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Abstract

The subject of the present paper is the study of fuzzy computability based
on fuzzy Turing machines. Two different models of fuzzy Turing machines
will be discussed. It is shown that most work on fuzzy mathematics may
be conducted within the frame of classical computability and the rest falls
within the area of computability of the reals.

1 Introduction

In its three and a half decades of existence since the seminal paper of L.A. Zadeh
[Zad 65], fuzzy logic has absolved the stages of wide theoretical research, hardware-
supported fuzzy systems and industrial applications, (the later, mainly in the area
of fuzzy control).

Activities in the area of hardware-supported fuzzy systems may be traced back
to work initiated in the middle eighties by M. Togai and H. Watanabe [ToW 86]
as well as T. Yamakawa [Yam 88]. The expectations to see the development of
fuzzy computers, were however not fulfilled. Possible exceptions may be some
university projects, like the ORBE-Project in Spain [Mor 93], [Rui 94], [Sal 96].
Most hardware efforts conveyed very fast to fuzzy control (see e.g. [BBR 93], [Bat
96]). A significant amount of industrial available “fuzzy processors” of the present
days are mainly programmable fuzzy controllers. There is however still lot of work
being done in this area, as may be observed in presentations and special sessions
in most large conferences of the fuzzy community (see e.g. the Proceedings of
IPMU’96/98, FUZZ-IEEE’97/99, IFSA’97/99, EUFIT’98/99, lizuka’98) and has
been enhanced by the appearance of the first books on the subject (see e.g. [Kal.
98]).
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Fuzzy algebra
Fuzzy dynamics and chaos
Fuzzy mathematical programming
Fuzzy measures and integrals
Fuzzy multivariate analysis
Fuzzy numbers
Fuzzy optimization
Fuzzy relations
Fuzzy sets theory
Fuzzy statistics
Fuzzy topology and analysis

Table 1: Selection of session-topics of the IFSA’97 Conference

Fuzzy control has become the possibly best known “result” of fuzzy logic due
to its industrial acceptance. Even though fuzzy control is without any doubt an
important area, it is not the only one that has been given support by the scientific
community. See for instance Table 1, which shows a summary of some of the
session-subjects covered during the recent IFSA Conference 1997 in Prague. There
are impressive “mathematically oriented” developments beyond fuzzy control. This
motivates the initial question of this paper: Do we need a (new) concept for fuzzy
computability?

The rest of the paper is organized as follows. In the next section the basics of
computability will be shortly presented. Fuzzy Turing Machines will be the subject
of the third section. A section of conclusions will close the paper.

2 Crisp computability

Basic to the study of computability is the concept of algorithm (traced back to work
done in the IX century by the Persian mathematician Al Chowarizmi, on procedures
for the formal solution of systems of equations. This might well have been the
origin of the word algorithm. See e.g. [Rec 91]). Nowadays, unseparable from the
algorithm concept is that of the Turing Machine [Tur 36], which is acknowledged
as a computing model with a power equivalent to that of algorithms. That is, if a
function may be evaluated in terms of whatever kind of algorithm then there exists
a Turing machine that computes the same function. This is known as Church’s
Thesis [Chu 36] and the former function will be said to be “Turing computable”.

From the many ways of defining a Turing machine (see e.g. [LeP 81], [Rec 91],
[Weg 93], [URL 01]), the following is probably one of the simplest.

Definition 1: Turing machine

M= (Sa Qa q0; Ea é ) (1)
where S represents a finite non-empty set of input symbols,

Q denotes a finite non-empty set of states, with SN Q =0
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qo €Q is the symbol to designate the initial state of the machine
ECQ is a finite non-empty set of final states

and
d:Q xS —Q x (SU {right, left }) (2a)
0: QxS —=P[Q x (SU {right, left} | (2b)

denotes the transition function. Eq. 2a represents the case of a deterministic
Turing machine meanwhile eq. 2b, that of a non-deterministic one (with P[X])
representing the power set of (some given set) X). Furthermore, an especial symbol
# € S will be agreed upon to represent an “empty information” at the input.

A Turing machine may be imagined to have an infinite input tape that may
contain a word w €(S\#)* and otherwise escorting strings of # symbols. A read-
write head interacts with the tape and a central unit controls the work of the
machine (according to §). To begin with the work, the machine is in state qg
and the head is placed on the last # before the beginning of a word w (assuming,
without loss of generality, that the word will be read from left to right). The head
moves one place to the right, reads the first (non-#) symbol and evaluates d. As
a consequence, the machine may keep or change its state, may keep or change the
symbol under the head or else may either move the head one place to the right or
to the left (and compute again ). If the Turing machines reaches a state q, and
0 (qg, s) is not specified (for any s € S) then it stops. If the state of the machine
when it stops belongs to E then it returns implicitly a “yes”. It returns a “no”
if the state of the machine does not belong to E. If “no”, the machine rejects the
word. If “yes”, the word has been accepted and the processed result is written on
the tape. Finally it is possible that a Turing machine does not stop at all on a
given input word w.

In order to formally analyze the work of a Turing machine, the concepts of
configuration and computation will be introduced.

A string ugav where a € S represents the symbol under the head, uv € S*
represent the prefix and suffix of a respectively and q denotes the present state of
the machine, is called a configuration. (See figure 1).
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Fig. 1: Turing machine with the configuration C = ugqav

If a Turing machine is in a configuration C; = U; Q; 8; V; and after evaluating
d(a;,qi) changes to the configuration Cj = uj Q; @; Vj, then the configuration C;
is direct reachable from C;. This will be written C; —C;. If there exists a se-
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quence of pairwise direct reachable configurations C; — Ciiqy —Cita...— Cj, then
the configuration Cj is (indirect) reachable from C; and this will be expressed as
C; =7y, where —* denotes the transitive closure of —. Finally if Cy denotes an
initial configuration and C,, a {inal one (in the sense that the Turing machine stops
at this configuration and q, €E), then Cy —*C, is called a computation of the
machine.

3 Fuzzy computability

Basic for the study of fuzzy computability is the concept of fuzzy algorithm that
was introduced in [Zad 68], but not further developed. As in the case of crisp
computability, alternative to fuzzy algorithms, fuzzy Turing machines may be con-
sidered. Two models of fuzzy Turing machines will be discussed below. In the first
model, all sets of the definition expressed in eq. (1) will be changed into corre-
sponding fuzzy sets. The transition function § will then become a function over
fuzzy sets. In the second model, the sets will not be changed, but a fuzzifying
function will be associated to 4.

The following notation will be used in the rest of the paper. Fuzzy sets will
be expressed and named by their membership function. Fuzzy sets will be defined
in given universes of discourse and the range of their membership functions will
be [0,1] or [0,1]¢, where [0,1]¢ denotes the subset of computable real numbers in
the interval [0,1]. The names of fuzzy sets will be written in italics meanwhile
for crisp sets regular fonts will be used. Given a fuzzy set B defined in the uni-
verse U, the value of the membership function at a given place p € U is given by
B(p). Furthermore an element of a {uzzy set B may be interpreted as pair (identi-
fier, membership), that formally is an element of the Cartesian product supp(B)x
[0,1]. (Where supp(B)={p € U— B(p) > 0}). Accordingly, B Csupp(B) x [0, 1].

1st model

Definition 2: A {uzzy Turing machine M1 is a 5-tuple (S, Q, qo, E, d), where

S is a fuzzy set over a universe Ug of symbols. S: Ug —[0, 1]c. # € S with
S(#) = 1. The support of S is finite

(@ is a fuzzy set over a universe Uq of states. Q: Ug — [0, 1]¢. The support of
Q is finite. SN Q = 0.

The initial state qo has the following properties: qo € Q with Q(qo)=1

E is a crisp finite non-empty subset of
and

d:Q xS — supp(Q) x (supp(S)U{left, right}) (3a)

Notice that at the right hand side of the definition of §, only the support of
@) and S are required. As soon as the identifiers for the (possibly) new state and
symbol are respectively obtained, their corresponding membership degrees may be
directly calculated. In this way, § is a function with a (computable) fuzzy domain
but a crisp range. Moreover the fuzzy sets of the domain may be represented as
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the Cartesian product of their support and [0, 1] thus leading to

6 : (supp(Q) x [0,1]¢) x (supp(S) x [0,1]c) = supp(Q) x (supp(S) U {left, rigl(lgig

The non-deterministic version is given by

0 C (Q % 8) x (supp(Q) x (supp(S) U {left, right})) (4a)

or

§ C (supp(Q) x [0, 1]¢) x (supp(S) x [0, L) x (supp(Q) x (supp(S) U{left, Tighz}z))g
4

One transition of the fuzzy Turing machine M1 is illustrated in figure 2.

Ug

(s o)

Fig. 2: A possible transition of the fuzzy Turing machine M1

Finally, the result of a computation of the fuzzy Turing machine will be defined

as follows:
p= (w, HS(w1)> ) (5)

where w € (S\#)" denotes the word on the tape, || represents the transitive
closure of a predefined t-norm and w; stands for the i-th symbol of the result-
word. Equation (5) associates to the meaning of the word w a degree of certainty
computed as a function of the membership degrees of its symbols.

Algorithm Al describes a computation with the fuzzy Turing machine A 1.
Then there exists a (crisp) Turing machine M1 that computes Algorithm Al. It
follows that M1 is equivalent to M 1.

In conclusion: for any fuzzy Turing machine constructed after Model 1, there
exists an equivalent crisp Turing machine. Furthermore, problems solved with the
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fuzzy Turing machine may then be studied within the frame of classical computabil-
ity.

Algorithm Al;
q9=4d
while q € E
remember q; read s; evaluate Q(q) and S(s);
compute (q’, 8') = ¢ ( (q, Q(q)),(s, S(s));
if 8’( { left, right} then move accordingly else
s=s’;
a=q’;
compute the degree of certainty of the result
end.

2nd Model

W-functions were introduced by E. Santos in the late seventies [San 77] and used
to study W-Turing machines. For the present model, a slightly different version of
W-Functions will be used.

Definition 3: W-functions

Let f: U — V, where U and V are non-empty sets. The function f is not
required to be total. The W-function fyw associated to f is normally a partial
function given by: fw: (U x V) — W, where W = [0,1]¢ and fw is defined at
all pairs (u,v) where f(u) is defined and f(u)=v holds. fw(u,v) assigns a degree of
certainty to the computation of f(u)=v. The following reference structure will be
used: ([0,1]¢,7,7*), where 7 is a t-norm and 7* is a t-conorm, dual with respect
to 7. Even though t-norms may be traced back to work done by Karl Menger in
the early forties [Men 42] they were discovered by people interested in fuzzy logic
after the publication of a book by B. Schweizer and A. Sklar [ScS 83].

Definition 4: Fuzzy Turing machine (in analogy to [San 77])

M2 = (Sa Qa q0, Ea 67 6W) (6)
where S represents a finite non-empty set of input symbols,

Q denotes a finite non-empty set of states, with SN Q =0

qo € Q is the symbol to designate the initial state of the machine

ECQ represents a finite non-empty set of final states

0 C(Q x8) x (Q x (SU { right, left })) (7)
and dw : (Q x S) x (Q x (S U { right, left }) —[0,1]¢ (8)

It becomes apparent dw assigns a degree of certainty to every transition of the
machine. Moreover let the concepts of configuration and computation be used here
as in the crisp Turing machine.

Definition 5: Degree of reachability
Let C; —City. Then nw(C;,Ciy1) denotes the degree of reachability of Ciq
from G;.
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Yu,v €8 a,a’ €8;q,q'€Q

dwl(aq, a, q’y a") if  Cj=uqav Ci1=uqav
dwl(a, a, q',right) if Ci=uqav Ciy; =uaq'v
or Ci=uqa Cj 1 =uaq#
nw (Ci, Cip1) = (9)
dwla, a, q’left) i Ci=uaqv Ciry =uqlav
or Ci=qav Gy =q'#av
0 it CACH

Definition 6: Degree of certainty.

Let I" denote the degree of certainty of the computation done by the fuzzy
Turing machine M2. If Cy —*C,, where Cy and C, represent an initial and
end configuration, respectively, then the degree of certainty of the computation is
evaluated as follows:

T'(Cy,Ch) = T[nW(Co,Cl),T[nW(Cl,Cg), ...T[nW(Cn,g,Cn,l),nW(Cn,l,Cn)}...]] (10)

In the case of a non-deterministic fuzzy Turing machine, there may exist dif-
ferent sequences of pairwise directly reachable configurations leading from Cy to
a given C, and these different sequences may also have different degrees of cer-
tainty. Let Go,, denote the set of degrees of certainty of the (non-deterministic)
computation Cy —*C,,. Then:

D(Co,Cr) = > v (11)

YEGo,n

where Z* denotes the transitive closure of 7*.

Procedure A2 gives a precise description of the behavior of the fuzzy Turing
machine M2 when doing a computation. Since all elementary steps in A2 are
effectively computable, then A2 is indeed an algorithm and there exists a crisp
Turing machine M2 that processes Algorithm A2.

It follows then that there exists a crisp Turing machine M2 which is equivalent
to the fuzzy Turing machine M2. Since this equivalence has been shown for an
arbitrary fuzzy Turing machine, it holds for all fuzzy Turing machines specified by
equation (4).

Moreover it may be inferred, that results obtained with the fuzzy Turing ma-
chine M2 may be further analyzed within the classical computability theory.
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Procedure A2;
G=10;
// simulation of non-determinism under fairness //

for j=1 to 100...0 do

begin
i=0; I'o = 15 q=qo;
while q&E
begin
(a,s") = d(q, s);

Pi+1 = T[PiaéW(qa S, q’a S’)};
i=i+1; q=q’; s=¢’
end;
// the machine stops at C,, //
read result-word and I';
end;
if Pi gGO,n then
begin
GO,n :GO,n U {Pl}a
Compute I'(Cy,C,,) with eq. (11)
end

end Procedure A2.

4 Conclusions

Let M denote the set of fuzzy Turing machines after model 1 or model 2 and let
M denote the set of classical Turing machines (see Definition 1). Then M and M
are equivalent.

The subset [0, 1] is dense enough to support an adequate representation of real-
world problems, based on fuzzy sets. (See e.g. [Wei 87] for numbers in [0, 1] [0, 1]¢).

Let M’ represent the set of fuzzy Turing machines defined after model 1 or
model 2 however using the full interval [0,1] as range for the membership function
of fuzzy sets or for the fuzzifying transition function dw. It follows that MC M.
The world M’ \M is open for further research. The computability aspects here
however refer to computability of the reals (Type 2 Computability) [Grz 55], [Wel
87] and do not imply a fuzzy computability. Related aspects have been studied
mostly under the keyword W-computability, as in [Cla 83], [ViC 84], [CID 87], [Ger
89] and [MPC 93].
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