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Abstract

In this paper, a survey of the state of the art and perspectives of two
main lines of research in fuzzy control systems is presented: on one hand,
the interpolative-functional line representing fuzzy systems as parameterized
universal function approximators, thus applying nonlinear control and neural
network paradigms; on the other hand, a logic-formal approach where fuzzy
systems are analysed in terms of logic interpretations, exploring validation,
consistency and completeness, uncertainty management and knowledge su-
pervision. The former approach is not widely used in the control field, and
asserting its possibilities is one of the main motivations of this paper. Refer-
ences in both lines and some abridged results in the second case are cited, in
particular some of the author’s contributions, to which the interested reader
is referred.
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1 Introduction.

Quality improvement in industrial processes implies, to a great extent, efficient
control strategies. The neural (connectionist) and fuzzy (knowledge-based) ap-
proaches, so called intelligent control, sprang in the last 25 years as candidate
paradigms to achieve efficient control of complex, high-dimensional processes.

However, in industrial practice, application of connectionism with learning ca-
pabilities [12] is at an initial stage. Notwithstanding, practicioners accept with
interest fuzzy logic applications, mainly due to the parallelism with their reasoning
schemes and their explanation capabilities: Those capabilities are a great advantage
with respect to neural networks towards satisfactory user interaction.

But, even with the increasing popularity of fuzzy systems in practice, many cur-
rent applications of fuzzy control theory are in low-dimensional or nearly decoupled
processes. Furthermore, fuzzy controllers, originated from a logic of “vague” and
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“imprecise” concepts, are used in most cases to approximate precise, determinis-
tic controller functions, thus contradicting some of the principles that ground the
usefulness of fuzzy logic.

A problem posed by current structures is the difficulty of learning and valida-
tion when applied to systems requiring a complex strategy. Validation is carried
out experimentaly in most cases, with hundreds of simulations and, in industrial
practice, modifications of rulebases in expert control systems are carried out in
a manual, tedious way, by trial and error. An example of that is the authors’
experience in application to cement kilns [11].

Integration of fuzzy and neural techiques gives rise to neurofuzzy structures
that usually combine linguistic interpretation (amenable to logic analysis) with a
parametric approximator structure, in many cases linear in them so that certain
learning results [22, 8, 2] can be applied. Granulation and locality are the key
concepts in these approaches. Notwhithstanding, most learning techniques in the
fuzzy control arena use only the parametric interpretation, so that gradient and/or
random search methods are used for parameter updates.

By means of the parametric approach,stability of adaptive control can be guar-
anteed for systems in a certain class of matemathical models [14, 22, 20]. In systems
with unknown models apart from basic qualitative characteristics, those techniques
cannot be applied with total confidence in practical situations, although paradox-
ically fuzzy control was born to control precisely those ones.

So, these reflections are the main motivation of the research line in this paper:
the lack of use of tools from fuzzy logic in the control arena, outweighted by a “pa-
rameterised function approximator” approach in which differences between neural
nets, fuzzy systems, splines, etc. vanish: only gradients and approximation errors
are considered.

This introduction summarizes the authors’ experience and opinion, the conclu-
sion being that additional problems arise in order to create efficient knowledge-
based controllers in complex systems. A possible solution might be a knowledge-
acquisition supervision layer in fuzzy and neurofuzzy systems. This layer would
evaluate the quality and quantity of available knowledge to decide between adap-
tation and restructuration, and to ensure the absence of internal contradictions.

A more detailed critical discussion of the current fuzzy control practice and the
outline of the authors’ contributions [15]-[18] towards creating that knowledge-
acquisition supervision layer (in principle, focused towards function approximation
for learning control purposes) is the main objective of the paper.

The structure of the paper is as follows: Next section details some of the impor-
tant issues in current fuzzy control practice outlined in this introduction. Section
3 presents the possibilities of control performance enhancement that motivate the
research line in formal techniques for fuzzy control. Definitions and results in that
line are briefly outlined in section 4 (references for further details are presented).
Some conclusions are presented in the last section.
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2 Some issues about current fuzzy controllers.

Let us think of a configuration in which the objective is generating a set of fuzzy
rules that control a system. The rule generator entity can be a human expert or a
learning algorithm (numeric or symbolic).

In most applications of fuzzy logic in control, some questions arise that many
times are neglected or solved in an ad-hoc manner. The following items discuss
some of them.

Multiplicity of operators. Generalisation of key binary operators presents a
multitude of variants (implication [9], defuzzification [22], rule chaining), based on
formal or intuitive grounds. Some of them give rise to severe problems in case of
nonconvex consequents or “fat shape” subsets. In certain cases, they can be solved
by further refining via additional entropy-like coefficients or other heuristics [24].
The choice of logic operators, implication and defuzzification in industrial practice
[1] is based in ease of implementation and end-user understanding.

Simple interpolation interface. In most applications and theoretic control
developements fuzzy logic is considered only as a convenient, intuitive user-oriented
interface to multidimensional interpolation routines, most with linear in parameter
universal approximators in the form:

Y hi(x)0’
R S @

where x is the system state, 0% are the adjustable parameters for the learning phase
and ¢; are named “membership functions”, “basis functions””, etc. Expression (1)
may be formally equivalent to other interpolation techinques, such as splines, radial
basis neuronal nets, etc. If functions ¢; also have adjustable parameters, equation
(1) is analogous to some multilayer neural network configurations. The obtained
results do not rely in any fuzzy-related concept.

Numeric vs. conceptual processing. In most references on fuzzy control,
emphasis is biased towards the numeric aspect of fuzzy regulators, i.e. they stand
as parameterised nonlinear approximators (1) in order to obtain results on stability,
Lyapunov functions, linear parameterisations, etc. [22]. Thus, in that context, part
of the initial spirit of fuzzy logic (concept processing: “computing with words”)
has been lost.

Where is vagueness?. The conclusion of the previous items is that fuzzy
logic, born as a logic for vague and imprecise linguisitic models, is used in most
control applications in a completely deterministic framework (such as the previ-
ously presented interpolators).

These ideas are presented here in an intentionally absolute, maybe exaggerated
way. Of course, confronting these argumentations, other points of view based on
different core interpretations of “fuzziness” [6], and the need of the final controller
to be deterministic can be pointed out.

Notwithstanding, the present “parametric” and “interpolative” bias of fuzzy
control has reached a series of achievements justifying it. Some of the most signif-
icant are referred here:
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e Simple identification algorithms, in certain context, derived from standard
Least Squares [22, 10].

e Linear matrix inequalities over convex combinations of linear systems [20].

e Direct applicability of nonlinear control results: small gain, descriptive func-
tion, identification and adaptive control of control affine systems [14, 3].

¢ Genetic algorithms and derivative-based neuronal-like learning [5]: backprop-
agation, Newton, Levenberg-Marquardt.

Those sucesses have to be confronted to these three drawbacks related to lin-

guistic, conceptual processing:

— the multiplicity of fuzzy operators for connectives and implication with little
practical relevance,

— the fact that in some references the capabilities of fuzzy controllers are exag-
gerated, without a proper comparison to other conventional techniques (such
as PID’s),

— many good-performance, expert-based regulators are adjusted in practice by
trial and error

So, the result is a credible explanation of the referred emphasis in just the nu-
meric processing (universal approximation property) regarding {uzzy systems in
the control field.

3 The role of formal fuzzy methods in control.

In the previous section, the present situation of the fuzzy control theory field has
been outlined. But, on the other hand, there has been a significant success in appli-
cation of simple fuzzy controllers. The reasons of that success and the possibilities
are the motivation of this section.

The success in practical control applications of fuzzy logic is due to the capa-
bility of using models with “ambiguous” concepts in order to reduce the intuitive
complezity of a process, so that control, planification and supervision can be carried
out, even perhaps in a crude, approximated way, over nonlinear and time-varying
plants.

Hence, its success is an issue of simple representations, in a similar way to linear
time invariant systems, which are, too, complexity reduction entities that allow the
design of approximated controllers. Depending on the system, a few hand-tuned
fuzzy rules may perform satisfactorily without the need of classical modelling and
control approaches (which, in the case of complex systems may be costly and hard
to validate). Although this issue of representation may not be a very clear case for
perfectly-known academic example processes (differential equations), it is a fact in
industry.

After analising the achievements of fuzzy control, the possibilities and limits for
its future have to be considered. With respect to the possibilities, as fuzzy systems
are universal approximators of smooth functions, further achievements in the arena
of nonlinear adaptive and geometric control research can be expected.

In the following, a reflection will be made about the existence of possibilities
for formal fuzzy logic tools to be applied in improving fuzzy control by solving
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Figure 1. Need of logic-based methods.

the questions that arised in previous sections, and some additional ones, not easily
dealt with by means of just the numeric-functional approach.

Vagueness of knowledge. In control engineering, two fundamental sources
of ambiguousness have to be tackled by intelligent controllers:

— Plant model ambiguousness: the noise, time variability, nonlinearity and lack
of knowledge about details of the process gives as a consequence that in
most practical cases only an intuitive model of the plant to be controlled is
available, approximately describing low order dynamics, in long time scales.

— Control specification ambiguousness: the “cost index” (control specifications)
to be optimised, directly related to final quality and production cost, is often
expressed in a qualitative, vague form. In practice, experience and “intel-
ligence” of human operators are used to compute setpoints for the actual,
hierarchically subordinate, regulators. Hence, there might be no noticeable
final quality improvement by enhancing the performance capabilities of those
low-level regulators, if setpoints are suboptimal.

Complex rulebases. Fusion. If a complex rule base is present (either created
by an expert or by a learning algorithm), such as the one in figure 1(a), it would
be useful to detect abnormalities such as contradiction between rules, redundan-
cies, missing rules to complete a rulebase, etc. In a similar context, if linguistic
information is coming in from different sources (human or learning algorithms, fig.
1(b)), mechanisms of verification of their agreement and fusion strategies should
be devised.

Interpretability of results (readability). In the functional view of fuzzy
systems, a model (1) with a sufficiently high number of basis functions ¥; can
uniformly approximate any smooth continuous function [12]. A problem arises in
many cases: due to the presence of a great number of parameters, the (neuro—)fuzzy
models lose their original intention (i.e., grasping the fundamental characteristics
of the process to reduce complexity). So, there seems to exist a need to weight
linguistic interpretability versus approximation accuracy. These questions may be
discused in further detail: introduction of validation (regularisation) indexes in
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learning algorithms may open the possibility of a directed learning with better
generalisation and end-user readability [13].

Learning and supervision. In the case of control with a learning algorithm,
thus including an evaluation of performance in terms of control specifications, some
decisions must be made: parameter modification, the decision to undergo structural
modifications, the efficient coding of the available knowledge, the verification of
readability of results, etc. Those could be carried out by a knowledge acquisition
supervisor, hierarchically higher.

3.1 Perspectives of fuzzy control.

The conclusions of the previous considerations are, as a matter of fact, that there
is a role to be played in fuzzy control for the formal, logic based, knowledge man-
agement:

o Fuzzy methods must deal with uncertainty management in intelligent control
systems, providing information about modelling error, confidence, etc. A
truly “intelligent” system should combine a model and a rough idea of its
validity range and accuracy.

o The research line is different, complementary to the “interpolative” approach:
a list of parameters @° is a useful model but, in fact, it’s a poor representation
of what “knowledge of the process” means for a human operator.

o Knowledge management must aim to improve learning capabilities by intro-
ducing validation notions such as:

— Consistency (knowledge quality).
— Completeness (knowledge quantity).
— Eficiency (used resources, redundancy detection, simplicity of represen-

tation, preservation of user interpretability).

The conjunction of both approximations to fuzzy control could give rise to

control systems with features such as:

— Hierarchic systems, combining several plant models with different precision.

— Consistent combination of several knowledge sources: functional (first-principle
models), heuristic (linguistic information {rom humans) and experimental
(plant data).

— Fault detection, when the plant contradicts the knowledge the controller has
about it.

— Knowledge acquisition supervisors.

— Advanced learning: combining structural and parametric modifications while
preserving readability. Automatic discovery of dimensionality-reducing ap-
proximations (for example, if the long term behaviour can be considered
first-order, if two sets of measurements are interdependent, etc.).

4 Formal approach for fuzzy control. An outline.

The discussion of the various unsolved issues in fuzzy control applications presented
in previous sections motivated the work of the authors in formal fuzzy methods for



Formal Validation of Fuzzy Control Techniques. Perspectives 311

function approximation in control [15—[18]. Some other works [7, 13, 19 also
address related problems from a point of view not specific of the control area.

4.1 Objectives of knowledge analysis (validation).

The knowledge a controller has about the process it regulates should be an “in-

telligent” compilation of past experience, thus requiring a suitable analysis of the
knowledge gathered.

Fuzzy systems, to be used in the control context, should be previously validated
to avoid wrong outputs. Under the term “validation” appears the set of operations
to determine the fitness and usefulness of the knowledge to fulfill a certain set of
control specifications. The validation applies for either algorithm implementation,
fuzzy process models or the actual fuzzy logic controllers. Some general properties
and definitions will outline the available tools in the following subsections.

Fuzzy controller validation can be carried out under two complementary points
of view: internal (logic structure verification) and external (experimental verifica-
tion of fitness, reduced error).

The most common learning paradigms aim at the second one. From the point
of view of improving learning methods, experimental invalidity can have different
consequences, depending on its grade: slight discrepancies would pinpoint the need
of parametric adaptation, while greater discrepancies would perhaps either imply
the need of structural adaptation (rule addition or deletion) or just to be used for
fault detection purposes.

Internal validation can be used to improve quality and speed of the learning
process [13, 15]. At the current situation, internal validation can be approached in
two ways:

— Logic verification of complex rulebases (oriented to expert control applica-
tions).

— Verification of the validity of numeric interpolative-like inference algorithms
over a particular rulebase (assumed consistent): for example, centroid defuzzi-
fication methods are not advised when some of the consequents are wider than
the rest, or there are nonconvex sets. If a learning algorithm can produce
any of those set shapes, this validation should be carried out in an automatic
way, so that the system can always ensure that the algorithm used to obtain
control actions efficiently recovers the conceptual information encoded in the

rulebase [17].

Rule validation originated in the binary logic field [19, 4], being recently ex-
tended to the fuzzy case [23, 7, 17] taking as a starting point, in some cases, first
definitions of consistency from the compatibility measure (peak of the intersection)
in [25]. In [15] a sound examination of the meaning of validation of functional
approximation for control purposes is carried out. A selection of some significant
results is outlined in the rest of this article. Proofs and examples may be consulted
in the referenced works.
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4.2 Basic definitions.

The starting point is the equivalence between a rule and an inequality inspired by
some implications of the Lukasievicz class [17, 9].

Definition 1 Let u and y be numeric variables belonging to two universes of dis-
course (input universe U and output Y, respectively), and let A C U and B CY be
two fuzzy sets defined by membership functions pg : U — [0,1] and pp : Y — [0,1].

Then, the rule “If u is A, then y is B” is defined equivalent to the inequality

[17]:
pa(u) < ps(y) (2)

and in the same way the rule “If and only if uw is A, then y is B” is defined
equivalent to the equation pa(u) = up(y).

Definition 2 Given a rule set, the ideal conclusion is defined as the set of solutions
of the equivalent equation set, assuming as known the value of certain variables
(premises).

Example. The rule base:
1- u is Low = y is Not Low AND z is Low
2- u is Medium < y is Low
3- u is High= y is High OR z is High

is, by definition, equivalent to:
Low(u) < min(1 — Low(y), Low(z))
Medium(u) = Low(y)
High(u) < max(High(y), High(z))

Inference consists in, for a certain u, finding which values of y and z verify the
equations and inequalities, given a certain shape for the membership functions. If
it were the case, for example, in which Low(u) = 0.5 and Medium(u) = 0.6, no
solution would exist: a contradiction between rules 1 and 2 arises.

Note that defuzzification does not exist in the presented framework as a funda-
mental theoretical entity. The presence of defuzzifiers in practical implementations
is just a quick way of obtaining, under appropriate assumptions, a solution to the
equations or a good approximation of it.

The expression of a fuzzy model as a set of equations opens up the possibility
of combining those equations with other ones obtained by experimentation or first
principles.

The logic properties of the rulebase are defined in parallel with those of existence
and uniqueness of solutions in the equivalent equation set:

Definition 3 If the equation set representing a rule base has no solution, the rule-
base is said to be contradictory (for a given set of premises). It it exists at least one
solution to them, the rulebase is said to be coherent. If the solution is unique, the
rulebase is complete, and if it is nonunique, the rulebase is said to be incomplete.
If the solutions are the same after ellimination of one of the equations, then the
corresponding rule is said to be redundant.
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To allow inference over contradictory rulebases, a contradiction index associated
to each rule will be defined, and named inference error. Defined € : U x ¥ — [0, 1]
it has the expression:

ety = 10 pau) < pp(y)
) {um —ua() pale) > pn(o) ®)
€EIIF (U, y) = |MA(U) —MUB (y)| (4)

The inference error is null if ¥ is an ideal conclusion of the rule for premise u, and
1 if y totally contradicts the rule for that premise.

Once the inference error for each rule is given, a cumulative error function for
a N-rule rulebase is formed:

1
P

e(u,y) = (Z ¢¢(u,y)6¢(u,y)p> (5)

where p is a user-defined parameter, with unity reference value. The functions
¢; are weights that can be interpreted as confidence coefficients, defined by the
rulebase designer.

In this way, ideal inference (def. 2) is generalised by defining the ideal conclu-
ston as the set of y values minimising ¢(u,y). Inference is thus converted to the
minimisation of a contradiction cost index.

4.3 Validation formulae.

Suppose that either an expert or a learning algorithm provide a controller u = f(e)
or process model y = f(u), represented by a rulebase to be validated.

Knowledge structure. Coherence and redundance structure can be evalu-
ated, for example, by coherence and redundance coefficients, as presented in [15].
When particularised to a pair of rules, they have the expression:

cij(u) = min  €(u,y) pij(u) = max (w,y) (6)
yle; (u,y)=0 yle; (u,y)=0
These definitions allow for the possibility of deriving formal tools to modify, in an
automatic way, the shape of membership functions to improve internal consistency.
Moreover, given two rules with similar antecedents and consequents, upper bounds
on the contradiction (inference error) incurred if one of them is deleted can be
calculated by means of the redundancy coeflicient.

Inference algorithm validation. With respect to validation of conventional
fuzzy inference-deluzzification algorithms, if y = f(u) is the output of a certain al-
gorithm (for example, some of the many ones similar to (1)), then the rule inference
error €(u, f(u)) provides an invalidity measure of that algorithm. That measure
depends both on the particular algorithm used and on the shape of the fuzzy sets.
Obviously, in order to interpret it correctly, the rulebase over which it is applied is
assumed to be coherent, in the sense previously defined.
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Figure 2: Consequents for coherent modeling of noisy data.

If f(w) is a generic function to be modelled by the rulebase (used as a func-
tional approximator), the rulebase is said to consistently model the function f if
e(u, f(u)) =0 for all u.

In that case, it can be proved that the rule antecedents (A4;) and consequents
(B;) verify A; C f~1(B;) where f~! is defined according to the extension principle
tip—1(By(w) = pp, (f(u)). For IIF rules, the equality A; = f~(B;) holds.

This functional interpretation can explain some intuitive procedures for con-
structing rulebases ensuring coherence. In the same way, the inequalities and func-
tional interpretation enable to devise minimum contradiction learning algorithms

[16].

4.4 Fuzzy Modelling.

Intelligent control systems must deal with uncertain, ambiguous fuzzy models.
These fuzzy models can be obtained from various sources: either from expert rule
assertions, by fuzzifying an approximate algebraic model, or by identification over a
set of (maybe noisy or partial) experimental data. In the third case, if the algebraic
interpretation (2) is used, given a point (%,y) from a training set and an antecedent
A, if the rule equations are fulfilled, at point y, the consequent membership has
to be greater than p4(w). So alter setting a mark in output space at (y,pa(w))
for each point in the training set, any fuzzy set that encompasses all marks can be
a coherent consequent for the antecedent A. Hence, this one-pass algorithm can
provide a coherent fuzzy set representation of the underlying function in the form of
a multivalued mapping [21]. It will output wider and more overlapping consequents
for fixed antecedents according to the amount of uncertainty presented on a data
set. For example, noisy data from a nonlinear valve, given an add-1 triangular
partition of antecedents, produce the consequents depicted in figure 2. The reader
is referred to [16, 15] for details.

4.5 Control.

With respect to control, the formal methods make easier the task of designing
coherent rulebases and faithfully extracting the information from them in an expert
control environment.

In addition to that, if a fuzzy plant model is available, an easy way of dealing
with model-based controller design problems is the plant inversion. Based on the
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equivalent equations (if the process is stable, minimum-phase), the equations of the
fuzzy regulator are the same than those of the model, but in this case the regulator
infers u assuming the desired ouput e as a premise. With ambiguous models (in-
complete rulebases), the solution is the set of control actions that possibly produce
Yrof- Lhis is called the lower plant inverse [21]. To deal with the ambiguousness,
the control actions that necessarily produce an output inside [Yrof — 8, Yrof + 0] must
be calculated. Hence, instead of the inference just mentioned, the equivalent equa-
tions are used to find the complementary of the actions that produce an output
with nonzero possibility of laying outside the interval. This inverse is named upper
plant inverse. If model uncertainty is big, then the upper inverse might be empty:
the chosen output interval must be made wider.

In [15, 18] academic examples on feedback linearisation and sliding control
are presented, not described here due to space limitations. They apply the plant
inversion strategy just mentioned.

5 Conclusions

In this work, presentation and discussion of a number of current issues about
fuzzy logic applications in control have been made, as well as about their future
possibilities.

The combination of a “logic” approach with a “functional” one is necessary to
obtain results with greater “intelligence” with respect to, for example, multimodel
integration and knowledge acquisition supervision.

The conjunction of the two approximations to fuzzy control could give rise to
control systems with innovative features (several plant models with different preci-
sion, consistent combination of several knowledge sources, fault detection, advanced
learning combining structural and parametric modifications while preserving read-
ability, etc.).

After the motivation and discussion of the need of validation issues, a summary
of results in contradiction and redundancy and its use in control have been outlined,
with bibliography references for further details and examples.
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