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Abstract

Firstly we present a geometric interpretation of interval-valued fuzzy sets.
Secondly, we apply the method of least squares to the fuzzy inference rules
when working with these sets. We begin approximating the lower and upper
extremes of the membership intervals to axb type functions by means of the
method of least squares. Then we analyze a technique for evaluating the
conclusion of the generalized modus ponens and we verify the fulfillment of
Fukami and alumni axioms [9].
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1 Introduction

Approximate reasoning is, informally speaking, as I.B. Turksen says in [21], the
process or processes by which it is possible to deduce an imprecise conclusion from
a collection of imprecise premises. The classic modus ponens is expressed by:
A— B
A
B
This means that if,
A implies B and A is true, then
B is also true.
This line of reasoning was extended to fuzzy reasoning by L.A. Zadeh [26, 27]
as follows:
The implication A — B is replaced by the fuzzy inference rule:
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If xis A theny is B

Where A and B are fuzzy sets. A on a universe of discourse X and B on a
universe of discourse Y, x is a variable that takes values in X, and y is a variable
that takes values in Y. The fuzzy rule represents the existing relation between the
variables z and y.

In the same fashion, the premise A is replaced by the fuzzy premise: x is A’
where A’ is a fuzzy set on a universe of discourse X, expressing the knowledge we
have of the value .

Combining the rule and the premise, it is possible to deduce new information,
writing: y is B’, where B’ is a fuzzy set on the universe of discourse Y.

From the modus ponens and using the fuzzy set theory we can obtain rep-
resentations of the imprecisions inherent to the human language. This way, the
generalized modus ponens (GMP) was introduced in order to obtain a conclusion
when starting from fuzzy premises. These rules can be expressed as follows:

If zis A then y is B
xis A'
yis B’ (GMP)

The main advantage to this extension to fuzzy reasoning is that we can deduce
new information, even when the membership is not exactly identical to the rule
is condition or when the information we are considering is not exact. It is known
that in the (GMP) when A’ = A, then the generalized modus ponens is reduced to
the case of the classic modus ponens.

Different methods have been suggested by authors such as Zadeh [26, 27], Fukami
[9] Mizumoto and Zimmermann [12,13], Ezawa and Kandel [8], for the study of the
rules of fuzzy inference. In 1980 Fukami and alumni [9, 7] suggested the following
set of axioms for the generalized modus ponens:

(F1) I A’ = A, then B’ = B; (coincidence with classical modus ponens)
(i) If A’ = A2, then B'=B
(F2) Either or
(i) If A’ = A2, then B' = B?
(F3) If A' = A%, then B’ = B7;
(1) If A= A, then B'=Y
(F4) Either or
(if) It A’ = A., then B' = B..

where Ac is the complementary of A.

Almost simultaneously, Baldwin and Bilsworth [2] established another set of six
axioms for the GMP, some of them in complete contradiction with those demanded
by Fukami and alumni. For example Baldwin and Pilsworth demand that B’ > B,
something impossible if (£2)(ii) is demanded at the same time. These contradic-
tions arise because Baldwin and Pilsworth carry out studies that are led by classic
logic, while Fukami and al. focus their studies on the conservation of the linguistic

labels.
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In this paper we are going to study the generalized modus ponens using interval-
valued fuzzy sets and following a reasoning different from the one used by the
above-mentioned authors [8,9,12, 13].

Our method is based on the ideas established by J.F. Baldwin [1,2] A. Nafarie

[14] Gorzalczany [10], etc- - - which can be summarized in the two following steps:
1) First relate A with A’

2) Construct the consequence B’ using the result of the comparison above and

B.

2 Interval-valued fuzzy sets

In this section we will recall the notion of interval-valued fuzzy set or ®-fuzzy set
introduced by L.A. Zadeh [26,27] and R. Sambuc [19]. We begin presenting the
notation we are going to use.

D|0,1] will stand for the set of all the closed subintervals of the interval [0, 1];
the elements of this set well be represented by capitals M, N,--- it is known that
M = [My,, My] where Mj, and My are the lower and upper extreme respectively.
Wi = My — My, will represent the amplitude of the interval M. We will say
that M < N if My, < Ny and M, < Ny, this relation is transitive, reflexive,
and antisymmetric and expresses that M is contained in IV, that is, for each point
x € M there is a point ¥ € N such that y > z. It is necessary to note that in
interval-valued fuzzy set literature there have been other orders [4,11,16,19] as
well, however the relation we present herein is the most common and it is the one
will use hereinafter in the rest of the paper.

We know that [4] M = N if and only if My, = Ny, and M,, = Ny. We will call
the complimentary of M, ¢(M) = M, that is, ¢c(M) = [¢(My), c(ML)], ¢ being any
fuzzy complementation.

Let X # 0 a given set. [3,4,...... | An interval-valued fuzzy set in X is an
expression A given by:

A={<z,Ms(z)> |z e X}

where the function My : X — D[0,1]
7 — Ma(®) = Mz (2), Mao (2]
defines the degree of membership of an element x to set A.

IVFESs(X) will represent the set of all interval-valued fuzzy sets on X. We
should insist on the fact that we will always take finite and not empty X, so that
Cardinal(X) = n.

We will say that an interval-valued fuzzy set A is normal if there is at least one
x € X such that M4 (z) = [L,1].

The following expressions are defined in [3,4] for all A,B € IVFSs(X)

1. A< Bifand only if M4p(z) < Mpr(z) and Map(z) < Mpy(z) Yoz € X
2. B= Ailand only if Map(z) < Mpp(z) and May(z) > Mpy(z) forallz € X
3. AC Bif and only if Map(z) < Mpp(z) Ve € X
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4. A= Bif and only if Map(z) = Mpp(z) and My (z) = Mpy(x) Ve € X
5. Ac = {< x,c(Ma(x)) > |v € X} = {< 2, [c(Mav(x)),c(Mar(x))] > |x € X}
Besides, in [4] the following theorem is proved:

Theorem 1. [4] Let 8 and « be t-norm and t-conorm respectively, we define
B(A, B) = {< 2, [8(Maz (), M (), 8(Maz (), Moo (@) > |z € X}
a(A, B) = {< o, [a(Maz(t), Ma(2)),a( M (@), Maw(w))] > |o € X}

for all A, B € IVFSs. Then, it is verified that:

a) If 8= A and a = V then {IVFS(X),A,V} is a distributive lattice,which is
bounded, not complemented and satifies Morgan’s laws.
b) For any 8 and « (o dual of 3) , the conmutative, associative properties and

B(A¢, Be) = (a(A, B))e, aAc, Be) = (8(A, B)).. are satisfied.

3 Geometric interpretation

In figure 1 we present a geometric interpretation of the notion of interval-valued
fuzzy sets. Basically it means the following. Since the lower extreme, the upper
extreme and the amplitude of all of the intervals are [0, 1] numbers, we can imagine
a unit cube with its three axis given by these parameters.

w
B(0,1,1)
0,00y
1 ML
A(1L1,0)
My
co,0) .
1 ML
L
-
B{D0,1)
A(L1)
My

Figure 1
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Since My (z) < My(z) and W(z) = My (z) — My (z) for all z € X, the values
of the parameters characterize an interval-valued fuzzy set so that the values the
membership functions take are points of the triangle ACB. Thus an interval-valued
fuzzy set can be interpreted as a mapping that goes from X to the triangle ACB
so that each element of X has a corresponding element in the triangle ACB. For
example, a * € X has a corresponding z' € ACB point characterized by these
three values (M (x), My (z), W(x)).

When W(z) = 0 then My (z) = My(x), in figure 1 this condition is represented
in the segment CA. Therefore, the segment CA can be considered the representation
of the fuzzy sets.

The orthogonal projection of the triangle ACB gives us the representation of a
interval-valued fuzzy set on a drawing, such that in this drawing the interior of the
triangle ACB is the area where W > 0.

4 Method of least squares applied to interval-valued
fuzzy sets

In this section we present a method for obtaining the conclusion of the GMP
when we are working with interval-valued fuzzy sets and we apply the method of
least squares in order to, on the one hand approximate the lower extremes of the
membership functions to a12® type functions, and on the other, approximate the
upper extremes to the same type of functions.

Since T.C. Chang, K. Hasegawa and C. W. Ibbs. [6], for convenience, we take
the universes of discourse as follows:

1) X = {xla"'vxn}v Y = {yla"'aym}
2) z,y;,€ (0,1 foralli=1,---,n, j=1,---,m,
3) x; < @iy, and y; < y;yq for all ¢,

L.A. Zadeh [24] presented the operators very, greater than, less than, more, less,
ete: - - expressed in terms of the membership functions, and so associated numerical
values to them, which allowed to work in an easier way.

From these considerations we present the following method for obtaining the
conclusion of the GMP when we work with interval-valued fuzzy sets.

(1) By means of the method of least squares, approximate the lower extremes of
the membership intervals to set A to functions of type a1z?', so that we can
write: M5, (x) = aya®.

(i1) To do the same as the item above with the lower extremes of the membership
intervals to set A’, that is, Mz, (z) = ajz.

(i) Take z (/)f M, = a;a® and substitute in M;,, = ajz®, that is, M4, =

/ ah
aéﬁ_ MEL, (with by # 0).
al b1
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b/
(iv) Build fuzzy set A; = {< y, M, (y) = min(1, —;—ME,L( ) > lye Y}

171

(v) Repeat the four steps above for the upper extreme so that:
, by
Ay = {< y, My, (y) = min(1, =2~ Mz2,(y)) > [y € Y}.

ag V2

(vi) Build conclusion B’ as follows:
= {<y, Mp/(y) = [min(My, (), Ma, (y)), max(Ma, (v), M4, (y))] > [y € Y}.

We carry out the approximation indicated in item (i) by resolving the following
algebraic equations:

nLna1 + (Z lIl.’L‘i)bl = Z LHMAL(.’L‘i)

(1)
(Z Lnz;)Lnay + (Z Ln® x)by = Z Loz, InMag (z;)

i=

obtained from taking logarithms in the expression Mar(z;) = alx ! and applying
the method of least squares. In the construction of equations (1) we do not take
into account elements like Mar(x;) = 0, that is, these elements are ignored in
order to obtain the systems of linear algebraic equations (1).

Theorem 2. Let p € RT U {0} and let A € IVFSs(X). In the conditions above,
(of the siz item method), if A’ = AP, then B’ = BP.
Proof Let A’, A € IVFSs(X) we will represent as M, (z;) = a122* and M, (z;) =

alx; % the approximations obtained of the lower extremes by the method of least
squares when we approximate to functions of the type az®. From (7) we deduce
that:

nLna) + (zn: Lnx;)b] = ZLnMA/L x;) ZLHMAL ;) PZLHMAL(%)

i=1 i=1 i=1 i=1

= anna1 + p(z ani)bl (8)

i=1

(Z Lna;)Lna) + (Z Ln?a;)b,

ZLnlenMA/L ) ZLnlenMAL ;) pZLnlenMAL (z:) =

i=1 i=1

ZLH% )Lnay +p ZLn x;)b ). Solving in (8) we have
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, (20 Lnzi)(p- by —bY)
LnOL—1 ==
ab

n

n 7 n ’
from (9) we have (3 Lnz;)LnZ = (3 Ln?z;)(p - by — b)), substituting Ln& in
i=1 ! i=1
n n
this expression and taking into account that (3 Lnz;)? —n(>] Ln?z;)# 0, we have
i=1 i=1

b} a} a} a?
by =p-b; and a] = o}, therefore 3 =p and =g =F= 1.
al

The upper extremes are proven in a similar way. [

The importance of the theorem is made clear in the following particular cases:

(a) I A’ = A, then B’ = B.

(b) If A’ = A2, then B' = B2

(c) If A= A2 then B' = B'/2,

(d) If A’ = A%, then B' = B*.

Where

A = {< 0, Mya(a) = M3, (w), M3y ()] > | € X}

AY2 = {< 2, My () = [MY7 (), My ()] > o € X}

At =<z, Maa(z) = [M%, (z), M4 (2)] > |z € X}.

The mechanism of inference we present in the 6 items above has the following
two advantages:

1) It can be applied when the membership {unctions in the premises are char-
acterized by the intervals whose extremes represent the fuzzy linguistic oper-

ators as defined by L.A. Zadeh.

2) The mathematical operations for the GMP are simple and appropriate for
implementation.

5 Conclusions and future research

Besides the geometric interpretation of the interval-valued fuzzy sets, in this paper
it is made clear that the method that we develop for obtaining the conclusion of
the GMP when using interval-valued fuzzy sets gives good results when applied to
the linguistic labels just as they were introduced by L.A. Zadeh in [24].

Besides, with this method the axioms (F1), (F2) and (F3) of Fukami and alumni
are satisfied, not satisfying (F4).

The reason for which (F4) is not satisfied is due to the fact that with IVFSs
total ignorance is obtained when the membership interval of every element of the
set is always [0, 1], and evidently, these intervals do not always coincide with the
complementary just as we have defined it in section 2.

It is necessary to note that it is not always advisable to use the method we
present for obtaining the conclusion of the GMP, because being the functions a;z%
monotonous, it can occur that the lower extremes My (x) or the upper extremes
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My () could not be monotonous. For example, My, (x) can be of the medium type
and then the approximation of My () to functions of type a1z is not advisable.

We conclude by saying that the fact that working with interval-valued fuzzy
sets and not working with fuzzy sets does not lessen generality to the developments
made in this paper but rather the contrary, since everything exposed here is also
valid for fuzzy sets by just taking intervals with 0 amplitude.

It is evident that the method presented in Section 4 is based on the functional
relations, thus, it is necessary to indicate that our future research will be focused
on obtaining the conclusion of the GMP when we are working:

a) with interval-valued fuzzy sets and,
b) when the input-output relation is defined by one of the classic implication op-
erators in fuzzy literature.

Evidently, next we will have to compare the results obtained in this paper
(relative to the conservation of the linguistic labels) with the results we obtain
when we do not use functional relations between the sets, but implication operators
instead.
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