that A’ is an integral extension or an w-extension of A
provided for each a € A, we have that X, (na) exists in A’. (We point out that by
[1], if ¥, (na) exists, it is always an idempotent.)

Definition. We say that A is integrally closed or w-closed, if A is an integral
extension of itself.

If AC A’ and A’ is integrally closed, we shall refer to A’ as an integrally closed
or w-closed extension of A.

Definition. If I is an ideal of A such that for each x € I, 3, (nz) exists and is in
1, we will say that I is w-closed.

It was established in [1], Theorem 6, that if A is integrally closed, then it is
semi-simple. In fact,

Proposition 1 If A has an integral extension, then A is semi- simple.

Proof. Suppose that a € Rad(A). Let A’ be an integrally closed extension of A.
Then 3, (na) = e exists in A’. We know that e is idempotent. Hence e = e% =
., m(na - ma). Since na, ma € Rad(A), we also know na - ma = 0. Therefore

e = 0 which implies a = 0.
We also have the converse,
Proposition 2 If A is semi-simple it has an integrally closed extension.
Proof. A is a subalgebra of II{A/M | M € Maxz(A)}. Each A/M is locally finite,

thus integrally closed. Clearly the product of integrally closed MV-algebras is
integrally closed.
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We say that a in an MV-algebra A has ultrafinite order if ¥, (na) = 1. We
have,

Proposition 3 If every non-zero element in A has ultrafinite order, then A is
locally finite.

Proof. Since A is integrally closed, it is semi-simple. Thus we need only show it is
linearly ordered. Suppose, then, that a Ab =0, a, b # 0. We have by assumption,
L. (na) = £,(mb) = 1. Therefore, 1 = 3, (na) A X, (mb) = X, (na A mb). But
na A mb < mn(a Ab) =0. Hence 1 = 0 which is absurd.

Corollary. If A is integrally closed and linearly ordered, then A is locally finite.

Sometimes a quotient of an integrally closed MV-algebra is integrally closed.

Proposition 4 Suppose that A is integrally closed and that I is an N-closed ideal.
Then A/I is integrally closed.

Proof. Let a/I € A/I and let ¢ = ¥,,(na). Then for each n > 0 we have n(a/I) <
e/I. Suppose that n(a/I) < b/I for all n. > 0. Then na-b € I for all n > 0. Hence
Yn(na- b exists in I. But ([1]) Sp(na-b) =b-Y,(na) =b-e € I. Thus, e/I < b/I
so0 Xp(n(a/I)) = e/I, and A/I is integrally closed.

Corollary. If A is integrally closed and P is an N-closed prime ideal, then P is
mazimal.

The following result shows that in the corollary above, that P cannot be just
w-closed.

Proposition 5 Let A be integrally closed and P € Min(A). Then P is w-closed.
If P € Spec(A) is w-closed, then P € Min(A).

Proof. Let P € Min(A). Let z € P. Since P is minimal, 21 ¢ P. Let e = ,,(nx).
Then zt = id(). Therefore & ¢ P. But P is prime, so e € P. Thus P is w-closed.
Conversely, suppose that P € Spec(A) is w-closed. Let m C P be a minimal prime.
Let z € P. Then e = ¥,,(nz) € P. Hence, € ¢ m. But m is prime, so e € m. As
x < e, we see that x € m. Therefore, P =m € Min(A).

Now let A = QX for an infinite set X. Then A is integrally closed but not
quasi-boolean [1]. Thus there are minimal primes that are not maximal. That is,
there are w-closed primes that are not maximal.

We can improve the situation in Proposition 4 and its corollary in the following
manner.

Call an ideal plus-w-closed, in symbols, tw-closed, if for each z, y € A, if
y(nz) € I for each n > 0, then y - X, (nz) € I. It easily follows that,
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Proposition 6 If A is integrally closed and I an Tw-closed ideal, then A/l is
integrally closed.

Corollary. If A is integrally closed and P is a Tw-closed prime ideal, then P is
mazimal.

We make the observation that if A is integrally closed, and J is any ideal,
then J+ is tw-closed. From this observation we have, letting MinMaz(A) =
Min(A) N Maz(A).

Proposition 7 If A is integrally closed, then Min(A) = E(A) U MinMaz(A),
where E(A) = {m € Min(A) | m*+ = 0}.

Proof. From Proposition 10 of [5], we know that if m € Min(A) and m* # 0,
then m = at for some a € A. Hence, for m € Min(A), either m* = 0 or m is
*w-closed.

An MV-algebra A is stonean iff for each a € A the annihilator ideal at = {b €
A | a ANb = 0} is generated by an idempotent. In symbols, at = id(e) for some
e € B(A), where id(e) = id({e}). The following two lemmas are well known and
easy to show.

Lemma 1 Letx, y € A and let e € B(A). Then,
i)e-x=eAx.
netr=eVz.
i) e (z+y)=-ex+ey.

Lemma 2 Lemma Suppose that ,(nz) and X, (ny) exist in A. Then
1) Yn(n(z Ay)) exists and X (n(x Ay)) = Xn(nx) A X, (ny).
i) Yn(n(z +vy)) exists and Xn(n(z + y)) = Xn(nz) + Xn(ny).

Lemma 3 Lemma Let e, ¢’ € B(A) withe+¢ = 1. Let x € A. Then there is an
integer ng such that v < ze + xe’ < nox.

Proof. We clearly have, z < xe + ze¢’ < z + z < ngz for ng > 2. The lemma is
evident for ng = 1.

Converse to Proposition 5 above, we have

Proposition 8 Suppose that A is such that every minimal prime is w- closed.
Then A is stonean. Moreover, if A is not linearly ordered, then A is integrally
closed.

Proof. Tt suffices to show that A is regular and that Min(A) is compact [6]. A will
be regular if for each maximal ideal M of B(A) we have that id4 (M) is prime in
A [6]. Thus, let M be maximal in B(A). By the lying over theorem [4], there is a
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prime P of A such that M = PN B(A). Let m C P be a minimal prime. Then
m N B(A) C M. Therefore N B(A) = M. Then M = ids(M) C m. Let z € m.
Then e = X, (nz) € mN B(A) = M. We then have that e € M. But z < e, and so
z € M. Thus M = m, and it follows that A is regular.

Suppose now that Min(A) is not compact. Then for some ideal I of A, we
have Min(A) C U(I) but Min(A) € U(F) for any subset F C I. In particular,
Min(A) & U(x) for any x € I. Therfore, if 2 € I, there is an m € Min(A) with
z € m. As m is w-closed by hypothesis, we see that e, = X, (nx) exists and is in m.
Let I' =ida({e, | # € I'}. Assume that 1 € I’. Then there are 1, z2, ..., @, € [
with 1 = ey, + - €5,. By Lemma 2 ii), we see that there is an z € I with 1 = e;.
But then, 1 € m for some m € Min(A). Hence I’ is proper. Thus I’ N B(A) is a
proper ideal of B(A) and so is contained in a maximal ideal M of B(A). Since I’ is
generated by idempotents, we see that I’ = id4(I'NB(A)). Therefore I' C id(M).
Since A is regular, id (M) = m for some m € Min(A). We now have I CI' Cm
and so m ¢ U(I) which is absurd. Hence A is stonean.

Suppose further that A is not linearly ordered. Then A contains two distinct
minimal primes, m, m/. Since A is stonean it is hypernormal, therefore m+m’ = A.
So for some @ € m, b € m’ we have a + b = 1. But then we have 1 = ¢, + e,. By
the preceding lemma, there is an ng such that z < ze, + xep < nox.

Since ze, € m, we have that X, n(xze,) exists. Similarly, 3, n(zep) exists. By
Lemma 2 above we now see that e = X, n(ze + ze’) exists. Now certainly, nz < e
for all positive integers n. Suppose that for some y € A that nz < y for all n.
Then we obtain, for any n, n(ze, + zsp) < nnoz < y. We can now conclude that
Y,nr = e and thus A is integrally closed.

From the above propositions we see that in an integrally closed MV-algebra A,
if I is the intersection of a set of minimal primes, then I is w-closed. We claim the
converse as well.

Lemma 4 Lemma Let I be an ideal, and P a prime ideal minimal over I. If I is
w-closed, the so is P.

Proof. We know that P = Ip = {z | for some y ¢ P, x Ay € I} [6]. Let x € P and
let y be such that x Ay € I but y ¢ P. Now, X, (n(x Ay)) € I since I is w-closed.
But X, (nz) A Xn(ny) = Ep(n(z Ay)). But y ¢ P implies X, (ny) ¢ P. It follows
that ¥, (nz) € P. Hence P is w-closed.

Proposition 9 Let A be integrally closed. Then I is an w-closed ideal iff I =
({m € Min(A) | I C mj}.

Proof. We saw above that if I is the intersection of minimal primes, then I is
w-closed. Suppose then that I is w-closed. Since I is the intersection of all the
primes that contain it, clearly, I = (\{P € Spec(4) | P is minimal over I}. Now
let € m for every minimal prime m, I C m. Suppose P € Spec(A) and I C P.
There is a prime ideal P/ C P with P’ minimal over I. By the lemma above, P’
is w-closed. By Proposition 5, P’ is a minimal prime. Thus z € P’ C P. We see
then that z € I.
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Proposition 10 If A is integrally closed, then it is stonean.

Proof. Let a € A. Let e = %,,(na). Clearly we have at = (id(e))* = id(e). Since
e € B(A) sois €. So, A is stonean.

The converse is false in general, (just take A to be the special Chang algebra
C, [7]) but we have,

Proposition 11 If A is stonean and semi-simple, then A is integrally closed.

Proof. Let a € A. We know that a* = id(e) for some e € B(A). Hence na < &
for all n > 0. Suppose that b € A is such that na < b for all n > 0. Let M be a
maximal ideal of A. If @ € M, then a Ab € M. Suppose that a ¢ M. Then a/M
has finite order in A/M. Since n(a/M) < b/M for all n > 0, we see that b/M = 1.
Therefore b € M and so a Ab € M. Since A is semi-simple, a Ab = 0; so b < e.
Therefore € < b. It follows that X, (na) = & and so A is integrally closed.

Corollary. A is integrally closed iff A is stonean and semi-simple.

An MV-algebra A is strongly stonean if for each ideal I C A, I+ = id(e) for some
e € B(A). Integral closure relates to strongly stonean in the following manner.

Proposition 12 If A is integrally closed and B(A) is complete, then A is sstonean.

Proof. Let I be an ideal of A. For each a € I, let ¢, = X, (na). Now let
e = Y{e, | a € I}. Clearly, if a € I, then a A & = 0. Thus id(e) C It. Now let
be It. Then bAe, =0 for all a € I.Therefore bAe = S{bAe, | a € I} =0.
Hence b < e. That is, I+ = id(€) and A is sstonean.

Corollary. An MV-algebra A is sstonean and semi- simple iff A is integrally closed
and B(A) is complete.

Proof. Suppose A is sstonean and semi-simple. Then A is stonean and semi-simple,
thus integrally closed by Proposition 11. From [2] we know that B(A) is complete.

We note that for the MV-algebra C = {0, ¢, 2¢, ...,1-2¢, 1—¢, 1} of [7], that
C¥X is sstonean and B(CX) is complete. CX is neither semi-simple nor integrally
closed.

Given, then, a semi-simple MV-algebra A, we can look for three types of integral
extensions. Let A be a subalgebra of A’.

Type 1) A’ is sstonean and semi-simple.

Type 2) A’ is stonean and semi-simple.

Type 3) For each a € A, ¥,,(na) exists in A’, where A’ is semi- simple.

Definition. Suppose A is a subalgebra of A. We shall call A an integral closure
of Type kif A is a minimal integral extension of A of Type k, k=1, 2, 3.
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In [9] it is shown, using sheaf theoretic methods, that each MV-algebra A has a
unique minimal sstonean extension. (In [9] these are called Baer- extensions.) Semi-
simplicity is not examined in [9], nor is integral closure. Since every semi-simple
MV-algebra is contained in a complete algebra, it automatically has a semi-simple
sstonean extension. We shall show (without sheaf theory) that every semisimple
MV-algebra has a minimal such extension. As mentioned above, a result of A.
Filipou [9] shows that the minimal extension is unique up to isomorphism.

Proposition 13 Let A be an arbilrary MV-algebra. Then there exists a minimal
sstonean MV-algebra A with A C A.

Proof. Let Ag =TI{A/P | P € Spec(A)}. Then Ag, being a direct product of lin-
early ordered MV-algebras, is sstonean. Let § = {A” | A C A” C Ay, A”sstonean}.
Let C C S be a chain (under C). Let A’ = (JC. Then A C A’ C A,. Clearly,
B(A") = ({B(Ay | Ay € C}. Let I be an ideal of A’, and for each A, € C, let
I, = id,(I) be the ideal in A, generated by I. Let e, € B(A,) be such that
I," = id,(ey). Clearly, if A, C A, in C then I, C I,. Now e, Aa = 0 for
all a € I. If b € I, then b < a for some a € I. Therefore, since e, € Ay
and e, Aa = 0, we have e, Ab = 0. That is, e, < e,. Let A, € C and let
e =I{e, | Ay C Ay} As B(A,) is complete, we see that e exists. Moreover,
we must have that e = II{e, | A, C A,} whenever A, C A,. Consequently,
e € {B(A.) | A, € C}. Tt is clear that e € I+ C A. Now let a € I+, a € A.
Then for each A, € C, we have a € IuL. Thus, a < e, for all A, € C and so a < e.
Therefore we infer I+ = id(e) C A. Ergo A’ is sstonean. By Zorn’s Lemma we
conclude that S has minimal elements.

Comment: In the proof above, the only role played by Ay, aside from avoiding
set theoretical difficulties, is to guarantee that S is non-empty. In fact we have
proved,

Proposition 14 If A is a subalgebra of a sstonean algebra A’ then there is a
sstonean algebra A minimal over A with A C A'.

If A is semi-simple, then the algebra Ay can be taken to be II{A/M | M <
Mazx(A)}, which is also semi-simple. Since subalgebras of semi-simple algebras are
semi-simple, we see that we can find a minimal sstonean extension A of A which
is semi-simple. Thus,

Proposition 15 If A is semi-simple, then A has an integral closure A of Type 1.

We next show that if A is bipartite, then so is A. Recall that A bipartite means
that for some maximal ideal M C A, that A = MUM* where M* = {x € A|z* €

Lemma 5 Lemma Suppose that an MV-algebra A is a subalgebra of a sstonean
algebra A'. If B(A") C A, then A is also sstonean.
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Proof. Let I be an ideal of A. Let J = ida/(I) be the ideal of A’ generated
by I. Then J+ = ida:(e) for some e € B(A’). Since e is also in A, we have
It =ida(e) N A =id,(e). Hence A is sstonean.

Proposition 16 Let A be an arbitrary MV-algebra, I an ideal of A. Let S(I) =
{a€ AlaAa*€T}. Then, ([3], [4])

i) S(I) is a subalgebra of A, and I is an ideal of S(I).

it) B(A) C S(I).

iit) If P is a prime ideal of A, then S(P) is bipartite.
From this we now have,

Proposition 17 If A is a bipartite MV-algebra, and A a minimal sstonean exten-
sion of A, then A is bipartite.

Proof. As A is bipartite, it has a maximal ideal M such that A = M U M*. Let
M= id ;(M). Then M + A and S(M) is a subalgebra of A and by Proposition 11,
B(A) C S(M). If a € A, then a € M or a* € M. Thus a A a* € M and therefore
aha* € M. It follows that A C S(M). By the preceeding lemma, S(A) is sstonean.

By the minimality of A, we may infer that S (M ) = A. From Proposition 16 we
conclude that A is bipartite.

OPEN PROBLEM:

What is the integral closure of C([0, 1], [0, 1]), the algebra of continuous func-
tions from [0, 1] to [0, 1]?
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