Mathware & Soft Computing 6 (1999) 293-304

On The Global Stability of Takagi-Sugeno General
Model

F. Matfa, B.M. Al-Hadithi and A. Jiménez
DISAM
Universidad Politécnica de Madrid
J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
matia@disam.upm.es

Abstract

Global stability of Takagi-Sugeno (T-S) fuzzy model is presented. First,
stability conditions for T-S fuzzy model presented by Tanaka and Sugeno are
reviewed. Second, new theorems for the stability of the general form of T-S
model is derived in the sense of Lyapunov.

The T-S model we studied includes a linear equation with a constant para-
meter in the consequent part of each rule while other authors have analyzed
the model with no constant term, which does not represent a real system.
This in turn will impose restrictions on the stability conditions derived in
this field. An example is presented to illustrate the new suggested condition.
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1 Introduction

Recently, fuzzy control has gained wide popularity and has been applied in many
industrial applications. On the other hand, fuzzy control is still suffering from
the lack of analysis and stability techniques. Stability is considered one of the
important issues in the analysis and design of control systems. The difficulties
encountered in the analysis of stability of fuzzy systems are due to the nonlinearity
of such systems.

Several studies have been made to analyze the stability issue of T-S fuzzy model
(1], (2], 3], 141, [5], [6], [7], [9], [10], [11], [12], [13] and [14]. One of the most impor-
tant works is the one presented by Tanaka and Sugeno [13], in which a sufficient
condition which assures the stability of discrete fuzzy systems has been derived.
Kosko presented a continuous version of this stability criterion [7]. Tanaka and
Sano [12] have extended their study on stability analysis to robust control of fuzzy
systems in the presence of premise -parameter uncertainty using the same T-S
model.
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Tanaka and various others [11], [12], [13] and [14], have considered the linear
equation in the consequent part of each one, as being obtained by linearizing the
original system with respect to the origin. This means that the constant term is
zero which does not represent real systems.

The aim of this work is to derive sufficient stability conditions that take into
account the existence of the constant term in T-S fuzzy model. Section 2 presents
Takagi and Sugeno fuzzy model and the stability conditions derived for it. Section
3 shows the proposed new stability theorems derived in this paper for the general
form of Takagi and Sugeno fuzzy model. Section four gives an illustrative example

2 Takagi-Sugeno model

The model proposed by Takagi and Sugeno consists of a set of IF -THEN rules
where the consequent part is a linear function of the inputs. Its principal feature is
that it allows to model with high accuracy the original system’s dynamics around
the linearization points. Each rule R(1 ) has the form:

If is MY and & is MP ... y z* 1 is Mir
then % = altt-in) 4 Al-in)y L Bliin)y (1)

where M{' (iy = 1,2,...,7,) are fuzzy sets for x, M (iy = 1,2,...,73) fuzzy
sets for & y M (i, =1,2,...,7y,) fuzzy sets for " (figure 1).
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Figure 1: Generic Membership Functions

X is the state vector and u is the input vector, so the system is composed of
P17y ... 7y rules. Supposing that the A(1-#) matrix corresponds to the control-
lable canonical form in which x = f(,...,2), this will be given by:
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[ 0 1 0 0 1
0 0 1
: : - . 0 (2)
0 0 0 1
R I R el
while
0
(i1.in) _ : 3
ag 0 ) ( )
a(()zl...zn)
with
x'=[az & ... an '] (4)

If the input is zero, the final system output is obtained as:

ZZZI cee ZZ::I w(il...in)(a(()il...in) + A(il..,in)x)

x = Z;l:l ... 222:1 w(llzn)(x)
= ap(x)+ A(x)x )

being
Sy S ) () A ) ()

I =

ST S w ) (x)

aofoc) = Ztamt - Tty v Gag ) ) -
T X X e )

=1 D
(

Each consequent equation is a linear subsystem given by the expression all" win) o

Ay,

A(x) =

Theorem 1 Ifa(()il'“i”) =0, Viy..., iy, this means, x = At1-in)x then the
fuzzy system represented by (5) is asymptotically stable in the large if there exists
a positive definite P matriz, such that:

(A6 -20) TP PAGL-i) < g 8)

V i1,...,0n, this means, for all the subsystems.

See [7] and [11] for its proof. It is easy to observe that the previous theorem is
reduced to Lyapunov stability theorem for linear systems, when r,...,r, = 1.

Many papers have also analyzed the stability for discrete fuzzy systems [7], [11].
Tanaka and Sugeno have obtained a sufficient condition for stability of discrete
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fuzzy systems [13]. The analysis of stability for discrete fuzzy systems is of higher
complexity than the continuous ones. For example, the discrete fuzzy system may
be unstable, although all the linear subsystems are. This does not happen in the
continuous case, as it can be deduced from the previous theorem.

3 General stability theorem

In the previous Theorem, it was supposed that a(()il"'i") = 0. Nevertheless, a
non-linear system linearized in two different points (two rules) gives two linear
subsystems that, in general do not pass through the origin x = 0, as it is shown in

figure 2.

. 1
i=A'x+a,

a,' =0 %= Ax+a,

/ a,” #0

Figure 2: General Takagi-Sugeno Model

If only one rule is applied (just a linear system, non-fuzzy), we can use incre-
mental variables at the linearization point, so the ay term would dissapear. Never-
theless, this can not be done in a fuzzy system with several subsystems, because the
resultant incremental variables would also be different (because the linearization
ponits are different), so it would not be possible later to interpolate them (center
of gravity) to obtain the system output.

Now, a theorem for the general case in which a(()“"'l") # 0 is presented. In other
words, the stability for the general form of Takagi and Sugeno fuzzy model is under
consideration.

Theorem 2 The fuzzy system represented by

B(x)%x + x = by(x) 9)

where 1
Blit-in) — _ (A(i1~~in))7 (10)

b(()i1~~~in) — B(i1~~~in)a(()i1~~~in) (11)
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and in which all the linear subsystems are stable, is asymptotically stable in the
large if

{1 - dbd°—f‘)} B l(x) >0, Vx#£0 (12)

Proof. First, the matrix A% % corresponds to the controllable canonical from
z = f(&,... ,x(")), and is stable, so it is easy to prove that the inverse matrix
B1-in exists, and so B(x) also exists.

Taking as a Lyapunov function:

V(%) = [x — bo(x)]" [x — bo(x) (13)
this one verifies that
V(0)=0
Vi(x) >0, ¥x#0
and must satisfy that
V(0)=0
Vi(x) <0, ¥x#0

Taking the derivative V(x),

V(x) = 2x—be(x)]" {x - —x}

B !(x)[x —bo(x)] <0, ¥x#0 (14)
And this is true if [I . ‘“°d—,§x>} Bl(x) >0, Vx#0.

A more specific theorem follows.

Theorem 3 The fuzzy system represented by Takagi-Sugeno general model (9),
is asymptoticaly stable if Va:gllfl) < gD < J:Ellﬁ), Vip = {L,...,m — 1}, VI =
{1,...n}, the following polynomials correspond to stable linear systems:

t1+1j2...Jn i1J2.-Fn
1 — bO B bO A"
Lip+1 — Ty

o plrtetlis.dn _ piriads...gn
4 bJ1~~~Jn _ 2o 0 )\nfl
1

Lig+1 — Lig




298 F. Matia, B.M. A-Hadithi & A. Jiménez

+ ...+
o pitedn—tintl _ pitegn-tin
J1..-Jn _ 20 0
+ (bnl D (D) A
int1 in
+ =0 Vi ={i,i+1} (15)

Proof. By simplifying Theorem 2. {I — %} B~ 1(x) is the product of matrices:

[ 1 — 2% _ 8% __9b __ 7
Fors D e e o CEy)
0 1 0
' (16)
0
i 0 0 1 ]
and
r 0 -1 0 0 T
: oo 0 (17)
0 eee ... 0 -1
1 b1(x) by 1(%)
L 0™ b T Tha(x) A

and, so [I — %} B 1(x) = E(x) may be expressed as

[er(x) ea(x) ... .. oo en(x) T
0 0 -1 0 ... 0
‘ (18)
0 . 0 -1
1 by (x) bn—1(x)
L b,(x) by (x) bn(x) 4
with
(%) = k]
dbo(x b1(x) 9bo(x
ealx) = (T 1) - 2E IR 19)
Dbo(x bn_1(x) Obo(x
en(x) = &r&(— 2)> - bn(l,(c)) am&(— 1)>

In order to obtain a positive definite F(x) matrix, the real part of the roots of
|)\I — (—E’l(x))| = 0, which are the same as those of |[AE(x) + 1| = 0, must be
strictly negative Vx. The determinant |AE(x) + I| may be calculated as
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L+ 2der(x) Aea(x) oo ool ... ey (%)
0 1 - 0 ... 0
) (20)
0 .. T | —-A
A by (x) bn—1(x)
ey )\bi(x) T bn(lx)
which is equal to
b n 3b n—
(1—Zo)\n + (bl( )-SR+ (21)

+ (ba- () - m)A+b()

Such a polynomial must have roots with negative real parts. For example, for
n=3, F(x) may be written as

1 9b Pho _q_ bidbe Dho _ by dbo
b3 8:13 Ox b3 o ox b3 BE

0 1 1 (22)
1 o b2

bs bs b3

so |[AB(x) + I| becomes

X Ob b, by Ob b bo Ob
1= 2% A(P-1-p%) A (Z-p%)
0 1 —A (23)
A b b
s )\i 1+)\ﬁ

+ (bg(x) - %> A+ by(x) (24)

whose roots must have negative real part. Anyway, triangular membership
functions have been supposed, which verify that Z;’Zl Hoagin (z(=1D) = 1. In [8] the
1

authors have proved that

i1=1 in=1
Z Z H/L (V) =1 (25)
i1=1 in=11=1

SO
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bo(X) = Z .. Z HNM;l (x(lfl))boil...in (26)
i1=1  dp=1i=1
or even

bo(x)=> ... Z H/L (z(- V)i (27)

i1=1 in=11=1

And, taking into account that the membership functions overlap by pairs:

b(x)= > .Y H/L (2 DypIn (28)

J1=t1,41+1 Jn=tn,tn+11=1
(-1) (1-1) (-1)
inl <z <y

Vip={1,...,m}, WVI={1,...,n}
Finally, taking the derivative of the previous expression, it may be obtained

81)0 (x) as
B (m—1)

DY

J1=t1,01+1 i int1

Oty (1)) 1 -

WHM\@ (z(=Dyplr--dn
=1

- Y .. ¥ 3

J1=t1,i1+1 Im—1%m—1,tm—1T1 Jm4t1=%m+1,im+1+1

aﬂMim (x(mfl))bgl < Fm—1tmIm---Jn

Z = ax(mfl)

Jn=tn,in+1
a ) (m—1) bj1~~~jmfl7;m+1jm+l~“jn
/LM;;"“ (.’L‘ ) 0

OHx(m—1)

ﬁﬂMljl (1)
Y .Y

Ji=t1,t1+1 Fm—1=tm—1,4m—1+1

D

Fm+1=tm+1,tm+1+1 In=tn,in+1
bjl cFm—1tm A 1imi1.Jn bjl o Jm—1tmImt1--Jn
0 0

(m 1) (mfl)
zm+1 im

n

HNMIJ'! (1) (29)

=1
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Taking into account (28) and (29), equation (21) becomes Va:( D <1 <
20 i = {1, ) Y= {1, 0}

i14+1 in+l n
2 2 Ik @)
Ji=t1 In=in l=1

t1+1j2...Jn i1f2---n
1 — bO B bO A"
Liy+1— Ty

o plrtetlis.dn _ piriads...gn
+ lel~~~Jn _ Yo i '0 )\nfl +

Liz+1 — iy
o bj1~“jn71in+1 bj1~~~jn—1in
J1.-Jn _ 20 0
+ (bnl (n 1) (nfl) A
7fn+1 in
+ ] =0 (30)

Vi = {1, 4+ 1}
So it must be satisfied that the real part of the roots of

patlie-gn _ pirje...jn
1- -2 0 pUE
Tiy41 — Liy

o piriztlis.gn _ pirizfa...jn
lel~~~Jn _ 20 ‘0 )\nfl +

Lig+1 — Liy

o pitedn—tintl _ pitegn—tin
+ piLdn 0 0 A
n—1 (n—1) (n—1)
€T — T
in+1 in

. . . . . _ 1-1) (-1
is strictly negative. Finally, note that if (=1 ¢ [xg U

y Ty, } for some | =

{1,...,n} (this means that x is outside the universe of discourse), the system is
stable, provided that all the subsystems BJ1--Ji-1lit+1--dn gpnd B --di-17ifit1-dn gre
stable.

4 Example

Let us analyze the stability of a fuzzy system given by

R' : If (wis M) then i +x=—2
R* ¢ If (wis M7) then & +x =2 (32)
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Figure 3: Membership Functions

It is easy to identify that B! = B2 = 1 and by' = —2, bo? = 2. Figure 3 shows
the membership functions for the rules conditions.
The parameters of the fuzzy system may be obtained as follows:

21'21:1 w* (x)B" (x)

B(x) 3 i
Zh:l wh (X)
_ 0.5(1 —2)(1) +0.5(1 +2)(1)
- 0.5(1 — ) +0.5(1 4 )
=1
bo(x) = i 1w (x)bo (x)

i W (%)
0.5(1 —2)(—2) +0.5(1 +x)(2)
0.5(1 —x) +0.5(1 + )
= 2 (33)

It should be observed that bg(0) = 0.

Both linear subsystems are stable, because B1' and B1? are positive definite.
According to the results obtained in [7] and [11] (Theorem 1), the fuzzy system
should be asymptotically stable in the large, because there exists a positive definite

matrix P, such that Vi, (Ail)TP +PA" < 0. f P =X=1is chosen,

(A")'P+PA" = [(B") ] "popBH)
1 1
= m(l) + T)(_l)
= —-1<0 (34)

Nevertheless, the resultant fuzzy system is unstable. In fact, it can be verified
that the asymptotic stability in the large can not be guarranteed, by applying
Theorem 2:

{1 - ‘“’;—f‘)} B (x) = (1—2)

=] =

— 1 (35)
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which is not strictly possitive V& # 0.
Nevertheless, to apply this theorem, we need to obtain an explicit expression
for B(x). By doing so, the fuzzy system can be rewritten as:

Bx)x+x=bo(x) & t4+2=20 © £—2=0 (36)

which is clearly an unstable system.

It is more useful to apply Theorem 3. It must be verified that

Vi, <x < @y,41, Yy = {1,...,m1 — 1}, the following polynomials correspond
to stable linear systems:

Lig+1 — iy

bi1+1 _bil .
1-2 9 A+ =0 VY ={i,i +1} (37)

This means, the stability of the following polynomials should be analyzed:

b2 _ bl
(1—M>A+ b =0 (38)

T2 — X1

2 _ 31
(1—M>A+ =0 (39)

To — I

which become

“A+1=0 (40)
—-A4+1=0 (41)

Both polynomials are unstable, so the asymptotic stability of the fuzzy system
can not be verified.

5 Conclusion

Further steps towards the stability analysis of continuous fuzzy systems based on
Takagi-Sugeno model have been presented in this work.

The solution presented corresponds to a realistic model, in which constant term
in the rules consequent part exists. Furthermore, the application of the presented
theorems is easy, as has been shown by an example.
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