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Abstract

Fuzzy classification systems differ from fuzzy controllers in the form of
their outputs. For classification problems a decision between a finite number
of discrete classes has to be made, whereas in fuzzy control the output domain
is usually continuous, i.e. a real interval. In this paper we consider fuzzy
classification systems using the max-min inference scheme and classifying an
unknown datum on the basis of maximum matching, i.e. assigning it to the
class appearing in the consequent of the rule whose premise fits best. We
basically show that this inference scheme locally takes only two attributes
(variables) into account for the classification decision.

1 Introduction

From a theoretical point of view fuzzy controllers are a method to describe a real
function R™ — R (or, in the case of multi-input, multi-output systems, R — R¥)
assigning a real (control) value to a given tuple, point or vector of measured input
values. There are a variety of different models of fuzzy controllers like the Mamdani-
type controller [12] that uses fuzzy sets in the consequent part of the rules or
the Takagi-Sugeno model [17] that allows a (linear) function of the inputs in the
consequent part of the rule. For an overview see for instance [9].

In almost all fuzzy control systems, the final crisp output is computed incorporating
the outputs of all rules whose premises are satisfied to a degree greater than zero.
There are many different ways to aggregate the outputs of the single rules and — in
the case of a Mamdani controller — to defuzzify the resulting fuzzy set. Nevertheless,
the underlying principal is always that the output is some kind of weighted mean
of the outputs of the firing rules.

Fuzzy controllers are well examined as function approximators. Piecewise mono-
tone functions of one variable can be exactly reproduced by a fuzzy controller [1, 11]
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and for the multi-dimensional case fuzzy controllers are known to be universal ap-
proximators [2, 8, 18] for continuous functions. However, although these positive
general results do not apply when the number of rules is restricted. In this case,
the set of functions that can be represented by a fuzzy controller is nowhere dense
[14].

These results do not apply to fuzzy classification systems. The situation is dif-
ferent, since we have to deal with a function R™ — € where € is a finite set of
discrete classes. We do not assume any kind of structure on €. This means that
interpolation between classes does not make any sense. The classes could for in-
stance be different diseases in medical applications, broken/not broken in quality
control of tiles. Fuzzy classification systems of this type are successfully applied
(see for instance [4, 5, 7, 13, 15, 19]), but a systematic experimental or theoretical
analysis of these systems was initiated just recently.

Niirnberger et al. [16] investigate the class boundaries of two- and three-dimensional
data that can be generated by fuzzy classification systems using different t-norms.
Cordon et al. [3] analyse fuzzy classification systems on an experimental basis that
do not rely on a classification based on the rule that best fits the input.

A theoretical analysis of fuzzy classification systems is presented in [6]. It was
demonstrated that approximate solutions of arbitrary classification problems can
already be obtained with crisp sets instead of fuzzy sets. In the case of two-
dimensional data, classification problems can exactly be solved, when the classes
can be separated by piecewise monotone functions. When the Lukasiewicz t-norm
is allowed instead of the minimum or the maximum is replaced by the bounded
sum, arbitrary linearly separable classification problems can be solved by fuzzy
classification systems, i.e. problems where the classes are separated by a (hyper-
)plane. However, fuzzy max-min classification systems cannot solve arbitrary lin-
early separable classification problems for data with more than two attributes. If
the separating hyper-plane depends on more than two variables, fuzzy max-min
classification systems can only provide an approximate solution of the correspond-
ing classification problem.

In this paper we generalise this result and show that in principal fuzzy max-min
classification systems determine the class locally on the basis of only two attributes.
The paper is organised as follows. The following section briefly reviews the struc-
ture of fuzzy max-min classification systems. Then we introduce the basic defini-
tions, that we need, and present our main theorem in section 3. Section 4 con-
tains the construction that proves the main theorem. Some technical requirements
needed in the prove can be found in the appendix.

2 Fuzzy Max-Min Classification Systems

We consider the following classification problem. We have a finite number of classes
Cy1,...,C.. Each class represents a subset, of the space R™ or the unit cube [0, 1]™.
Therefore, we identify each class with its corresponding subset. We assume that
the classes are pairwise disjoint, but we do not require that they cover the whole
space, i.e. there might be data that are unclassified.
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In practical applications, the situation is usually as follows: A finite set of data
including the classes to which the data belong is given. The problem is to find
a classifier that — in the best case — assigns all the given (training) data to the
corresponding classes and extends the classification also to unknown data in a
reasonable way. We do not discuss here, how such a classifier can be learned from
data. We are interested in how flexible a fuzzy classifier can be. Therefore, we
assume that the corresponding classes are already known for all possible data and
examine, whether this classification problem can be solved by a fuzzy classifier.
We restrict our investigations to classification problems with only two classes G
and C~. However, our results can easily be extended to classification problems
with more than two classes. In order to see whether the class C; can be separated
correctly from the other classes Co, ..., C., we simply have to combine the classes
Ca,...,C. to one new class and we have a classification with only two classes.

A fuzzy max-min classification system can be formalised as follows. We have a
finite set R of rules of the form

R: If ¢ is /,Lg) and ... and z,, is u%n) then class is Cp,

where Cp is either CT or €. The u%) are assumed to be fuzzy sets on the X;, i.e.

u%) : X; — [0,1], where X; is an interval. In order to keep the notation simple,
we incorporate the fuzzy sets u%) directly in the rules. In real systems one would
replace them by suitable linguistic values like positive big, approximately zero, etc.
and associate the linguistic value with the corresponding fuzzy set.
Each rule is evaluated by interpreting the conjunction in terms of the minimum,
ie.

pr(prs o) = min ful o)) (1)

ie{l,...,m}

is the degree to which rule R fires.

R
& (pry - pm) = max {ur(pr, .-, pm) | Cr = €} (2)
is the degree to which the point (p1,...,ps) is assigned to class C.
Finally, we have to assign the point (p1, ..., pm) to a unique class (defuzzification)
by
. R R
@+ lf /’LEer)(plvvpm) >/,Lé,)(p1,...,pm)
_ _ . R R
:R(pb'”’pm) o ¢ lfuéf)(plv7pm)>/’6é+)(p177pm)

unknown otherwise.

This means that we assign the point (p1,...,pm) to the class of the rule with the
maximum firing degree. Note that we denote by R the set of rules as well as the
associated classification mapping based on these classification rules.

When we assume that the fuzzy sets appearing in the rules are continuous, then
C* and €~ are open sets. This means that when a point (py,...,pm) is assigned
to the class CT, then there is a neighbourhood of this point in which all points are
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also assigned to CT. The same holds for the class C~. We are interested in the class
boundary, i.e. the set of points that are classified as unknown. A typical situation
for a point classified as unknown is the following: There is exactly one rule firing
with the maximum degree for class € and also exactly one rule firing with the
maximum degree for class €. For each of these rules the firing degree is determined
by just one attribute for which the membership degree to the corresponding fuzzy
set in the rule yields the firing degree (the minimum in equation (1)). Let us for
the moment assume that x; is the corresponding attribute for class T and x5 for
class €. This means that the firing degree for class €* and G~ does not change,
when slightly change any of the values of the attributes xs, ..., x,,. In this sense,
the classification depends in this situation locally only on the two attributes x; and
Ia.

However, the above considerations are only correct in this special case where the
maximum firing degree for each class is determined by just one rule and the mini-
mum in the corresponding rules is determined by just one variable each.

When there are more than just two rules firing with maximum degree, the situation
is different. Let us consider the six rules

Ry: If 21 is positive small and xg is anything and z3 is anything
then class is €T

Ro: If 1 is anything x5 is positive small and x3 is anything
then class is €T

Rg: If ¢ is anything and x5 is anything and x3 is positive small
then class is €T

Ry: If 1 is negative small and x9 is anything and z3 is anything
then class is €,

Rs: If 1 is anything and x5 is negative small and x3 is anything
then class is €,

Rg: If 1 is anything and x5 is anything and x3 is negative small
then class is €,

where the fuzzy sets positive small and negative small are chosen as illustrated in
figure 1 and the fuzzy set corresponding to anything is the constant function 1.
When we consider the point (0,0,0), we have

#8(0,0,0) = 05

and

159(0,0,0) = 0.5,

i.e. (0,0, 0) is classified as unknown. But when we increase any of the three variables
21, T2, or x3, the resulting point is classified to €7 and when we decrease any of
these three variables the resulting point is classified to €. This means that the
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. A i
negative small positive small

Y

Figure 1: Two fuzzy sets

classification near (0,0,0) depends on all three attributes. If we choose ¢ > 0,
we have (g,0,0),(0,¢,0),(0,0,¢) € € and (—¢,0,0),(0,—¢,0),(0,0,—¢) € €.
Therefore, we cannot say that fuzzy max-min classification systems generally decide
locally on the basis of two variables. However, the above described example can
be seen as an exception and we can show the following: When there is a point
on the class boundary where the classification depends (locally) on more than two
variables, then in any neighbourhood of this point there is another point on the class
boundary where the classification depends locally only on at most two variables.
So far we have not made any assumptions on the fuzzy sets. We require that they
are continuous and that they have a local one-sided Taylor expansion everywhere.
This means the following: If u is a fuzzy set, then for any z¢g € R there is ¢ > 0
and there exist power series

Z ag)(x —x0)F  and Z ag“)(x — x0)F,
k=0 k=0

so that
pleo —h) = 3 ag'nt
k=0
and

pleo 1) = 3 aynt
k=0

hold for all 0 < h < e.

Note that typical membership functions used in application like piecewise linear
functions (for instance triangular or trapezoidal fuzzy sets) or Gaussian member-
ship functions fullfill this property. In the following section we will see, why we
need this technical condition.

3 Basic Definitions

We consider a fuzzy max-min classification system as it was described in the pre-
vious section.
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Figure 2: Two fuzzy sets

Definition 1 The set D of the points that have the same membership degree to CF
as to C~ is called separating set.

8 denotes the vector that has & as the i*" component and 0 for the other compo-
nents.

As we have already mentioned in the previous section, we require that the fuzzy sets
have a local one-sided Taylor expansion. In order to illustrate what can happen, if
we refrain from this restriction, we consider the following example.

Example 1 We consider a fuzzy classification system for data with just one at-
tribute x with the following two rules:

Ry: If x is yy then class is CT
Ro: If x is pg then class is €~

where the fuzzy sels py and pe are defined by

0 ifxr<0
w(x) = 3z f0<x<i
1 otherwise
and
0 ifx <0
o) = 3z—a%-sin(1) f0<z<i
1— & -sin(3) otherwise.

Figure 2 illustrates these two fuzzy sets.
Note that pg is continuous, even differentiable, and monotonous (the first derivative
is positive), but does not have a local one-sided Taylor expansion at xg = 0.
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The point 0 is a separating point for this fuzzy classification system. But for any
interval [0, ], no matter how small we choose € > 0, there are points in this interval
that are classified to €T and also points that are classified to €.

By requiring that each fuzzy set is continuous and has a local one-sided Taylor
expansion everywhere, we can not have such a strange situation as in the above
described example. When we are in a separating point and consider one variable
that we want to change in one direction by a very small value, then we can say
that we always end up in the same class (or always remain in the separating set),
as long as the change is small enough. An ‘oscillation’ between the classes as in the
example is not possible. The following shows that our fuzzy classification systems
have this property.

Lemma 1 For each point p and for each coordinate p; of p, we have
(FA,Be{et,e",DNEBe>0)(V0<b<e)(p+6P ecAdnp—6YeB) (3)

Proof: If p is not a separating point, then p belongs to € or C~. Since these sets
are open, a sufliciently small variation of any variable will not lead out of these
sets. Therefore, we only need to consider separating points. Let us assume, that
we want to increase the variable p;. It is easy to determine, how a (sufficiently)

small increase of p; will alter the firing degree /,L(R) (p) for class €T. When the

et
change of p; influences the firing degree /,Lgi) (p) at all, we only need to consider
the rules firing for class G in which p; determines the minimum. It is now easy
to determine which will take over when we increase p;: We need to know which
fuzzy set for p; will yield the strongest change. Since we can compute the Taylor
expansions of each fuzzy set for p;, we can easily solve this problem using lemma
5 in the appendix. We can do the same for the rules for class €. Finally, we have
to decide for which class we have the strongest change. But this can be done again
by making use of lemma 5. O

Note that we only need the Taylor expansions for the proof of lemma 1. The
essential property that we are interested in is (3).

Definition 2 Letl p be a point of the separating set D. p is called a proper sepa-
rating point, when

(Ve>0)(3p,p" €N(p)): (p €CT and p” € €7)
holds, where N.(p) denotes the e-neighbourhood of p.

This means that for €~ as well as for CT there exists a direction in which the set
can be reached in an arbitrarily small distance from p.

Definition 3 Let p be a proper separating point and x; a single variable with the
value p; for p.
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1. x; is called relevant at p iff

(Fe>0)(Vo<b<e): {p+6W p—6DINECt £0 and
{p+ 6@, p—60rne £0.

This means that increasing p; leads into one set and decreasing p; leads into
the other one.

2. x; is called semi-relevant (for C1) at p iff

(Fe>0)(V0<b<e): {p+6@,p—56@DYCCruUD and
{p+ 6@, p—6@1net £0

This means that we can reach only CT and not C~ by varying p; by an arbi-

trarily small distance. In the same way we define the notion "semi-relevant
for ™7

3. x; is called irrelevant at p iff
Fe>0)(V0<b<e): {p+6D;p—60)CD.

This means that it is impossible to reach either CT or C~ by varying p; by an
arbitrarily small amount.

Lemma 1 guarantees that a proper separating point is either relevant, semi-relevant
or irrelevant.

Theorem 2 (main theorem) Let p be a proper separating point and e > 0. Then
there exists a proper separating point p' in the neighbourhood N.(p) of p that has
at most two variables that are relevant or semi-relevant.

The proof of this theorem will be given in the next section, where we actually show
constructively, how to obtain the point p’ € N.(p) that has only two relevant or
semi-relevant variables.

Remark 1 There is no reason in considering a point p that does not belong to D.
Because of CT and C~ being open sets, there is always a neighbourhood of p that is
completely contained in CT, respectively €. In this sense, poinits that are in one
of the classes, do not have relevant variables.

In case of p being an inner point of D we can use the same argumentation.

4 Finding a Point with only Two Relevant Vari-
ables

Without loss of generality we assume that xq,---,x, are the relevant and semi-
relevant variables and x,,41, -+, 2y, are the irrelevant ones.
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Remark 2 We consider a point p = (p1,---,pm) € R™. The set of the rules that
(®)

are firing in p with the maximum degree ugi) (p) = - (p) is denoted by R,.

1. When we vary an atiribute of p, the variation has to be sufficiently small, so
that for the new point p' = (p1,-+-, P}, -+, Pm) there is no new rule R with
R e :Rp/ but R g_ﬁ iRp.

2. When we consider two fuzzy-sets p = u%) and v = VI(%Z,) for one variable x =
x4, we want to know which one is increasing faster, when we vary x. Since the
Taylor expansions at xq in the considered direction of the two functions exist,
we can compute the (directed) derivatives at xo. When the first n derivatives
are equal, but for the (n + 1) derivative we have p ™V (zo) > v (x0),
then within Ne (o) p is increasing faster than v, when increasing x, and the
other way round, when decreasing .

For this comparison we only need the coefficients of the Taylor expansion up
to that term that is different for p and v. We will explain this more detlailed
in the appendizx.

3. The variation ¢ must also be sufficiently small, so that i and v do not ‘over-
take’ each  other. This  means the  following: When
D (20) > v (xg), then p(x) > v(x) for all 2 > xo, © € Ne(x),
and p(x) < v(z) for all x < xy, x € No(zp).

Because of part 1 of remark 2 the irrelevant variables stay irrelevant, so that we do
not need to consider them at all. For the proof of our main theorem we only need
to consider the case that there are at least three relevant or semi-relevant variables
at the point p.

4.1 First case: Every rule contributing to the maximum fir-
ing degree has just one dominating variable

Definition 4 Let R be a rule and let x; be a variable. x; is called dominating at
point p iff
R
pr() = 1 (p).

The first case to be considered is the most simple one, where each rule of R, has
only one dominating variable at point p.

Changing one variable z; and considering a single rule (without loss of generality
firing for €1), we have the following: When p; is increasing with the change of ;,
then the rule leads to a decision for C7; the case of ; remaining constant is trivial,
and when i, is decreasing, the rule is not relevant any more for the classification
of p.

4.1.1 Af and A;

iR](f) denotes the set of rules firing in p with the dominating variable x;, i.e. the

rules R € R, with u%) (p;) = pr(p). For our purpose, it is possible to combine
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the firing degrees given by the rules of iR](f) firing for C* into one function A;". A}
describes the membership degree for the class CT, when we vary the attribute p;
of p and consider only the rules of iR](f):
AYE) = 1 (g sy — Dp+60) | ReRD, Cp = C*
i (0) == pet (p+8Y) = max{uy (p+6Y) | RERY, Cp=0C"}
The A; are defined analogously. When there are different rules firing with maxi-

mum degree at p that have all x; as the only dominating variable, then we normally
get a sharp bend at 6 = 0 (see figure 3).

R1 RQ RS Aj
AN NN - N
T T T 5=0
R1 R2 RS A;r
z; T T 5=0

Figure 3: Two examples for the construction of A}

When all rules firing at p for @ with the dominating variable x; are combined
into A:r, then we can consider A:r as the only function giving the degree to which
p belongs to €7 with respect to the dominating variable ;.

A, is constructed in the same way, and if e.g. for €* and z; there is no such rule,
then we have A = 0.

When each attribute p; is changed by 6;, then we denote the vector incorporating
all changes by 6 := S 551). The functions AL and Ay, of the total membership

degree of p' :=p+ 6 to Ct and C~ are calculated in the following way:
Ay () = Apy(p+8) == max{Af (&) i€ {1,---,n}},

and analogously for A,,.

4.1.2 Moving towards a point with only two relevant variables

We consider A; and A; instead of the individual rules.

For the procedure of finding p’ € N, (p)ND with p’ having just two relevant variables
we choose a variable z; that is relevant or semi-relevant for € and another variable
x; that is relevant or semi-relevant for €. We take p; and vary it by the distance
6; # 0, so that AJ (&) > A; (6;) and A (8;) > A} (0) = A, (0) for k # i.

We obtain a point p’" = p + 61-(1) that belongs to CT, but we are looking for a point
p’ € D. Now we can alter the attribute p; of p by 6; # 0 towards that direction
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Figure 4: An example with three variables for A:r and A,

(o T2 T3

er /T 1 ¢

e 1 I I

Figure 5: The same example after pushing

where A grows faster than A;r, so that A; (6;) > A;r (6;) holds. We choose 6; in
such a way that after this step we have A; (6;) = AS(6) > AF(0) = A, (0) for
i£k+#j Thenp =p+ 61-@) + 6§-j) is an element of D.

(o T2 T3

Figure 6: The example after changing xo

Now the point is reached, where the variables xy, for i £ k £ j are not dominating
anymore in any rule. Therefore they are irrelevant. Only z; and z; are relevant

(not semi-relevant) variables in p’. For the total membership degrees AL and Ay,
of the point p’ to €T and C~, we obtain

Ay (p+6) = max{A[ (6:), A] (6;)} and Ay, (p + 6) = max{A; (8:), A; (6;)}-
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Because of having changed the variables sufficiently small, iR]’D does not contain any
new rules. Therefore, we have A} s (¢) = Af (¢ + 6;) in No(p). This means that
within the domain we can still use the same functions of membership degree for p’
as for p.

When taking p; = p; +6; and changing it into that direction where the membership
degree for € is increasing, this yields a decision for C*. When moving p; towards
the other direction the membership degree for €T is lowered and we get a decision
for ¢7. The same applies to p; = p; + 6; and €™, so that x; and z; are both
relevant variables.

Remark 3 Because the fuzzy sets have (directed) derivatives, it is possible to vary
p; by an arbitrary small value, so that the value needed to vary p; is small enough
so that p' is in the e-neighbourhood N.(p) of p.

Proof: p; and p; have a bounded slope on N (p), because they are also differen-
tiable on the closure N.(p). Therefore, it is possible to calculate

maxy 5 - (o Ul () — pa(pa)ll} - and max, oz Ul (05) — 15 (pp)II}- We
define
Appi=ming | max pi (i) = Pl max ] (P5) — 41 (ps)1}-
(€N = (pi) p;EN=(p;)
Now we can choose p; € Nz(p;), so that ||u;(p;) — wi(p:)ll = Ap, and

P € Ne(pjy) so that [|u;(p}) — ps(py)|l = Ap.
When taking the Euclidian norm, we obtain

o' =pll = V2 ees (P — pr)?
VI () = e (2)°

6<6

IN

which proves that p’ € N.(p) holds. When considering another norm we just have
to take = with (another « instead of n) instead of =. O

4.2 Second case: There are rules contributing to the maxi-
mum firing degree with more than one dominating vari-

able

In this section we consider the case that there are rules with two or more dominating
variables. If there are also rules having only one relevant variable, we use A:r and
A; as already described for these rules.

First we consider a single rule R with two or more dominating variables. When the
dominating variable x; is varied there are three possibilities: If y; is increasing, x;
is not dominating any more, so that there is one dominating variable less in this
rule, but the rule is still firing. The case of p; remaining constant is trivial, and if
1; is decreasing, the firing degree of the whole rule is decreasing. In no case the
firing degree pug of the rule R is increasing.
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Because of x; being a relevant or semi-relevant variable, varying p; has to lead into
CT or C~. Without loss of generality we consider CT. We can reach €1 iff

1. A is increasing, and if we have that A; # 0 is also increasing, then A;” has
to increase faster than A, .

2. Every rule R firing for ¢~ with maximum degree has x; as a dominating

(z4)

variable, and in every rule p1* is decreasing, so that the total membership

degree /,Lgi) for €~ is decreasing. If all the rules firing for €™ with maximum

degree have x; as a dominating variable, too, then /,Lgi) has to decrease faster
than ugi).

In any case there are at least two variables x; and x; with (1.) being satisfied for
x; for reaching C* and for z; for reaching €~ or with (2.) being satisfied for z;
and C* and for x; and €™, because of the following:

Suppose that the variables zx, k € A C {1,---,n}, being relevant or semi-relevant
for (without loss of generality) € are satisfying (1.), when py is moved by 6.
This means that A;” 2 0 holds for these variables in the direction of the movement.
Furthermore, suppose that the variables x;, I € B C {1,---,n}, being relevant or
semi-relevant for €~ are satisfying (2.), when p; is moved by §;. This means that
all these variables are dominating in every rule firing for €*. If we have more than
two relevant or semi-relevant variables, this is a contradiction, because there is at
least one rule for €7 having only one dominating variable x;, so that the other
variables x;, [ # i, cannot satisfy (2.).

Now we have to consider the two cases that are left:

1. At least for two variables (without loss of generality x; and z;) there are rules
with only this variable dominating and with pe+ increasing when varying p;
and fpe- increasing when varying p;. Then the procedure is the same as
described in section 4.1.

2. Without loss of generality every rule firing for ¢~ has x; as one dominating
Q]

variable, and in each such rule py’ is decreasing when p; is varied into the
right direction. The same is the case for z; and C*.

We vary p; by §; # 0, so that this leads into €T, because u%) is decreasing in

every rule R firing for €~ with maximum degree and with it /,Lgi).

When there is at least one rule R firing for €' that does not have z; as a
dominating variable or with u%) not decreasing, then /,L?; is not changing.
Otherwise u%) does decrease more slowly, so that we still have /,Lgi) (z+ 65”) >
/,Lgi) (x+ 51@), because x; is relevant or semi-relevant for C.

After this the variation of p; by 6; leads back to D, because for C* every
(9

membership degree p;” is decreasing until

R 4 j R 4 j
ue o+ 87 +87) = u (4 81 + 6.
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T T2 T3

Figure 7: An example for three semi-relevant variables with two rules firing for G
and two firing for €7, x; = z1 and z; = zo.

5 Conclusions

We have shown that fuzzy max-min classification systems assign data to a class
locally (mainly) on the basis of two attributes. The set of points for which this
property is satisfied, is a dense set within the the class boundaries. Although this
sounds like a negative result, it has also positive aspects. First of all, the result
holds only locally so that the classification system can still take all attributes into
account, when we consider it from a global point of view. And although the local
reduction to two variables seems to be very restrictive, it is positive in terms of
interpretability. Since we usually want interpretable fuzzy rules, this property
definitely helps to understand the rules — especially when we take into account
that humans usually do not consider a larger number of attributes simultaneously.
Our result can also be applied to examine a fuzzy max-min classification system,
i.e. which attributes are relevant in which region.

Tt should also be noted that we can at least approximate any kind of (continuous)
class boundaries by fuzzy max-min classification system and that we replace the
maximum or minimum by another t-conorm or t-norm, the situation is completely
different [6].

6 Appendix

When two functions f; and fo are given that have a Taylor expansion in xg, we
want to use the Taylor expansions to know which function has the greater values,
when going from g into one direction.

Therefore, we take the first term of the Taylor expansion that is different for the
two functions. Without loss of generality we have f 1n) (x0) > f 2n) (20) (and with
this the n** coefficient of the Taylor expansion of f; is greater than that one of
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T T2 T3

Figure 8: The example after having pushed z;. Rf and R;r did not change, the
firing degree of R, decreased with x3 not being dominating any more, and because
of u Ry < Hg; R5 is not firing any more.

f2), while for ¢ € {1,---,n} we have fl(z) (x0) = fQ(Z) (20). Then the values of f; are
greater than those for fp, when & > g, and the other way round for z < xy in a
neighbourhood N_ () of xg, as the following argumentation will show.

Lemma 3 Assume f: R — R is twice differentiable in a neighbourhood of xq and
let t be the tangent to [ at point xg. t has the slope my = f'(xg). Let g and h be
straight lines with g(xo) = h(xo) = f(xo) and with g having slope mg > m; and h
having slope myp, < my.

Then there is an £ > 0 so that in N.(xq) f lies between g and h. This means:

Vo € No(xg),x <o : glx) < f(x) < h(z

Vo € No(xg),x > xo 0 g(x) > f(x) > h(x).
0 A

Proof: We can write t(x) = f(xo) + f'(x0) - (x — 20) and with this
fz) = t(z) +r(2)(z — z0)?
with r(xg) = 0 and r being a continuous function. r being continuous means
Vé>03e>0: (Jx — x| <e=|r(zx) —r(xo)| = |r(z)] < 6).
Considering x > xg with £ — 29 < 1 we obtain

g(x) = fx) = (mg — f'(wo) —r(x) - (x — x0)) - (x — 20) >0,
N’

=:6>0 <81 >0

>0
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T T2 T3

R} sl T
R} \r e
R; TT-oTr=-

Figure 9: The example after having pushed 2. The firing degree of R and Ry}
is given by xzo. Because of p rE < Mgt Rf is nor firing any more. We have

Het+ = Hpt = Hp = He--

because r is continuous. So we have g(x) > f(x) for z > xg, © € Nz(z0). By the
same argument we obtain f(x) > h(z) for * > xg and h(z) > f(x) > g(x) for
xr <X within Ng (xo) O

Lemma 4 Assume fi and fo are twice differentiable in a neighbourhood of x¢ and
let fi(xo) = falmo), but fi(xo) > fi(xo). Then there are a straight line g with
g(xo) = fi(xo) = fa(xo) and an ¢ > 0 so that g lies between fi and fy within a
neighbourhood N, (x¢) of xg. This means that

filz) < glx) < falx) forz<zo and
filx) > g(x) > folx)  for x > xq.

Proof: Define g by

N fi(zo) + f3(x0)

9(x) = fi(ao) -

(x — 20)

with slope my = w Adding two straight lines h; and hy with hy(xg) =
ha(xg) = g(xo) with slopes my, > fi(xg) and myp, < fi(xg) we can apply Lemma
3 to show that there is an ¢ so that g lies between f; and f; in N_(x¢). O

Lemma 5 Assume, the functions fi and fo are (n+ 2) times differentiable in a
neighbourhood of xo and let fli) (ro) = fQ(i) (xo) fori=0,---,n, but fl(nH) (o) >
2(n+1)(x0). Then there is an e > 0 so that in N_(zg) we have f1(x) < f2(z) for x <
xo and fi(x) > fa(z) for z > xo.

Proof: We give a proof by induction:

Beginning of induction (n = 0): Let fi(x0) = fa(xg) and f](xo) > fi(x0). Because
of lemma 4 we can put a straight line between f; and f;. So we have fi(x) > fo(x)
for x > 29, * € N.(xg), and the other way round for = < xg, € N.(xp).
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Induction hypothesis: When we have f; @ (x0) = fg(i) (2g) for i =0,....,n— 1 and

fl(n) (x0) > fg(n) (1), then there is an & > 0 so that fi(x) > fa(x) for = > o,

2 € N.(x0), and the other way round for x < xg, x € N.(xg).

Induction step: We have fli) (o) = fQ(Z) (zg) for ¢ = 1,..,n and
1(n+1)(x0) > f2(n+1)(x0).When defining fi; := f| and fo := f} we can use the

hypothesis and calculate for x = xg + 6, 0 < 8§ < &:

fix) = fo(x) = fi(zo +6) — fa(wo + 6)
= Jo Ui (o +1) = fyao + 1)t
= Jo (Fi(wo +1) = falwo + 1)) dt >0,

>0

because we have fi(zo + 1) > fa(xo + 1) for 0 < t < . Therefore, we obtain
filz) > folz) for z > xy, © € N.(x0). The same can be carried out for x < o,
x € N.(z0). O
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