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Abstract

We study the determination of weights for two types of aggregation op-
erators: the weighted mean and the OWA operator. We assume that there
is at our disposal a set of examples for which the outcome of the aggregation
operator is known. In the case of the OWA operator, we compare the results
obtained by our method with another one in the literature. We show that
the optimal weighting vector is reached with less cost.
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1 Introduction

Aggregation operators are used nowadays in several applications in Artificial In-
telligence to combine information from different information sources (opinions of
experts, data {rom sensors, results {rom computational systems). We find their
implementation in several systems. For example: vision [Lépez et al., 1994], ro-
botics [Lépez de Méntaras et al., 1997], knowledge based systems [Torra et al.,
1995]. Some examples of well known aggregation methods are the weighted mean
(characterized in [Aczél, 1984, Aczél et al., 1986]), the OWA operator (defined in
[Yager, 1993, 1988] and characterized in [Fodor et al., 1995]) and the Choquet inte-
gral (see [Grabisch et al., 1995, Fodor et al., 1994] for a review of {uzzy integrals).
See [Grabisch et al., 1995, Torra, 1998] for a review of some aggregation operators.

Although these operators have already been used in several applications, in
order to apply them to new problems users have to fix the parameters that are
associated with each of the methods. For example, to use a weighted mean or
an OWA operator the user has to settle the weights of each information source;
and to use a Choquet integral the definition of a fuzzy measure is required. The
determination of these weights is usually done in an heuristic way (after trial and
error) or asking an expert to supply them.
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In this work we present a solution to this problem based on a machine learning
approach and using optimization techniques. We assume that there is a set of
examples at our disposal, and that we are interested in learning a model once the
aggregation operator has already been decided. For us, an example consists on a
set of values corresponding to the values supplied by information sources (the input
values) and the resulting value after the aggregation (the output value). Learning
the model consists on determining the parameters to be used in the aggregation
function. For example, in the case of the weighted mean, finding the model consists
on determining the weights of each information source.

In this work we consider the learning of weights for several aggregation opera-
tors. We consider the weighted mean and the OWA operator. We also give some
comments on the process of learning the weights for the WOWA operator although
no example is provided in this case.

The structure of this work is as follows. In Section 2 we review the aggregation
operators that are used in the rest of the work. Section 3 discusses the formal
aspects related to weight learning and Section 4 describes some examples. The
article finishes in Section 5 with the conclusions.

2 Preliminaries

We define below the aggregation functions that we consider in this work: the
weighted mean (studied and characterized in [Aczél, 1984, Aczél et al., 1986]), the
OWA (Ordered Weighting Averaging) operator defined in [Yager, 1993, 1988]), and
the WOWA (Weighted OWA) operator.

Definition 1. A vector v=[vy vy .... vy is a weighting vector of dimension n if
and only if
Vi € [0, 1] Yivi=1

Definition 2. Let p be a weighting vector of dimension n, then a mapping WM:
R" — R is a weighted mean of dimension n if WM, (a,...,an) = %i pi a.

Definition 3 [Yager, 1988, 1993]. Let w be a weighting vector of dimension n, then
a mapping OWA,,;: R" — R is an Ordered Weighted Averaging (OWA) operator of
dimension n if

OWAW(al, ...,an) = Ziwiag(i)

where {o(1),...,0(n)} is a permutation of {1,...n} such that a,;_1) > a,@ for all
i=2, ..., n. (i.e., a,(j) is the i-th largest element in the collection ay,..., a).

As these definitions underline, both operators are linear combination of the val-
ues according to a set of weights. Their difference is the fact that in the case of
the OWA operator an ordering of the values is performed prior to the combina-
tion. This difference forces a different meaning between the two functions. On one
hand, the weighted mean allows the system to compute an aggregate value from
the ones corresponding to several sources taking into account the reliability of each
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information source. This corresponds to measure the importance of information
sources. Alternatively, the OWA operator permits of weighting the values in re-
lation to their ordering. This corresponds to give importance to values instead of
sources. See [Torra, 1997] for a detailed comparison of both aggregation functions.

In [Torra, 1997] it was defined the WOWA (Weighted OWA) operator. It is
an aggregation function that allows to consider the two kind of weights introduced
above (importance of sources and importance of values). This is, the weights
corresponding to the weighted mean and the weights corresponding to the OWA
operator.

Definition 4. Let p and w be two weighting vectors of dimension n, then a
mapping WOWA:R® — R is a Weighted Ordered Weighted Averaging (WOWA)

operator of dimension n if
WOWA, (a1, ...,an) = Yiwiae)

where {0(1),...,0(n)} is a permutation of {1,...n} such that a,;_1)>a,¢) for all
i=2, ..., n. (ie., ay(j) is the i-th largest element in the collection ay,..., an ), and the
weight wj is defined as

wi =W (Zj<iPo()) — W (Bj<iPoj))

with w* a monotone increasing function that interpolates the points (i/n, ¥j<; w;j)
together with the point (0,0). The function w* is required to be a straight line when
the points can be interpolated in this way. One interpolation method suitable for
building the function w* is described in [Torra, 1999]. From now on, w represent
the set of weights {w;}, Le., w = [w1, ..., wn].

3 Learning weights from examples

In this section we study the process of learning the weights of the aggregation
operators described in the previous section. We consider a set of examples, each
consisting on a set of values to aggregate and the outcome of the aggregation. From
now on, we assume that the number of examples at our disposal is M and that the
dimension of the weighted mean is settled to N. This latter condition means that
we consider examples where the number of information sources (the number of
criteria or elements) to combine is N. According to this, and as for each example
we assume that an approximate value of the outcome of the aggregation function
is known, the structure of the examples is the one given in Table 1. In this table,
al corresponds to the value supplied by the j-th source in the i-th example; and m!

i
corresponds to the outcome of the i-th example.

1 1 1

1 1
a% a% ag a2N | m2
al a3 a3 .. ay | m
M .M M M M
at ay a! .. oall | m

Table 1. Data examples
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3.1 Learning weights in the weighted mean

To find the adequate set of weights, we need to formalize this definition. To do so,
we define the best model as the one that minimizes the accumulated distance for
all examples, using as a distance the squared difference (i.e., distance(x,y)=(x-y)?).
Under this condition, we have that the best model is the one that minimizes:

D) = (Zaépi - mj) (1

Using the Euclidean norm ||x|| = /(x'x), we can express D(p) alternatively as
D(p)= ||[H p - d ||*. Here H stands for the set of measurements obtained from the
information sources, this is H:{a{}, and d stands for the “ideal” solutions that
should give the system. This is, d=(m!, ..., m™). Note also that we use A’ to
denote the transpose of A. To obtain a solution we have to minimize this distance.
This corresponds to the method of linear least squares [Stoer et al., 1980).

However, expressing the distance in this way and minimizing it is not enough
to get a correct weighting vector. We have to minimize this expression, but in
order that the solution p is a weighting vector, we need weights p; to be positive
and add to one. These two conditions can be included in the problem resulting a
minimization problem with constraints:

Min D(p) @)
such that
N
dopi=1 (3)
i=1
pi > 0 for all i (4)

Using the expression D(p) = |[Hp-d ||? = (Hp- d)(H p - d) and the fact that
this expression gets its minimum when we have the minimum of (1/2) p H’ H p
- H’ d p, we can reformulate this problem in the following way (where Q = H’ H
and ¢ = - H’ d).

Min (0.5)p'Qp +¢'p (2)

such that

Zpi =1 (3)
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pi > 0 for all i (4)

The problem formulated in this way is a typical optimization problem: a
quadratic program with inequality constraints. There exists several algorithms
to solve this problem (see, for example, [Luenberger, 1973, Gill et al., 1981]). In
particular, it can also be solved using active set methods.

These methods exploit the fact that the computation of the solution of quadratic
problems with linear equality constraints is simple. Active set methods are iterative
ones in which at each step inequality constraints are partitioned into two groups:
those that are to be treated as active (they are considered as equality constraints)
and inactive (they are essentially ignored). Once the partition is known, the al-
gorithm proceeds moving on the surface defined by the working set of constraints
(the set of active constraints) to an improved point. In this movement some con-
straints are added to the working set and some other ones are removed. Then, the
algorithm computes a new movement on the surface. This process is repeated until
the minimum is reached.

In our case, inequality constraints are the ones that restrict the weights to be
positive. According to this, when the restriction corresponding to the weight p; is
active the weight is forced to be zero. Instead, when a restriction is not active the
value of the corresponding weight is not restricted. Thus, at a certain step, the
working set is defined by the initial equality constraint (all weights add to one) and
the active ones.

Assuming that at the k-th step, px is a non-optimal solution found in the
previous step, the movement on the surface described above consists on modifying
Pk so that better approximation (more minimal than the previous one) is obtained.
This is, at time k a vector dy is computed that corresponds to the step to perform
from the last solution px. As, we do not want to violate the constraints in the
working set when we compute pgi1= px + dx we require that dy does not modify
the constraints and thus >d; = 0. So, we require that all equality constraints in
the working set are zero.

The vector dy is obtained as the solution of the following optimization problems:

minimize (1/2)d} Qdy, + gp dx
subject to aldy =0 for all i € Wy.

where gi=c + Q px and a’; are the coeflicients of equality constraints in the working
set Wi.

This problem can be solved with the following system of linear equations [Lu-
enberger, 1973]:

Qdk +A,)\ —gk
Ady = 0 (5)

where X\ are the Lagrange multipliers, and A is the matrix formed with all the
coefficients of the active constraints.

To complete the method we need to determine the procedures for adding a
constraint to the working set and to remove a constraint. Both aspects are given
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below in a version of the whole algorithm. The algorithm needs an initial weighting
vector that satisfies all the constraints. This is easy to find as p=(1/n, .., 1/n),
being n the number of weights, can be used.

procedure Learning_\Weights_ WM
(p: weighting vector,
Q: quadratic matrix,
¢. vector) returns weighting vector is

beqin
k=0; px = p;
W, = the equality constraint corresponding to have a=(1, ..., 1);
exit ;= false;
while not exit do
gk = C+ Q py;
compute di, and X (lagrange multipliers) as a solution of:
minimize (1/2) d. Q di. + g’ dy
subject to a’; di, = 0 for all i € W;..
if dic 0 then
ax = min {1, min{ (b; - a’; p)/(a@; dy) // a’; dx > 0}};
Pr+1 = Pi + ax di;
if a; < 1then
- -add restriction (the equality constraint) corresponding to p,, =0
Wy 1= Wy + the restriction of the minimizing index of «;
check-lagrange = false;
else check-lagrange := true;
end if;
else
check-lagrange := true;
end if;
if check-lagrange then
)\q = min {)\1 lieln Wk},
if A,=0 then exit:=true,
else
- - drop restriction (equality constraint) corresponding to g-th weight
Wy 1 = Wy - the g-th weight restriction;
end if;
end if;
k:=k+1;
end while;

—_—

return py;
end procedure;
3.2 Aspects related to the optimization problem

When applying optimization methods to learn weights from examples, we are as-
suming that the problem to minimize has either a single solution or all the solutions
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are equally adequate for the problem. Moreover, several optimization methods, as
the ones based on active sets, assume that the matrix @ that define the problem
is nonsingular (a square matrix whose columns are linearly independent). As both
aspects are not always true in relation to the process of learning weights for an
arithmetic mean we consider them in more detail:

1. All solutions (weighting vectors) are not equally adequate.

This is so because usually we have that information sources (experts or sensors)
are redundant. In this case, several different solutions with the same D(p) can be
obtained. In this case, it is better to distribute weights among all the sources
than to have the weights accumulated in a single information source. If p;=(0.5,
0.5) and p2=(0,1) and D(p;)=D(p2) then pl is a better solution because the final
aggregated value would be less influenced by the error of a single source. In other
words, it is always preferable that the weights are as much distributed (or dispersed)
as possible.

2. Quadratic problems can have singular matrices.

In general, if we have redundant information sources, we have that the output
of some of them can be deduced from the values given by some of the other sources.
In this case, the matrix Q is singular. We will study this case with more detail
below.

In relation to the singularity of matrix Q, we can state the following:

1. If the columns of H are linearly independent, then the matrix Q = H'H is
nonsingular (see e.g., [Stoer et al., 1980]). In this case, the least squares problem
has a single solution. When, we combine this minimization problem with the
restrictions, there is still a single best solution. Linear systems used in active set
methods to solve the minimization problem have single solutions and are solved
using a non-singular matrix.

2. When the matrix H has columns that are linealy dependent, then Q is singular.
However, some problems have single solutions.

We establish these results in the following propositions. We begin considering
the case in which the columns in H are linearly independent.

Proposition 1 [Luenberger, 1973, p.424]. Tet Q and A be n * n and m * n
matrices, respectively. Suppose that A has rank m and that Q is positive definite
on the subspace M = {x: A x = 0}. Then the matrix

(4 0)

Proposition 2. Tet H, the examples, be a matrix of dimension M * N (number
of examples * number of columns). In this case, if the columns of H are linearly
independent, there is a single weighting vector p that minimizes the distance D(p).

is nonsingular.
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Proof. First of all, the matrix Q = H'H is nonsingular [Stoer et al., 1980], definite
positive and of rank N. Second, for all working set W with M<N equations, its
corresponding matrix A of dimension M*N is of rank M. Then, using what it is
stated in proposition 1, there is a single solution for the system (5) at each step.
As it is not possible to obtain for two working sets, two minimal solutions with
the same D(p) (unless it is the same p) the solution is unique. Note that as the
optimization problem is convex, two different minimal solutions would define a
convex surface and thus some systems (5) would not have a single solution. |

Therefore, when there are no columns in H that are linear combinations, there
is a single solution of the minimization problem. We consider now the case in which
there are columns in H that are linearly dependent.

Proposition 3. If there is a column k in H that is a linear combination of the
other ones in H, then the matrix Q = H'H has column k and row k (note that Q is
simmetric) that are linear combinations of the other ones, also, the vectors c=-H’d
and gp=c+Q pi have the k-th element that is a linear combination of the other
ones.

In this case, the minimization problem subject to constraints can have several
solutions with the same minimization value. This is the case when the column ¢y
is a linear combination of other columns in such a way that

Ck = E Q5 Gy

itk

with >~ o5 = 1 for o5 >0.
In this case, although there are several solutions, the following proposition holds.

Proposition 4. If there is a column ¢, in H that is a linear combination of the
other columns ¢; in such a way that:

Cx = E Q5 C

ik

with >, o5 = 1 for o5 > 0, then if the vector p is a solution of the minimization of
D(p) with p such that (3) and (4) hold and py #0, then there is, at least, another
vector p’ such that D(p’)=D(p) such that (3) and (4) also hold.

Proof. The weighting vector p’ defined by p’; = p; + ; py for all i#k, and p’,=0
is such that D(p’)=D(p). Note that, as > a; = 1, it holds Y .p’s = 1 and p; >0.
Therefore p’ is a weighting vector. Using the results stated in the last proposition
it is straightforward to prove D(p)=D(p’). O

This proposition implies that we can eliminate the k-th column in the matrix
H, and solve the minimization problem without it. The minimal D(p) will be the
same.
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Proposition 5. If there is a column ¢ in H that is a linear combination of the
other columns ¢; in such a way that:

Ck = E Q5 Gy

ik

with Y. os= 1 for a5 >0, then the column ¢, can be eliminated from H and the
minimal value D(p) does not change.

Proof. Let p be a solution using the initial H. Note that if py # 0 then, according
to the previous proposition, there exists a different p’ such that D(p’)=D(p) with
px=0. Therefore, the k-th column can be eliminated and the minimum value D(p)
does not change. Alternatively, if py=0 then D(p) is also the same when the column
¢k is not used. [l

In a general case, however, it could be the case that no column cy could be
written as a linear combination of the other columns with > o; #1. In this case,
it is possible that the minimization problem has still a single solution. This is so
because in (5) we need Q to be definite positive but only on the subspace M={x:
Ax=0}. Let us consider the following example:

Example 1. Let us learn the weights from a single observation H=(1 3) and d=(1).
In this case, the matrix QQ and the vector ¢ are defined as follows:

1 3 -1
o=(53) =(3)

In this case, we have that c;=cz/3 and thus the initial conditions in the previous
proposition do not apply. In this example there is a single vector p that minimizes
D(p). The solution is p=(1 0).

In fact, this problem can be solved by active set methods because, although the
matrix Q is singular, when the constraint corresponding to the weights is added,
it is possible to find a solution. If we consider the system of equations in (5) for
this problem, with py=(1/2, 1/2), dx=(x1, x2) and the working set defined only
with the equality constraint x;+x2=0, we have that gx=(3 9) and that the system
of equations is the following one:

X1 + 3X2 + )\ = — 1
3 + 9% + A = -3
X1 + X2 = 0

This system has a single solution: x;=1.5, xo=-1.5, A=0. d=(1.5, -1.5) cor-
responds to the direction to move from p=(1/2,1/2). Due to the constraints, we
arrive to p=(1,0) that is the single solution of the problem. [l

Putting all the results together, we have that linear independency in H leads to
single solution minimization problems, and that linearly dependency can lead to
multiple solutions but also to a single solution.
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3.3 Dealing with multiple solutions when dependent columns
in matrix H.

Due to the possibility of having minimization problem with multiple solutions, and
due to the fact that not all solutions are equally good, we introduce in this section
a procedure to select the solution in such case.

As it has been said, when several weighting vectors are possible, it is better not
to accumulate the weights into a single source but to distribute them among the
sources (maximum dispersion on the values). Entropy has often been used (see e.g.
[Yager, 1993, O’'Hagan, 1988, Carbonell et al., 1997]) to measure the dispersion of
weighting vectors. This is,

E(p)=—> pilnp;

To compute this expression, it is convenient to extend the domain so that zero
values (zero weights) are allowed. This is, an expression which appears formally as
“0 In 0” is defined to be zero [Ash et al., 1965].

The entropy is defined so that maximal entropy (with the restriction that > p;
=1) corresponds to maximal dispersion and is achieved when all the weights are
defined as p; = 1/N. Thus, with a maximum entropy, the influence of a particular
information source is minimized. According to this, if we have that there exist
several solutions of the quadratic problem stated above with the same minimal
distance A, we want to select the one with maximal entropy.

Due to the fact that a priori we do not know which is the minimal distance
A, we need to solve the general problem in two steps. In the first step, we solve
the minimization problem stated above, and determine if there is a single solution
or there exist several ones and settle the minimal distance A. In the second step,
we find the weighting vector p that maximizes the entropy and has a minimal
distance A. The second step is a non-linear optimization problem with non-linear
constraints. This algorithm is described below:

Procedure Learning_Weights_WM_2Steps
(p: weighting vector,
Q: quadratic matix,
¢. vector) returns weighting vector is

begin
Determine p and A:=D(p) such that:
MinD@p)=0.5p Qp+cp (@2

such that

N

Yp=1 (3)
i=1

p; >0 4)

if there exist more than a single p such that A=D(p) then
Determine p such that:
Min - E(p) = > piln p;
such that
@05 pQp+cp=A
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=

pi=1
i=1
pi >0
end if;
return p;

end procedure;

3.4 Learning the weights for the OWA operators

The learning of weights in the OWA operator is analogous to the case of the
weighted mean. Recall that the OWA operator is just a weighted mean once the
elements to weight are ordered according to their value. Therefore, we can apply
the method described above to learn the weights in the OWA. The only difference
is the definition of the distance D(p). In this case, we have that:

D(w) = Z (Z OWAw (a) — mj>

j=1 \i=1
that, according to the definition of the OWA operator, corresponds to:
M /N 2
D)= 3> (Yot
j=1 \i=1
with ¢ being a permutation as in the definition of the OWA operator in Section 2.

3.4.1. Learning the weights in the WOWA operator

Similar approach can be applied to the WOWA operator. In this case, however,
the distance has to be defined in terms of the operator and with equality restrictions
with the two sets of weights. Thus, the general form of the method is as follows:

i=1

Min D (p,w) = Z (Z WOWA,, ,(al) — mj>

such that

N
Zpi =1
1;1
ZWi =1
i=1

pi>0,w; >0

The problem formulated in this way can also be solved by means of optimization
algorithms. However, in this case the minimization problem is not a quadratic
problem (due to the computation of the WOWA and the weights w;). Therefore
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the active set method described in Section 3 is not adequate and more complex
software is needed. This software needs to compute a gradient vector and the
Hessian matrix. Both elements can be built from the definition of the WOWA
operator and the interpolation method defined to build the quantifier from the
weights wj.

4 Learning some weights

We consider in this Section some examples of the application of the weighting
vector learning. We begin with two small examples. One of them taken from the
literature [Filev et al., 1998] that learns the weights for an OWA operator. We
show that the method introduced here is faster and give better results than the
one introduced in that work. This section ends with larger examples where the
dimension of the weighted mean is 4 and 8 respectively and where the number of
rows in the matrix is 150 and 4177.

4.1 Toy examples

Example 2. The example consists on a data matrix H (with the values of the
information sources) with 10 examples and 5 weights, and its corresponding solution
vector d. With a single data matrix H, we consider three output vectors d;, dz and
ds. The first one has been computed using a known weighting vector p=(0.1, 0.2,
0.3, 0.4, 0.0). The vectors dy and d3 are perturbations from d;. The perturbations
of dg are greater than those of the ds. Table 2 displays the data matrix and the
three output vectors. Each row corresponds to an example and in the last column
we have its respective output.

0.3 04 05 01 0.2 0.3 0.32 0.2
0.2 01 04 01 0.5 0.2 0.25 0.1
0.2 05 0.8 00 01 0.36 0.37 0.2
1.0 05 03 0.6 0.7 0.53 0.6 0.4

| | |
| | |
| | |
| | |
02 01 01 01 07 | 0.7 | 076 | 0.5
| | |
| | |
| | |
| | |

04 08 02 08 0.6 (.58 0.64 0.3
0.3 02 01 04 03 0.26 0.29 0.1
0.6 08 0.7 02 0.5 0.51 0.56 0.3
0.1 05 02 06 04 0.41 0.45 0.3

Table 2. Data matrix H and three solution vector d;, ds and dj

The weighting vectors py, p2 and p3 and the corresponding minimal distances
D(p;) that are solutions of the minimization problems resulting from H and the
three vectors di are:

p1 = (0.100, 0.200, 0.300, 0.400, 0.000) D(py) = 0.0

p2 = (0.080, 0.350, 0.153, 0.218, 0.198) D(p2) = 0.008686595012843412

pz = (0.058, 0.000, 0.420, 0.522, 0.000) D(p3) = 0.2078640861200184
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As expected, the weights in the first example are the ones used to generate
the solution vector. In the second and third column, as larger perturbations were
performed, the resulting weighting vector is less and less similar than the first one.
Also, D(p;) increases in the last examples. In relation to computational issues, the
first two results were obtained with the algorithm in a single step, while in the
third case three steps were needed. In all three cases, the initial weighting vector
was p=(.2, .2, .2, .2, .2). In the last case, to {ind a feasible solution two constraints
have to be added in the working set. These relate to the weights p2 and ps. This
is due to the fact that the global minimum without equality constraints would be
obtained with negative weights. [l

In [Filev et al., 1998], Filev and Yager presents an alternative method for learn-
ing the weights in the OWA operator. It is based on the use of the gradient
technique. The followig example shows the results obtained with our algorithm
based on active sets. We show that it is more efficient and that more exact results
can be obtained with it.

Example 3. Let N be the set of examples taken from [Filev et al., 1998] and given
in Table 3. Each sample consists of 4 information sources and the corresponding
aggregated value. In order to apply the previous learning algorithm, as the weights
in the OWA have to be considered in relation to the position of the elements, we
need to order the elements. After ordering them we get the matrix in Table 4.

04 0.1 03 08 | 0.24
0.1 0.7 04 0.1 | 0.16
1.0 0.0 03 05 | 0.15
02 02 01 04 | 017
0.6 03 02 01 | 0.8

Table 3. Data matrix H and solution vector d (taken {rom [Filev et al., 1998])

08 04 03 01 | 0.24
0.7 04 01 0.1 | 0.16
1.0 05 0.3 00 | 0.5
04 02 02 01 | 017
0.6 03 02 01 | 0.8

Table 4. Data matrix after having ordered the values in each row

Applying the algorithm we obtain the following weighting vector:

w = (0.1031, 0.0, 0.2293, 0.6676)

For an initial weighting vector w equal to (.25, .25, .25, .25), we obtain w
solving two systems of equations. First, the initial system with only the equality
constraint, and second, the system with the second weight fixed to zero. For the
same example, and with the same initial weighting vector w, the following solution
is given in [Filev et al., 1998] after 150 iterations:

w = (0.08, 0.11, 0.14, 0.67)

The distance D(w) computed for both examples show that they are not equally
good.
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[Filev et al.,1998]: 0.002156
Our method: 0.001256

It is easy to see that our approach, besides of getting a solution in less iterations,
is more precise in reproducing the aggregated value. [l

4.2 Larger data sets

We have applied the procedure introduced in this paper to learn the weights to
two large problems. As there are not existing databases for aggregation operators
determination, we have selected two databases in the UCI Repository adapting
them so that they are suitable for our purposes. We consider each row in the
database as an example to learn. The values of the attributes are the inputs of
the aggregation operator and the conclusion in the database is the output of the
operator. To apply the algorithm described in this work, we have normalized all
attributes into the unit interval. This is required because as it is well known, all
aggregation procedures C, and in particular the weighted mean, usually satisfy the
following inequality:
min (a1, ..., ay) = C (a4, ..., ay) = max (ai, ..., ap)

This equation is not always fulfilled if each value a; is in a completely different
scale. Putting them all in a single scale we can have a better approximation of this
equation (although not always satisfied).

Besides of the scalation, we have modified the database so that only numerical
attributes were considered. We have replaced categorical scales by numerical ones.

Example 4. Let the set of examples be the ones corresponding to the Iris database.
In this case, examples are defined by means of the four attributes displayed in Table
5. To apply our procedure we have rescaled the value x for each attribute in the
following way: (X - Xmin) / (Xmax - Xmin); Where Xmin and Xmax are the minimal
and maximal values of the corresponding attribute.

The database consisting on the measurements for 150 iris of three classes (iris-
setosa, iris-versicolor, iris-virginica) is intended to be used to determine the class
of iris once the measurements for all atributes are supplied. In our case, we have
replaced the classes (iris-setosa, iris-versicolor, iris-virginica) by numerical values

(1.0, 2.0 and 3.0).

Attributes Domains =[Mn, Mx]
Sepal length in em | Mn:4.3 Mx:7.9
Sepal width in ecm | Mn:2.0 Mx:4.4
Petal length in cm | Mn:1.0 Mx:6.9
Petal width in cm | Mn:0.1 Mx:2.5
Output class Mn:1.0 Mx:3.0

Table 5. Attribute and domains in the Iris database.
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Tteration | weighting vectors D(p)

1 0.250 0.250 0.250 0.25 | 9.8962
2 0.000 0.052 0.459 0.489 | 3.8796
3 0.000 0.000 0.452 0.548 | 3.2152
4 0.000 0.000 0.219 0.781 | 3.1544

Table 6. Weights in consecutive iterations for the Iris example.

The results obtained by our algorithm are the ones given in Table 6. We have
used an initial weighting vector p=(0.25, 0.25, 0.25, 0.25). The results show, what
is already known from several studies (see, for example, the file iris.names in the
UCT repository): that the output is highly correlated with the attributes “petal
length” and “petal width”. [l

Example 5. Let the set of examples be the ones corresponding to the Abalone
database. The database consists on the measurements of 4177 abalone and it
is intended to determine the age of the abalone using 8 attributes. The basic
information for the attributes is given in Table 7. To apply the algorithm we
have replaced the values corresponding to the first attribute “Sex” that used three
categories (M, F and I (infant)) by three numerical values (1.0, 2.0, 3.0). We have
also rescaled the value x for each attribute using the minimal and maximal values
of the attribute.

Attributes Domains =[Mn, Mx]
Sex Mn:1.0 Mx:3.0
Length in mm Mn:0.075  Mx:0.815
Diameter in mm Mn:0.055  Mx:0.65
Height in mm Mn:0.0 Mx:1.13
Whole weight in grams Mn:0.0020 Mx:2.8255
Shucked weight in grams [ Mn:0.0010 Mx:1.488
Viscera weights in grams | Mn:5.0E-4 Mx:0.76
Shell weight in grams Mn:0.0015 Mx:1.005
Output class Mn:1.0 Mx:29.0

Table 7. Attribute and domains in the Abalone database.

Tteration | weighting vectors D(p)

1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 | 58.9998
2 0.111 0.129 0.138 0.208 0.193 0.000 0.080 0.140 | 52.6290
3 0.085 0.134 0.180 0.267 0.000 0.000 0.038 0.296 | 44.4066
4 0.079 0.133 0.188 0.291 0.000 0.000 0.000 0.309 | 43.0417
5 0.026 0.000 0.364 0.494 0.000 0.000 0.000 0.116 | 37.6085
6 0.018 0.000 0.369 0.524 0.000 0.000 0.000 0.088 | 37.5189

Table 8. Weights in consecutive iterations for the Abalone example.
The weighting vector obtained by the algorithm is given in Table 8. It can be
seen that four of the variables are settled to be zero by the algorithm.

O
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The results presented in this work have been obtained with an implementation
of the algorithm Learning_weights WM in Section 3 using Java. The solution of
the system in (5) is obtained by means of an LR decomposition. With respect to
execution times, the best approximation for the Iris example is obtained in a Sun
in 1.32 seconds, while it takes 14.71 seconds in the Abalone example.

5 Conclusions

In this paper we have studied some aspects related with the learning of weights
for some aggregation operators. In particular, we have considered the weighted
mean, the OWA and the WOWA operator. We have described an algorithm based
on active set methods, and we have applied them to two toy problems and to two
larger ones to see the suitability of our approach. The numerical comparison with
an existing method in the literature has shown that our method obtains a better
solution in a few steps.

As a future work we plan to apply the procedure to other aggregation operators,
and to study in more detail in which conditions the system has multiple solutions.
In addition, we plan to change the procedure to compute the linear system (5) to
deal better with numerical instability.
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