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Abstract

In this paper we investigate a propositional fuzzy logical system LII
which contains the well-known Lukasiewicz, Product and Godel fuzzy logics
as sublogics. We define the corresponding algebraic structures, called LII-
algebras and prove the following completeness result: a formula ¢ is provable
in the LII logic iff it is a tautology for all linear LIl-algebras. Moreover,
linear LIl-algebras are shown to be embeddable in linearly ordered abelian
rings with a strong unit and cancellation law.

1 Introduction

The idea of this paper is to define a logical system extending both Lukasiewicz (1.)
and Product (II) logics. Lukasiewicz logic is well-known (see for instance [4, 7]) and
Product logic, a fuzzy logic having product as conjunction, was introduced in [8].
In [7] Héjek defines the basic fuzzy logic BL having as main axiomatic extensions
Lukasiewicz, Product and Godel (G) logics. All these logics take the conjunction
(&) and the implication (—) as the only primitive connectives (besides the truth
constant (), and have the Lukasiewicz, product and minimum t-norms and their
corresponding residua as truth-functions respectively.

There have been a few attempts to extend these logics with more connectives.
Baaz has introduced in [2] a projection (boolean) connective A into Godel logic:
the truth value of Ay is 1 if the truth-value of ¢ is 1, 0 otherwise. Afterwards, this
connective has also been introduced by Héjek [7] in the rest of the above logics,
resulting in the extended logics, BLa, £a, IIa and Ga. In a recent paper, Esteva
et al. [5] extend SBL (an axiomatic extension of BL), II and G logics with an
involutive negation, since in all these logics the definable negation = = ¢ — 0

*This is a revised version of the paper with the same title appeared in the Proc. of the Estylf’98
Conference, September 8-10, 1998, Pamplona (Spain)

219



220 F. Esteva & L. Godo

is not involutive, in contrast to what happens in Lukasiewicz logic. The resulting
logics have been denoted SBL.., II.. and G.. respectively.

On the other hand, the strong system of predicate fuzzy logic of Takeuti-Titani
[9] combines the above mentioned three conjunctions and three implications, to-
gether with truth-constants. In [7] Hé4jek also presents a different version of such
logic, called TTV, endowed with an infinitary deduction rule and having the pred-
icate Lukasiewicz, product and Gédel logics as sublogics.

However, unlike the latter logics (L, II, G), the just mentioned Takeuti-Titani-
like logics do not present a corresponding algebraic structure as the other ones.
Actually, all the completeness results of the first group of logics are obtained via
their associated algebraic structures (BL-algebras, MV-algebras, Il-algebras, etc.)
by means of decomposition theorems of such algebras into subdirect products of
linear algebras and finally relating these with the t-norm based structures of the
unit interval [0, 1].

With these results in mind, this paper aims at defining a logical system, and its
corresponding algebras, having both Lukasiewicz and product logics as sublogics.
As a consequence, we shall also have Gédel logic as sublogic for free. In the second
section, after defining the logic LII, we introduce LIl-algebras and we prove their
decomposition as subdirect product of linearly ordered (l.o.) ones and prove com-
pleteness of LIl w.r.t. them. Finally, in Section 3 we prove that l.o. LIl-algebras
are embeddable in a linearly ordered cancelative ring (they are the interval [0,1] of
the ring). We end up with some conclusions. Moreover the paper contains two an-
nexes. Annex 1 contains some necessary background on different systems of fuzzy
logic while Annex 2 contains the proof of Proposition 4 of Section 3. After this
paper was presented at the ESTYLF’98 conference a standard completeness result
has been obtained by the authors in a joint work with Franco Montagna (see [6]).

2 The LII Logic

Now we introduce the LII Logic, extending both Lukasiewicz and Product logics.
We take three primitive connectives —,©,—11 and the truth-constant 0. Other
definable connectives are =, -, A, &, V, A, V and —¢, where:

LY is ¢—r0
e is ¢—pn0
AQD iS LY

&t is (e —r 1Y)

eV s oLy

eAYis & =L Y)

VY is  —p(mLe A-rLy)

poav is Alp—=p ) Ve

p=L ¢ is (¢ =L V&Y =1L )

e=nv is (p—nv)O W —ne)
A standard truth-evaluation is any mapping e assigning to each proposi-
tional variable p a value of the unit interval [0, 1], and it extends to all formulas
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by means of the Lukasiewicz and product truth-functions, that is:

efp =L ¥) = min(L,1—e(p) +e(¥)),

elp@v) = e(sol) -e(¥), and_f ) < ()
_ , ife(p) <e

elp—nv) = e(v)/e(p), otherwise

Notice that, with these definitions, we recover the usual truth functions
for the above definable connectives: e(—Lp) = 1 — e(¢); e(-ny) = 1 if
e(p) = 0, 0 otherwise (Godel negation); e(Ap) = 1 if e(p) = 1, 0 other-
wise; e(p&y) = max(0,e(p) + e(¥) — 1); e(e V ¥) = min(l,e(p) + e(¥));
e(p A ) = min(e(p), e()); ele V ¢¥) = max(e(p),e(¥)); and e(p =g ¥) = 1 if
e(p) < e(), e(¢) otherwise (Gddel implication).

Definition 1 Azxioms of EII Logic are :

1. the azioms of Fukasiewicz logic with projection, Ea, for the connectives &,
—1, and A (see Annex 1 and [7]),

2. the azioms of the product logic with involution, 11, for the connectives @,
—, and 1y, (see Annez 1 and [5]),

3. together with the following additional arioms:

(LP1) (p&tb) = (p © )

(LP2) (p—=n?)—(p—L?)

(LP3) A(p®¥) = Ap&e)

(LP4) Alp =1 ¥) = Alg —n ¢)

(LP5) (pOU)YV(pO—1¥)=¢

(LP6)  A-p(¥&x) = (¢ © (¥Vx)) = ((p @ ¥)V(p © X))]
(LP7)  Alpvy) = [(((p&y) © x)¥X) = (¢ © X)V(¥ © X))]
(LP8)  A(pvy) — [(((p&9) @ x)&x) = ((p © X)& (Y © X))

where — and = stand for any of the implications or their correspond-
ing equivalences respectively.

Inference rules of E1l are Modus Ponens for both implications and necessitation for
A: from ¢ derive Agp.

The notion of proof is as usual. We will write LIL - ¢ and T+ ¢ to denote that
 is provable in LII and provable from a theory T over LII, respectively.

It is easy to check that LII is sound w.r.t. the above semantics, that is, each
axiom is a l-tautology and the deduction rules preserve 1l-tautologies. Next we
introduce the algebraic structure corresponding to our logic.

Definition 2 A Ell-algebra is an algebra A = (A, *,=,®,=nq,U,N,0,1) such
that:

e (A, ®,=n,U,N,0,1,—y) is a Il -algebra where - (x) = x =1 0 (see Annex
1 and [5])
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o (A;*,=1,U,N,A0,1) is a MVa-algebra where A(x) = (—pxz) =n 0 (see
Annez 1 and [7]).

e Forallz,y,z € A the following conditions hold:
(1) zxy<zOy
(2) Alx=ry) <Alz=ny), Alzxy) > AlzOy)
(3) Ifxxy=0then 20 (z®y)=(202)®(20yY)
(4) Ifcdy =1 then:
(zxy)©2)@2) =(202)®(20yY),
(zxy)©@2)*2) =(zOz)*(20vy),
where x @y = —(—p(x) * L (y)).

Lemma 1 In a Ell-algebra A the following conditions hold for all x,y € A:
(i) v=ny<x=ry,

() Alx =1 y) = Alz =n ), Alxxy) = Alz Qy),

(1) (x @ y) ® (x © ~Ly) = x,

(v) =p(x Qy) =~z & (r © —ry).

Proof: Condition (i) is a consequence of the above property (1) and that (,=)
and (®, =) are adjoint pairs. Equalities (ii) are easy consequences of the property
(2) and that from (i) one can derive A(z =1 y) < A(x =, y), taking into account
usual properties of the A operator. The proof of (iil) is as follows: =z © 1 =
z® (Y B —Ly), and since y * =,y = 0 we can apply (3) and thus z © (y & —Ly) =
(x©@y)® (x ®—Ly). The proof of (iv) uses the following result from the theory of
MV-algebras (see for instance [4]):

ifzxy =0, then (z®y)* ==
From (iii) we have that (z ® y) * (x © —py) = 0 and therefore,

Finally, using the De Morgan laws for negation w.r.t. * and @, we have - (zQy) =
2B (r® pYy).

It is easy to check that the LII logic is sound with respect to LlI-algebras. This
means that, for every LIl-algebra A, the axioms of LIl are A-tautologies and the
deduction rules preserve the A-tautologies. A formula ¢ is an A-tautology if it
gets the value 1 (of A) in each evaluation over the algebra A, an evaluation being
a mapping e assigning to each propositional variable p an element e(p) € A and
extending to all formulas using the operations of A as truth-functions.

It is clear that the real unit interval [0, 1] equipped with the TLukasiewicz and
Product logics truth functions is an LII-algebra. We shall call it the standard EII-
algebra. We will prove that the algebra of classes of provable equivalent formulas is
also an LII algebra. But we have to be cautious since in LII there are two different
implications and equivalences. However one can show that if a theory proves one
implication or equivalence, it has to prove the other one as well.
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Proposition 1 If T is a theory over EllL, then the following conditions hold:
(1) TrF @ iff T Ap.

(2)Tro—nv iff T —p .

(8)Tre=nv iff THe= ¢.

Proof: (1) It comes from the rule of necessitation for A and axiom (A3) (see annex
1).

(2) Axiom (ILP2) proves one direction. On the other direction, if T F ¢ —p ¢
then, applying the necessitation rule for A, T+ A(¢ — ¥) and so, by (LP4),
T+ A(e —n ¢) and hence, by (1), T F ¢ —p ¢.

(3) It is an easy consequence of (2).

As a result of this proposition we can define in the usual way the quotient set
L/ =r of equivalence classes of formulas w.r.t. a theory T, where ¢ =p ¢ iff
T F ¢ = ¢, being = either =; or =p;. Then in the quotient set, also as usual,
connectives can be interpreted as operations and now the corresponding algebraic
structure can be shown to be a LII algebra.

Lemma 2 For any theory T over EII, L/ =r is a Ell-algebra.

Proof: The analogous results for MV-algebras and Il-algebras prove that the equiv-
alence relation =y is a congruence w.r.t. the connectives (&, —1) and (®, —,) re-
spectively, so it remains to prove that the extra-conditions of the LII-algebras also
hold in the quotient algebra. But these easily follow from the axioms (L.P1)—(LP8)
of the logical system.

Next we have to prove that each LIl-algebra is a subdirect product of linearly
ordered LlI-algebras. The proof of this fact is rather standard and the basic def-
initions and results are given below. We just provide those proofs which are not
completely analogous to the standard ones (cf. [7]).

Definition 3 A subset F' of a Ell-algebra A is a filter if it satisfies:
(F1) Foralz,yeF,zxyecF
(F2) IfxeF andy>x, thenye F
(F3) Ifx=pny€F, then Ly=n—-rrelF
Moreover, F is said to be an ultrafilter (or prime filter) iff it is a filter satisfying:
(F4) Foralax,yeF, eithera=nyeF ory=pnzeklF

Obviously, if F' is a filter w.r.t. an LIl-algebra, I' is also a filter of the corre-
sponding MV and IL. reducts. Moreover, the following properties hold.

Lemma 3 Let F be a filter in an Ell-algebra A. Then the following equivalences
hold:

(i) x € Fiff Ax € F.

(i) zxye Fiff cOQye F

(i)zr=ryeFiffe=nyecl
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Proof: (1) Since Az <z, by (F2) if Az € F then « € F too. On the other direction,
x =1 =q « and thus, by (F3), Az = (—p2) =1 0 € F as well.
(ii) and (iii) easily come from (i) taking into account (ii) of Lemma 1.

This lemma allows us to properly define the congruence relation in the next
lemma.

Lemma 4 Let F be a filter in an Ell-algebra A. Define
zropyiffbothe =y, y=xckF,

where = is any of the two implications. Then:
(i) ~p is a congruence on A and A/~ is an Ell-algebra.
(1) A/ ~p is linearly ordered iff F' is an ultrafilter.

Lemma 5 If F is a filter and a ¢ F, then there exists an ultrafilter UF such that
FCUF anda & UF.

Proof: Sketch. Suppose that F' is a filter not containing a and that there exist
two elements z,y € A such that x = y ¢ F and y = = ¢ F. Then one can
check that the least filters F} and F5 such that contain £ and z = y and y = =
respectively are:

Fi={uceA|FweFandu>(vsAlxr=ny))}
FB={ucA|FweFandu> (v Aly =nx))}

Next one proves that either a ¢ Fy or a ¢ F,. Namely, if ¢ € F| N F, then
a>v*Alx =ny) and ¢ > vax A(y = x) and so a > (v Nwg) * A(x =q
YU ((v1 Nw2) * Ay =n 2)) = (viNwv2) * (A(z =0 y) U(A(y =0 z)) = (vi Nog) *
Az =0 y)U(y =0 x)) = (v1 Nv2) * A(l) = vy Nz € F in contradiction with
the hypothesis. Finally, one builds an increasing sequence of filters F; C Fj; such
that Fy = {1} and a ¢ F}, for every 4. The ultrafilter is then the big union of all
the E}’s.

This last lemma is used to show that the intersection of all ultrafilters of an
EIl-algebra is just the singleton {1}, and thus, using (ii) of Lemma 4 together with
standard results about subdirect products, we get the following decomposition
theorem.

Theorem 1 Each Lll-algebra is a subdirect product of linearly ordered LII-
algebras.

Moreover l.o. Lll-algebras are subdirectly irreducible, which is not true for
Lukasiewicz and product algebras.

Proposition 2 An Lll-algebra is subdirect irreducible iff it is linearly ordered.

The proof is the same as in [5] for SBL., algebras. The only filters of a l.o.
LIl-algebra are {1} and the total algebra. Finally, our completeness result is the
following.
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Theorem 2 (Completeness.) The logic EIL is complete w.r.t. the class of linearly
ordered Ell-algebras. That is, a formula ¢ is provable in EIL if it is an A-tautology
for each linearly ordered Ell-algebra A.

Proof: One direction is soundness. For the other direction, if ¢ is an A-tautology
for each linearly-ordered LII algebra A then, by the above decomposition theorem,
it is also a tautology for each Lll-algebra, in particular, for the LIl-algebra of the
classes of provable equivalent formulas, that is, the logic LII proves ¢ = 1, that is,
LII proves ¢.

It should be noticed however that this completeness result is only partial, in the
sense that LII has been shown complete with respect to all linearly ordered LII-
algebras and not with respect to the standard algebra defined on [0, 1] by means
of Lukasiewicz and product t-norms. During the refereeing process a standard
completeness for LII Logic have been proved (see [6]). Nonetheless, both the repre-
sentation theorem for l.o. LIl-algebras as the unit interval of a special class of l.o.
rings, proved in the next section, and the Alsina’s result referred in the Conclusions
section, have been essential steps towards the standard completeness result given

in [6].
3 On linearly ordered LII-algebras

It is known (see for example [4]) that it is possible to embed a linearly ordered
MV-algebra into a linearly ordered abelian group (l.o.a.g.). In particular, given
an LIl-algebra A = (A,%,=1,®,=0,U,N,0,1), consider its MV reduct A =
(A,*,=1,U,N,0,1) and the lLo.a.g Gao = (G4, +,—,0q,<g) where G4 = {(n,z) |
neZ,x € Ax+#1}, 0c =(0,0) and

(n+m+Lz*xy), fady=1

—(n,z) = {(_(n+1),ﬁLq;), ifo<z<1

(n,z) <g (m,y) if n<m or n=mand z <y.

(n,z) +(m,y) = { (n +m,z & y), fe®y <l

It can be shown that G4 is a l.o.a.g. with neutral element (0,0) and strong unit
(1,0) and that the MV-algebra Ay is isomorphic to the interval [(0,0), (1,0)] =
{(n,z) € G4 ](0,0) <¢ (n,z) < (1,0)}, identifying (0,z) with = and (1,0) with
1.

On the other hand it is possible to define a product operation x on G 4, exten-
sion of the product ® of the algebra A. The product is defined as follows:

(n,x) X (mv y) = (nm,x Qy) +m(0,:1:) + n(O,y),

where m(0,z) means the sum of (0,z), m times. It is clear that this product is
commutative, (0,0) is absorbent and (1,0) is the unit element. Moreover, it is
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possible to prove that x, together with +, endows (G4 with an structure of linearly
ordered abelian ring.

Proposition 3 With the above definitions, the algebraic structure
RA = <GA7 +7 — X, (07 0)7 (17 0)7 §G>

is a linearly ordered abelian ring with unit (1,0) and with cancellation law for X.

The proof is given in Annex 2. Therefore, G4 can be embedded in a field of pairs
of elements a/b of G4 in the same way the ring of integers can be embedded into
the field of rational numbers. Of course the initial algebra is isomorphic to the
subalgebra of elements of the type p/1, where p = (0,z) for some z € A — {1} or
z = (1,0). But, moreover, the converse of Proposition 3 is also true.

Proposition 4 Let (A, +, x,0,1) be a commutative linearly ordered ring with unit
1 and salisfying the cancellation law for x. If for each x # 0 the mapping [, :
[0,1] — [0,2], defined as f.(y) =z Xy, is onto, then 0,1]s={x € A|0<z <1}
is an EIL algebra with the operations

xz*y = max(0,z +y+ (—1))
rOQY=a XYy

and the corresponding residuated implications.

The proof of this proposition is an easy checking. Condition of f, being onto is
needed to guarantee the existence of the residuum of the product operation. If we
take a field instead of a ring this condition is always satisfied due to the existence
of inverse elements w.r.t. the product.

4 Conclusions

In this paper we have dealt with an axiomatic approach to a logical system contain-
ing Lukasiewicz, product and Gédel logics as sublogics and with its corresponding
algebraic structure. We have also generalized existing results for linear MV and
product algebras establishing that they can be identified with the interval [0,1]
and the negative part of a linearly ordered abelian group respectively. In our case,
linear ordered LIl-algebras are the interval [0,1] of a linear ordered abelian ring
satisfying the cancellation law. On the other hand the LII logic, axiomatically de-
fined in section 2, has been shown to be sound and complete w.r.t. linearly ordered
LIl-algebras. A step towards the standard completeness is the following Alsina’s
result [1]: if S is a continuous t-conorm, 7" is a continuous t-norm and N is a strong
negation, the general solution of the functional equation

S(T(.’L‘,y),T({L‘,N(y)) =z

is given by the following expressions:
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S(xy) = g g(=) +9(y)
T(xy) = g Wglz)-9(v))
N(z) = ¢l —g(=)),

where ¢ is a strictly increasing function g : [0,1] — R" such that ¢g(0) = 0 and
g(1) =1, and g!=Y is the pseudo-inverse function of g, that is, up to an isomor-
phism, S is the Lukasiewicz t-conorm, T is the product t-norm and N is the strong
Lukasiewicz negation. And we have shown that the above functional equation is
verified in any LII-algebra (see (iii) of Lemma 1). Thus the only LII-algebra on [0, 1]
with the natural order (except to isomorphism) is the one defined by FLukasiewicz
and product t-norms, together with their corresponding residuated implications
and negations.

As we have noticed at the end of the introduction, after the paper was presented at
ESTYLEF’98 conference, standard completeness result for LII Logic was obtained
(See [6]). This means that a formula ¢ is provable in LII if and only if ¢ is a
tautology of the standard LII-algebra.
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ANNEX 1: Background on some systems of fuzzy
logics

Here we summarize some important notions and facts from some systems of propo-
sitional fuzzy logics that are used in the paper.

The basic fuzzy logic BL. and BL-algebras

The language of the basic logic BL [7] is built in the usual way from a set of
propositional variables, a conjunction &, an implication — and the constant 0.
Further connectives are defined as follows:

NP is p&(e — ),

eVY is (g =) = Y)A (Y = ¢) =),
—p is ¢—0,

e=1v is (= V)& — ).

The following formulas are the axioms of BL:

(A) (= 9) = (¥ =x) = (p—x)

(A2)  (p&t) =

(A3)  (p&tp) — (V&)

(Ad)  (p&lp = ¥) = (V&(¥ — @)

(Aba) (¢ — (¥ = x)) = ((9&¥) — x)

(A5b)  ((p&¥) = x) = (¢ = (¥ = X))

(A6)  ((p—=v)=x) = (¥ —=¢)=Xx) =X

(A7) 00—
The deduction rule of BL is modus ponens.

If one takes a continuous t-norm * for the truth function of & and the corre-
sponding residuum! = for the truth function of — (and evaluating 0 by 0) then
all the axioms of BL become 1l-tautologies (have identically the truth value 1).
And since modus ponens preserves l-tautologies all formulas provable in BL are
1-tautologies.

It has been shown [7] that the well-known Lukasiewicz logic, denoted L, is the
extension of BL by the axiom

L) e,
and Godel logic, denoted G, is the extension of BL by the axiom

(G) ¢ —= (p&yp).

IThe residuum = is the binary function on [0, 1] defined as z = y = sup{z € [0,1] | z*z < y}.
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Finally, product logic, denoted II, is just the extension of BL by the following two
() ==x = (((p&ex) = (W&ex)) = (¢ = ¢)),
(II2) e A—p—0.

A BL-algebra is an algebra L = (L,N,U,*,=,0,1) with four binary operations
and two constants such that

axioms:

(1) (L,n,U,0,1) is a lattice with the largest element 1 and the least element 0
(with respect to the lattice ordering <),

(i1) (L,*,1) is a commutative semigroup with the unit element 1, i.e. * is com-
mutative, associative and 1 % x = z for all z,

(iii) the following conditions hold:
(1) 2<(z=y) il z*z <y forall z,y, 2.
(2) zNy=x*(z=1y)
(3) @=n)U=a) =1

Thus, in other words, a BL-algebra is a residuated lattice satisfying (2) and (3). The
class of all BL-algebras is a variety. Moreover, each BL-algebra can be decomposed
as a subdirect product of linearly ordered BL-algebras.

Defining -z = z = 0, it turns out that MV-algebras are Bl-algebras satisfying
——x = x, G-algebras are BL-algebras satisfying x * x = =z, and finally, product
algebras are BL-algebras satisfying

zN—-x=0
——z=((rxz=y*x2)=>z=y) =1L

The logic BL is sound with respect to L-tautologies: if ¢ is provable in BL then
@ is an L-tautology for each BL-algebra L.

Theorem 3 BL is complete, i.e. for each formula ¢ the following three conditions
are equivalent:

(i) ¢ is provable in BL,

(i) for each BL-algebra L, ¢ is an L- tautology,

(iii) for each linearly ordered BL-algebra L, ¢ is an L-tautology.

This theorem also holds if we replace BL by a schematic extension® C of BL, and
BlL-algebras by the corresponding C-algebras (BL-algebras in which all axioms of C
are tautologies). There is also strong completeness for provability in theories over
BIL. Moreover, it has recently been shown in [3] the completeness of BL w.r.t. to
the tautologies of Bl-algebras in the real unit interval [0, 1], which are exactly
the BL-algebras defined by continous t-norms and their residua. This was already
conjectured in [7]. For completeness theorems of the three main extensions of BL
(Lukasiewicz, Godel and product logics) see [7].

2A calculus which results from BL by adding some axiom schemata.
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Extended basic fuzzy logics with A and A-algebras

Now we expand the language of BL, by a new unary (projection) connective A
whose truth function (denoted also by A) is defined as follows:

1, ifz=1
Aw) = { 0, otherwise

The azioms of the extended basic logic BLa (first formulated by Baaz in [2]) are
those of BL plus:
(Al) ApV-Ap
(A2)  AlpVy) = (ApVAY)
(A3) Ap—o
(Ad) Ap— AAgp
(A5) Al —¥) = (Ap — Ad)
Deduction rules of Bl are modus ponens and generalization: from ¢ derive Ap.
A A-algebra is a structure L = (L,N,U, %,=,0,1,A) which is a Bl-algebra
expanded by an unary operation A satisfying the following conditions:
Az U—-Azx =1
AlzUy) < AzUAy
Ar <z
Ax < AAx
(A0)+ (Aw = y)) < Ay
Al=1
The notions of L-evaluation and L-tautology easily generalize to BLa and A-
algebras. The decomposition of any BLa algebra as a subdiredt product of linearly
ordered ones also holds. Notice that in linearly ordered A-algebras we have that
Al =1 and A(a) =0, for a # 1. Then the above completeness theorem for BL
extends to BLa as follows.

Theorem 4 BLA is complete, i.e. for each formula ¢ the following three things
are equivalent:

(i) ¢ is provable in BLa,

(i) for each linearly ordered A-algebra L, ¢ is an L-tautology;

(iii) for each A-algebra L, ¢ is an L- tautology.

A strong completeness result for provability in theories over BLa is also given in
[7]-

Moreover, each of the three dintinguished logics, Lukasiewicz, product and
Godel logics, can be added the A connective, together with its axioms (Al)——(A5),
leading to the so denoted logics Lo, IIn and Ga, which are complete w.r.t. their
corresponding algebras, i.e. MV a-algebras, IIx-algebras and G a-algebras. See [7]
for further details.

The Basic Strict Fuzzy Logic SBL and SBL-algebras

The strict basic logic SBL [5] is an extension of BL logic for which the linearly
ordered BL-algebras that satisfy SBL axioms are those having Gdédel negation.
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The axioms of the basic strict fuzzy logic SBL are those of BL plus the following
axiom:

(STR)  (p&t = 0) = ((¢ = 0) V (¢ = 0)).
Notice that (STR) is a theorem in both Product and Gddel logics. Moreover, SBL
proves @ A —p — 0.

Definition 4 A SBL-algebra is a BL-algebra (L,N,U,*, =0, 1) verifying this fur-
ther condition:

(x*xy) =0 = (=0 U(y=0).

Examples of SBL-algebras are the algebras in the real unit interval
([0,1], max, min, *,=>,0,1), where * is a t-norm without non-trivial zero divisors
and = its corresponding residuum, and the quotient algebra SBIL/= of provable
equivalent formulas.

In linearly ordered SBIL-algebras, the above condition turns into

zxy=0if z=0o0r y =0.

Moreover, this condition identifies linear SBL-algebras with algebras which have
Godel negation.

Theorem 5 (Completeness.) The logic SBL is complete w.r.t. the class of linearly
ordered SBL-algebras.

In [3] it is also shown the completeness of SBL w.r.t. the class of SBL-algebras on
[0, 1].

Strict basic fuzzy logics extended with an involutive negation

Now we extend SBL with a unary connective ~ (See [5]). The semantics of ~ is
an arbitrary strong negation function n : [0,1] — [0,1], which is nothing but a
decreasing involution, i.e. n(n(z)) = x and n(z) < n(y) whenever z > y. With
both negations, — and ~, the projection connective A is now definable: Ay is
_|NSD‘

Definition 5 Azioms of SBL.. are those of SBL plus

(~1) (~vp)=¢

(~2) =

(~3)  Alp = ¢) = A~ ¢ = )

(Al) ApV-Agp

(A2)  Ap V) = (ApVAY)

(A5)  Ap = ¢) = (Ap — Ay)
where Ap is -~ . Deduction rules of SBL.. are those of BLa, that is, modus
ponens and necessitation for A.



232 F. Esteva & L. Godo

Definition 6 A SBL..-algebra is a structure L = (L,N,U,*,=,~,0,1) which is a
SBL-algebra expanded with a unary operation ~ satisfying the following conditions:
(A1) ~~vz=x
(4-2) —w<~a
(4.3) Alw=y) =Al~y=ru2)
(A1) AzU-Az=1
(A.5) A(zUy) <AzUAy
(A-6) Axx(Alr=y)) < Ay
where ~x = =0 and Az = (~z = 0).

The decomposition of any SBL. -algebra as a subdirect product of linearly ordered
ones also holds.

Theorem 6 SBL.. is complete w.r.l. the class of SBL.. algebras.

Remarkable extensions of SBL... are the product logic with involution, IL., and
Godel’s logic with involution G.., obtained by adding the corresponding axioms
to SBL.., that is, axioms (II1) and (II2) for the product logic, and axiom (G)
for Goédel logic. For these particular extensions there are stronger completeness
theorems:

o II.. is complete w.r.t. the semi-standard SBL., algebras
([0,1], min, max, -, =, n,0,1), where - is usual product, = is the residuum
of product (Goguen’s implication) and n is a strong negation in [0, 1].

e G iscomplete w.r.t. to the standard G. -algebra ([0, 1], min, max, 1 —x,0,1).

ANNEX 2: Proof of Proposition 3

Proposition 3 With the above definitions,
Ra = (Ga,+,—,x%,(0,0),(1,0),<g) is a linearly ordered abelian ring with unit
(1,0) and with cancellation laws for x.

We only need to prove the distributivity and the associativity and cancellation
laws for the product.

Proof of the distributivity law. We must prove that (m, z) x ((n,z) + (k,y)) =
((m, 2) x (n,z)) + ((m, 2) x (k,y)) and the proof needs to study different cases.

A Proof for positive pairs: n,k,m > 0. In turn, the proof is divided in different
sub-cases:

1. If z+y = 0 the law is given by (3) of definition 2.

2. fzdy=1, and (v ® 2) * (y ® 2) =0, then remembering condition (4)
of definition 2 we have
(m, 2) x ((n,z) + (k,y)) = (m,2) x (n+k+Lzxy) =
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=(mn+k+1),(z*xy) ©@2)®2) +m(l,z*xy) + (n+ k)0, 2).

On the other side,((m, 2) x (n,z)) + ((m,2) x (k,y)) =
(mn,z ©x) +m(0,z) +n(0,2) + (mk,2@y) +m(0,y) + k(0,2) =
((m(n+ k), (2 02) ® (2 ©y)) + m(Lzxy) + (n+k)(0,2) =
(mn+k+1),(202) @ (20y)) +m(0,2 +y) + (n+ k)(0,2)
which taking into account the condition (4) of definition 2 proves the
equality of the two expressions.

3. If (20 2) ® (2 ®y) =1, then remembering condition (4) of definition 2
we have:
(m, 2) x ((n,2) + (k,y)) = (M, 2) x (n+k + 1,z xy) =
(m (n+k+1) (xxy)©@2))+m(L,z*xy) +(n+k+1)(0,2) =
(m(n+k+1) + 1, ((z+y) ©2) * 2).
On he other hand,((m, 2) x (n,z)) + ((m, 2) x (k,y)) =
(mn,z©x) +m(0,z) +n(0,2) + (mk, 2 ©y) +m(0,y) + k(0,
(m(n+k)+1,(202) * (2 0y)) +m(L,z +y) + (n + k)(0, ()

(mn+k+1)+1,(:02)*(20y) +m(0,z*y) + (n+k)
which proves the equality using condition (4) of definition 2.

)=
)

B Proof for negative pairs:

1. First we prove the sign rule, that is, (—(m,2)) x (n,z) = —[(m,2) X
(n,z)]. The proof is as follows: (—(m,2)) X (n,z) = (—(Mm+1),—712) X
(n,z) = (—(m + 1)n,—,2 ® z) which is equal to —(mn, 2z © z) taking
into account (iii) of Lemma 1. As a consequence it also holds that
(=(m, 2)) x (=(n,z)) = (m, 2) X (n, ).

2. We will prove directly the following case:

(m,2) x ((=(n,z)) + (k,y)) =
((m, 2) x (—(n,2))) + ((m, 2) x (k,y)). The proof is by cases (suppose
k> n):
o If =z %y =0, then:
(1, 2) % ((~(1.2)) + (b)) = (m,2) x (k — (14 1),z &)
(:1)(m((k— (n+1)),20(-zd®y)) +m(0, x®y)+ (k—(n+1))(0, 2).
On the other hand,
(m,2) % (~(1,2))) + (. 2) x (5,9) = (~m(n+ 1),2 © ~2) +
m(0, =) + (n + 1)(—=1,—2) + (mk,2 O y) + m(0,y) + k(0,2) =
(taking into account that (—1,-2) + (0, 2) = (0,0))
— (m(k— (- 1),(20-2) ® (09)) + (k — (0~ 1)(0,2) (2)
Of course, by condition (4), the equality is easily proved.
elf-cdy=1land (20 2)d(z0y) <1.
Then (m, 2) x ((—(n,z)) + (k,y)) = (m,2) X (k—n,~z*xy) =
= (m(k —n),2® (-z*y)) + m(0,—z*y) + (k —n)(0, 2).
On the other hand,
(m,2) % (—~(1,2))) + (1, 2) x (k9) = (—m(n + 1),2 @ ~2) +
m(0,—x) + (n+ 1)(—1,72) + (mk, 2 © y) + m(0,y) + k(0,2) =
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= (m(k—n)—m, (20-2)®(20y))+m(l, ~zxy)+(n+1)(—1,-2)+

k(0,2) =

taking into account that (—1,-2) + (0, 2) = (0,0)

= (k- 7). (:©-2) ® (: © ) - {0, <) + (k — (n+1))(0,2).

Thus an easy computation shows the desired equality using (4) of

definition 2.

f20y=(202)®(:0y) =1, then:

(7,2)  (—(1,2)) + (k1) = (m,2) X (5 — =2 ) =

= (mk —n), 2@ (mz*y)) + m(0,—z*y) + (k —n)(0, 2).

On the other hand,

(m,2) x (—(m,2))) = ((m,2) % (ky) = (~m(n + 1), © ) +

m(O —z) + (n+1)(—1,-2) + (mk, 2 ©y) + m(0,y) + k(0, 2) =
=k — (0 + 1) + L,(> @ ) * (> ©)) +m(L—w 5 ) + (0 +

1)( 1,-2) + k(0,2) =

taking into account that (—1,-2) + (0, 2) = (0,0)

= (mk—n)+1, (20—2)*(20y)) +m(0,~xxy)+(k— (n+1))(0, 2)

An easy computation shows the desired equality using (4) of defin-

ition 2.

Thus the proof is completed.

C All other cases can be proved by A and B.2 using the sign rule B.1.

Proof of the associativity law for x. From distributivity, associativity of x
can be easily checked.

Proof of the cancellation law for x. The cancellation law is a conse-
quence of the preservation of strict inequality by products which, in turn, is a
direct and obvious consequence of the definition of x in G 4.



