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Abstract

BL-algebras [7] rise as Lindenbaum algebras from certain logical axioms
familiar in fuzzy logic framework. BL-algebras are studied by means of de-
ductive systems and co-annihilators. Duals of many theorems known to hold
in MV-algebra theory remain valid for BL-algebras, too.
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1 Introduction

BL-algebras have been invented recently by Hajek [7] in order to provide an alge-
braic proof of the completeness theorem of a class of [0, 1]-valued logics familiar
in fuzzy logic fremework. BL-algebras ! rise as Lindenbaum algebras from certain
logical axioms in a similar manner as MV-algebras (cf. [1], [2], [3], [4], [6], [9])
do from the axioms of Lukasiewicz logic. In fact, MV-algebras are BL-algebras.
The converse, however, is not true. It follows from a result of Hohle [10] that BL-
algebras with involutory complement are MV-algebras. In this study we start a
similar study of BL-algebras as Belluce [1], [2], Chang [3], [4], Gluschankof [6], Hoo
[9] and others have done in the theory of MV-algebras; there the basic tool is ideal
theory while in BL-algebras, because of lack of a suitable algebraic addition, we
have to deal with deductive systems. Moreover, in logic context deductive systems
have a natural interpretation as sets of provable formulas. In MV-algebra theory,
deductive systems and ideals are dual notions; there deductive systems are also
called filters but, in order to avoid confusion, we prefer to talk about deductive
systems. We introduce locally finite BL-algebras and prove that such algebras are
MV-algebras. As one may expect, there is a one-to-one correspondence between
deductive systems and congruence relations of a BL-algebra. We prove that a de-
ductive system is maximal if, and only if the corresponding quotient algebra is a
locally finite MV-algebra. This fact implies one of the main result of our study:
semisimple MV-algebras are, in the sense of Chang [3] and Belluce [1], the only
BL-algebras that are representable by a system of fuzzy subsets of a set. However,
as proved by Hajek [7], all BL-algebras are representable by linear BL-algebras.

1The letters BL stand for basic logic
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It remains an open problem to chracterize all linear BL-algebras. We introduce
co-annihilators and prove some of their elementary properties; all these results will
be an introduction for a future, more detailed analysis on BL-algebras.

2 Preliminaries

Recall from [1], [2], [3], [4], [6], [9] the definition and basic properties of an MV-
algebra A = (A,Q,®,*,0,1).

Definition 1 A residuated lattice L = (L, <,A,V,®,—,0,1) is a lattice L con-
taining the least element 0 and the largest element 1, and endowed with two binary
operations @ (called product ) and — (called residuum) such that (i) ® is associa-
tive, commutative and isotone and, for all elementsx € L, x © 1 = z, (ii) for all
x,y, 2 € L, the Galois correspondence

rOy<ziffr<y—z

holds.

Residuated lattices are known also under other names, e.g. Hohle [10] calls them
integral, residuated, commutative l-monoids. The following equations are valid in
any residuated lattice I [13]:

x@\/yi:\/@@yi), (1)

i€l i€l
ify<zthenr—z<y—zand z—y<z—ux, (2)
r—(y—2)=(x0y) — 2 (3)
r<yiffe —y=1, (4)
2=y <(x—2)—(z—y), (5)
(\/ Yi) — = /\(yz — ), (6)
i€l i€l
0—y=1landax=1— 2. (7)
We define * = \/{y € L |  © y = 0}, equivalently, z* = = — 0. Then
0"=1,1"=0and z < z** 2% = 2", (8)

Moreover,

\Vwi—2) <(N\w)— = (9)

ier ier
z— Nvi= N\@—w), (10)
ier ier

y<(y—uz)—u=, (11)
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where I' is a finite or infinite index set and assuming, of course, that the corre-
sponding infinite meets and joins exist in L. For sake of completeness, we recall
that

Ayt = (zVvVy)t (12)

Indeed, for all z,y € L, z,y < 2 Vy, thus (xVy)* <z* Ay*, and (* Ay*) © (2 Vy)
= (=" Ay") 0zl V[(@* Ay") Oyl < (2" ©x)V(y* ©y) = 0, hence z* Ay* < (zVy)"
Then, in particular, if x Vz* =1,

x*Ax = 0, (13)
since x* ANx < zx* Az** = 0.

Definition 2 A residuated lattice L is called an Bl-algebra if the following three
identities hold for all x,y € L :

Ay = z0(r—y), (14)
zVy = [(z—=y)—=yrly—z) =z (15)
(x —>y) \% (y—>x) = 1. (16)

In [7] it is shown that any continuous t-norm generates an Bl-algebra, and that a
linear residuated lattice is a BL-algebra iff (14) holds. The following three struc-
tures are main examples of Bl-algebras on the real unit interval [11].

1 ifz<y
y elsewhere.
Tt is well-known that min{z, y} is the greatest t-norm on [0, 1].

Example 1 Goédel structure: @ y = min{z, y}, x — y = {

1 ifx<y
Example 2 Product structure: * Oy =2y, r — y = { % clsewhere.
W.M. Faucett proved in [5] that any continuous t-norm with no idempotents, except
0,1 and no nilpotents i.e. non-zero elements = such that x™ = 0 for some n, is

equivalent to ©.

Example 3 Lukasiewicz structure: z ® y = max{0,z +y — 1},

vy 1 ifr<y
y= 1—z+y elsewhere.

As proved in [12], any continuous t-norm on [0, 1] with no idempotents, except 0, 1
and at least one nilpotent, is equivalent to ©.

From [8] we learn that any BL-algebra defined on the real unit interval is a "mixture’
of the three above BL-algebras. Not all the residuated lattices, however, are BL-
algebras. Indeed,

Example 4 For all z,y € [0, 1], define

Oy — 0 ifzt+y<i v 1 ife<y
vy= x Ay elsewhere ’ Y7\ max {3 —z,y} elsewhere.
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Then we obtain a residuated lattice which is not an BlL-algebra as (14) does not,
in general, hold. An MV-algebra generates an BL-algebra, where the residuum is
defined by * — y = z* & y. Hohle [10] defined that a residuated lattice L is an
MV-algebra if, and only if the additional condition

forall z,y € LixVy=(x —y)—vy (17)

is satisfied. Then the MV-operation & is given via x $y = =* — y. Hohle [10]
also showed that an equivalent condition with (17) is that the residuated lattice L
fulfils (14) and the operation * is an involution, that is

forall z € L,x = ™. (18)

We therefore have that an BL-algebra generates an MV-algebra if, and only if (18)
holds.
Our basic observation on BL-algebras is the following

Proposition 1 BlL-algebras are distributive lattices.

Proof. Let a,b, ¢ be elements of an BlL-algebra .. Then

an(Vve) = (BVe)e|(bVe)—d]

— polbve —a}vicolbVe —d)
bO (b — a)] Ve (¢ — a)
(bAa)V(cha)
(a AD)V (aAc).

A

The converse holds, too, since (a Ab), (a Ac) < an(bVe)O

3 Deductive systems of BL-algebras

Definition 3 A deductive system D of an BL-algebra L (ds, in short) is a subset
of L such that (1) 1 € D, (ii) ifa,a — b€ D, then b € D.

Hajek [7] defined a filter of an BL-algebra L to be a such non-void subset of L that
(i) if a,b € F then a©®b € F and (ii) if a € F,a < b, then b € F.

Proposition 2 A subset D of an BL-algebra L is a ds of L if, and only if D is a
filter of L.

Proof. Let D be a ds. Then D is non-void since 1 € D. Moreover, if a,b € D, then
l=a—[b—(a®b) € D,sob— (a®b) € D and therefore also (¢ ©®b) € D, and
ifae D,a<b, thena—b=1¢€ D, thus b € D, hence D is a filter. Conversely,
if D is a filter of L then there is an element x in D. Since x <1, 1 € D. Assume
a,6 — b € D. Then ¢ ® (¢ — b) € D, and since a ® (¢ — b) < b, we have that
b € D. Consequently, D is a ds of 1.0
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Clearly {1} and L are deductive systems of L. If D is a ds of L, then for any
a € L we have a € D if, and only if ¢ € D for any natural number n. A ds D is
called proper if D # L. Tt is easy to see that D is proper iff 0 ¢ D iff there is no
such element a¢ € L that both ¢« € D and a* € D. A proper deductive system D
is called prime if a Vb € D always implies ¢ € D or b € D. We can say that D is
prime iff

foralla,be L,a —be Dorb—acD. (19)

Indeed, by (16), (¢ — b)V (b — a) € D for any a,b € L, thus if D is prime then
either (¢ — b) € D or (b — a) € D. Conversely, let (19) hold, D being a ds.
Assume a Vb € L and let, say, (¢ — b) € D. By (15), aVb < (a — b) — b, thus
(@ — b) — b € D and therefore b € D. Similarly, (b — a) € D implies ¢ € D.
Thus D is prime. We also realize that any ds D of an BL-algebra L is a lattice
filter of L; indeed, if a¢,b € D, then a ®b € D and a ©b < aAb, thus a Ab € D and
conversely, if a Ab € D, then a,b € D since a Ab < a,b.

Proposition 3 If X is a non-void subsetl of an BL-algebra L, then
Xy={a€Ll|z10---0Qzy <a for somexy,---,x, € X}
is a ds of L and X C (X).

Proof. Trivially 1 € (X) and if a,a — b € (X) then there are xy,---,x, € X,
Y1, Ym € X such that 21 ©--- QO zp<a, 1 © - O ym< & — b. Since

OO, OO OUYm <a® (a—b) <b,

we have b € {X). Therefore (X} is a ds of L. As y <y for any y € X, we have
X C{x).O

The following four Propositions generalize the corresponding results of Glu-
schankof [6].

Proposition 4 Any BL-algebra L contains a prime deductive system.

Proof. Since an Bl-algebra L contains the elements 0, 1 and since L is a distributive
lattice, it follows from general lattice theory that L contains a maximal, prime
lattice filter P. Set P¢ = L\ P # () and define

P:ﬂyepc{x€L|x—>y€Pc}.

We show that P is a prime ds of L. If y € P¢ then, since y = 1 — y, we conclude
that 1 € P. Assume z,2 — z € P. Then for any y,w € P¢, we have & — y € P°,
(x — 2z) — w € P°, so in particular (x — 2) — (x — y) € P° for all y € P°. By
(5), (z = y) < (r — 2) — (x — y), thus the assumption (z — y) € P would imply
the contradiction (x — z) — (z — y) € P. Thus (z — y) € P¢ for all y € P°,
therefore z € P and so P is a ds of L. To see P is proper it is enough to realize
that, for any y € P°, wehavey —y=1€ Psoy ¢ P. By a similar argument we
also see that P C P. Indeed, it there would be an x € P with ¢ P, then x € P°
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and since x — x =1 € P, we should have z ¢ P. Tt remains to demonstrate that
P is prime. Assume zVy € P but « ¢ P, y ¢ P. Then there are z,w € P° such
that x — 2z € P,y — w € P. If 2VVw would be in P, which is a prime lattice filter,
then we should have z € P or w € P, a contradiction. Therefore z VV w € P€, thus
(xVy) — (#Vw) € P°. On the other hand, as ¢t — 2 <z — (zVw), y — w <
y — (2 Vw), we have x — (2 Vw), y — (2 Vw) € P. Applying now (6), we have

[t — VW) Aly— (zVw)] = (xVy) — (z Vw) € P.
This contradiction proves that x € P or Yy e P. The proof is complete.[]
Proposition 5 If Pis a prime ds and P C D is a proper ds, then also D is prime.

Proof. Assume a Vb € D. Since P is prime, either a — b€ Por b— a € P. Let,
say,b—a € P C D. By (15), we have aVb < (b — @) — @, hence (b — a) —a € D
and so ¢ € D. Thus D is prime.l]

Proposition 6 If P is a prime ds, then the set
F={D|PCD,D is a proper ds}
is linearly ordered with respect to seil-theoretical inclusion.

Proof. Let E,D € F. Assume E € D, D € F. Then there are a,b € L such that
a€D,a¢ E,be E, b¢ D. Since P is prime, eithera b€ Porb—ac P. If
a —be P CD,then b€ D, a contradiction, and if b — a € P C F then a € E,
another contradiction. Thus £ C D or D C F.0

Proposition 7 Any proper ds D of an BL-algebra L can be extended to a prime
one.

Proof. If D is a proper ds then it is a lattice filter and can therefore be extended
to a maximal, prime lattice filter P. Similarly to the proof of Proposition 4 we
show that P is a prime ds and P C P. By Proposition 3, (DU P) is a ds and
D C (DU P). We verify that (D U P) is proper by showing (DU P) C P. Let
therefore z € (D U ]5> Then 21 @ - © 2, Oy1 © -+ © Yy < x where, by the
commutativity of ©, we may assume 21, -+, 2z, € D, y1,- -, ym € P. Since

B (o= (= (= (= (g — ) ) ) = 1€ D,

we conclude y1 — (- — (Y, — x)---) € D C P. Assume now z € P°. Since
Ym € P, ym — x € PC, thus also ym_1 — (ym — x) € P°, etc. and finally
Y1 — (- — (Ym — x)---) € P°, a contradiction. Therefore x € P. Thus (D U P)
is a proper ds. Since P C (DU P) and P is prime, also (D U P) is prime.[]

As usually, a proper ds is called maximal if it is not contained in any other
proper ds. There are prime deductive systems which are not maximal. Maximal
deductive systems, however, are prime since we have

Proposition 8 Any proper ds D of an BL-algebra L can be extended to a maximal,
prime ds.



BL-algebras of Basic Fuzzy Logic 55

Proof. Let D is a proper ds. By Proposition 7, D can be extended to a prime ds
E and, by Proposition 6, the set 7 = {G | E C G, is a proper ds} is linearly
ordered. Define

M:UGGFG

Then trivially 1 € M and if ¢,a — b € M then a,a — b € G for some G € F,
thus b € G C M. Therefore M is a ds and is also proper; indeed, since no G € F
contains 0, we have 0 ¢ M. By Proposition 5, M is prime and obviously maximal.[]

Tt is easy to see that there is one-to-one correspondence between (maximal)
deductive systems of an BL-algebra L and (maximal) congruence relations on L,
namely

Proposition 9 Let L be an BL-algebra. Then

(i) if ~ is a (maximal) congruence relation on L, then D ={a € L|a ~ 1} isa
(mazximal) ds of L.

(ii) if D is a (maximal) ds of L, thenx ~y iff (x - y) ©(y — x) € Disa
(maximal) congruence relation on L.

Hajek [7] proved that, given a ds D, the corresponding quotient algebra L/D is a
BL-algebra and is linear if, and only if D is prime. As in the case of MV-algebras,
we have

Proposition 10 An BL-algebra L is linear if, and only if any proper ds of L is
prime.

Proof. If L is linear then, for all a,b € L, avVb=aoraVb=>5. Thus,aVbe D
iff a € Dorbe D, where D is any proper ds. Conversely, assume any proper ds
is prime. Then, in particular, {1} is prime. Since, for any a,b € L, (¢ — b) V (b —
a) € {1}, we have that (¢ — b) € {1} or (b — a) € {1}. Therefore a« < bor b < .0

Definition 4 The order of an element x of an BL-algebra L, in symbols ord(x),
m terms

e
is the least integer m such that ™ = 2 © ... x = 0. If no such m ezxists then

ord(x) = co. An BL-algebra L is called locally finite if all non-unit elements are
of finite order.

Notice that the order of an element x of an BL-algebra L does not, in general,

coincide with the MV-order of x, if L happens to be simultaniously an MV-algebra.

In MV-algebra theory, the order of an element x is defined to be the least integer
n terms

n such that nx =2 & ... 2 = 1, in symbols O(x) = n, and if no such integer n

exists, then O(x) = oo. In the Lukasiewicz structure, for example, 0rd(0.6) = 3,

while 0(0.6) = 2.

Proposition 11 Locally finite BL-algebras are linear.
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Proof. Assume aVb=1. Then 1 = [(¢ — b) — b|A[(b — a) — a] < [(e — b) — b],
thus (b <) a — b < b, hence b = a — b. Let now a # 1. Since the BlL-algebra
L under consideration is locally finite, there is an m such that a™ = 0. Now
b=a—b=a—(a—b=d>—b=...=a™ —-b=0—0b=1. Thus,aVvb=1
iff @ =1 or b= 1. Since, for all elements a,b € L, (¢ — b) V (b — a) = 1, we have
that ¢« — b=1or b — a = 1. Therefore ¢ < b or b < a¢.0

Proposition 12 In a locally finite BL-algebra L, for all x € L,

O<zx<l1l df O0<z'<1, (20)
2" =0 diff xz=1, (21)
x*=1 dff x==0. (22)

Proof. Assume 0 < x < 1, ord(z) = m(>2). Then 2™ 1@z =0, 2™ 202z # 0 so,
by the definition of z*, 0 < 2™~ ! < z* < 2™ 2 < 1. Conversely, let 0 < z* < 1,
ord(x*) = n(> 2). Then, by a similar argument, 0 < (z*)" ! < z** < (z*)" 2 < 1.
If now z = 0, then z* = 1, a contradiction. Therefore 0 < z < 2** < 1 and (20)
is proved. If 2* = 0 but =z # 1, then 0 < z < 1, which leads to a contradiction
a* £ 0. Thus 2 = 1, which proves (21). The verification of (22) is similar.[J

Proposition 13 In any BL-algebra L, for all x,y,z € L,

ifz—r=z—yandz,y<z then xz=uy, (23)
if L is linear and 2 —x=2—y %1 then xz=uy. (24)

Proof. fz,y < zthenx = (zAz)=20(z—2)=20(z—y) =AYy =y,
thus (23) holds and, if 2 — 2 =z — y # 1, then z £ =, 2 £ y therefore, if L is
linear then z,y < z and (24) now follows by (23).0

Proposition 14 Locally finite BL-algebras are MV-algebras.

Proof. Tt is enough to show that a** = a holds for any element 0 < a < 1 of
a locally finite BL-algebra L; for such an element a we have 0 < a* < 1 and
0 < a** < 1. By sefting x = a, y = b and ¢ = 0 in (3) we see, for any b € L, that
(e ®@b)* = a — b*. Since ¢ < a**, we have ¢ = a A a** = a** © (¢** — a), thus
a* = [a** © (a** — a)]* = «** — (¢** — a)*. On the other hand, a* = a*** =
a** — 0. Since L is linear and ¢** — 0 = a** — (a** — a)* # 1 we have, by (24),
that (¢** — a)* = 0 and, by (21), ¢** — a = 1. Thus, ¢** = .0

Let L be the MV-algebra generated by a locally finite BL-algebra. If L would
contain an element 0 < x < 1 such that mz < 1 for all natural numbers m, then
the element 0 < z* < 1 should have the property (z*)™ = (mz)* # 0 for all
natural numbers m. This contradition proves that L is a locally finite M V-algebra.
By a similar argument we easily see that also the converse holds. Summerizing,

Theorem 1 Locally finite MV-algebras and locally finite BL-algebras coincide.
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The following theorem generalizes a result proved by Chang [3]. It also follows by
a more general argument given by Hohle [10].

Proposition 15 Let M be a ds of an BL-algebra L. Then the following conditions
are equivalent:

M is a maximal ds. (25)
Ve g M :3n €N such that (z™)* € M. (26)
L/M is a locally finite MV-algebra. (27)

Proof. Assume (25). Let x & M. Define a subset D of L by
D={zeL|forsomeye MneN yoz" <z}

Then trivially 1 € D. If a,a — b € D then, for some y,y’ € M, n,m € N, holds
yor <a ¢y @2 <a—b Sincey@y € Mand (y©z™) O (y ©2™) =
(youy )0z < a® (e —b) < b, we conclude that b € D and, therefore, D is a
ds. Since, for any y € M, y@x <y, we have M C D. But,as 1 € M and 10z < x,
we also have x € D. Since M is maximal, this implies D = L. Therefore 0 € D,
i.e. there exists y € M, n € N such that y © 2" < 0, in other words y < (z")*.
Hence (2™)* € M. Thus, (26) holds. Assume now (26). Let /M € L/M be such
that /M # 1/M, so x ¢ M. Then there exists a natural number n such that
(™)* € M and therefore (z")*/M = 1/M, so that 2™/M < (x™)** /M = 1*/M =
0/M. Therefore ™ /M = 0/M, hence L/M is a locally finite MV-algebra. Finally,
assume (27). Let D be a ds such that M C D. Assume there is an element x € L
such that x € D, x ¢ M. Then x/M # 1/M and therefore z™ /M = 0/M for some
n, ie. 0~y 2 Since M C D, also 0 ~p z", i.e. #"/D = 0/D. On the other
hand, x € D so ™ € D, thus z"/D = 1/D, therefore 0/D = 1/D, which implies
0 € D, whence M is maximal.[]

An MV-algebra is called semisimple if the intersection of all it’s maximal ide-
als contains only the element 0, or dually, if the intersection of all it’s maximal
deductive systems contains only the element 1. In the same manner we define an
BL-algebra to be semisimple. Let L be such an BL-algebra and M the set of all
maximal deductive systems of L. Then L is a subalgebra of the direct product of
the quotient algebras L/M, M € M. By Proposition 15, each L/M is a locally
finite MV-algebra. By a well-known theorem of Chang [4], L is a semisimple MV-
algebra, hence isomorphic to a subalgebra of the Bold MV-algebra of fuzzy sets
[0, 1JM", where M* = {M* | M € M} is the set of all maximal ideals M* of L.
This justifies the following:

Theorem 2 In the class of BL-algebras, semisimple MV-algebras are the unique
algebras representable by fuzzy sets, i.e. isomorphic to a subalgebra of |0, l]M*

A general BL-algebra has, however, another kind of representation as Héjek [7]
proved that any BL-algebra is isomorphic to a subalgebra of a direct product of
linear BL-algebras. Characterizing all linear BL-algebras is therefore an important
and interesting problem. BlL-algebras on the real unit interval are well-known,
however, generally this problem remains open.
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4 Co-annihilators in BL-algebras

Annihilators offer a powerful tool in MV-algebra theory. Dealing with BL-algebras,
we use a dual notion and define

Definition 5 Given a non-void set A of an BL-algebra L, a set
tA={xeLlavz=1 foralac A}
is a co-annihilator of A.
The following Propositions generalize some results of Hoo [9].
Proposition 16 “A is a ds of L. If A+ {1} then ~A is proper.

Proof. Trivially 1 € TA. Assume z,2 — y € "A. Let a € A. Thenx — y < 2 —
(yvVa),a<yVa=1— (yVa)=(xVa)— (yVa). Therefore

1 = (z—y)Va

e — Vv a) v [(z V) — (y a)
A 2V a) = (y v a)]

= r—(yVa).

<
<

Thus x <yVa,sol =xVa<(yVa)Va=1yVa Hencey € ~A, whence *A is
ads. If A+ {1} and as A is non-void, there is an element @ € A such that a # 1
and 0V a = a # 1. Therefore 1A is proper.[]

By Proposition 3, () = {y € L | 2™ < y for some n € N'} is a ds of an BL-
algebra L. Tt is easy to see that ord(z) < oo iff () = L and () is proper iff
ord(x) = 0o. Given a € L, define

Di={zel|r—a=a0a— =z}
Then trivially x € D% iff a« € D*.
Proposition 17 For any a € L, D® is a ds of L and D* =" {a}.

Proof. f a V2 = 1 then, by (15), (¢ - 2) =z =1and (x — a) - a =1,
ie. « w2 =1xand r — a = a. Therefore a} = {r € L | aVzr =1} =
{lrel|lz—a=0a06a—x=x}=D"0O

Proposition 18 If ord(a) < oo then D* = {1}.

Proof. Assume ord(a) =m < 0o, x € D*. Then a € D* which is a ds. Therefore
@™ € D" hence 0 € D" and so 0 — x = x. This means x = 1.[1

Proposition 19 Forany 0 A X C L, "X = Nepex D* = ﬂreXL{x}.

Proof. a € "X iffVz € X: aVa =1iff Vo € X: a € Hz} iff a €N, x o} =
ﬂreXDr'D
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Proposition 20 For any non-void set X C L, (X)N*X = {1}, in particular, for
allz € L, D*N{z) = {1} and, if D is a ds, then DN*+D = {1}.

Proof. If a € (X)N1X, then a €1X, hence x — a = a for all € X. Since a € (X)),
1 0...0x, <a for some x1,...,x, € X, thus

1=uz1—(..2p1— (2, —a)...) =

The second claim follows by the fact D*="{z}. If, in particular, D is a ds and a €
(D), thena € Dasx10...0x, <aforsomezxy,...,z, € Dandx;5...0x, € D,
hence (D) = D, whence DN'D = (D)n*D = {1}.00

Proposition 21 If “A is a prime ds and a,b € A then either for all x € A holds
x €D or for allz € A holds x € D72,

Proof. Since (¢ — b)V (b — a) = 1 and A is a prime ds, either ¢ — b €A =
Npea D or b —a €(,.4 D, thus either for all z € A holds = € D*=? or for all
x € Aholds x € D¥~2.0

Proposition 22 Let A C L be a ds. Then A is a prime ds if, and only if A is
linear and A # {1}.

Proof. Assume A is linear and A # {1}. Let a Vb €A, but a ¢*A, b ¢A. Then
there exists z/,z"” € A such that a V' # 1, bV’ #£ 1. Set x = 2’ Az”. Then
x € Aas Aisadsand, clearly, aVz £ 1, bVa £ 1. Sincex < aVuz bV, we
conclude a V x,bV x € A and, as A is linear, we may assume bV z < a V x. Now

1=(avb)Vz=aV(Vve)<aV(aVz)=aVuz,

which contradicts the fact ¢ V 2 # 1. Therefore a €A or b €A, hence A is
prime. Conversely, assume A is prime. Then A # {1} as otherwise we would
have “A = L. Let a,b € A. Sinceb < a — b, a < b — a and A is a ds, we
have ¢ — b,b — a € A. By Proposition 21, either ¢ — b,b — a € D*~? or
a — bb— a € D¥74. In the first case 1 = (¢ — b) V (¢ — b) = (¢ — b), thus
a < b, in the second case 1 = (b — a) V (b — a) = (b — a), hence b < a. Therefore
A is linear.[]

Proposition 23 If X C Y, then 'YCX.

Proof. If z € ﬂyGYL{y} then, forany r € X C Y,z — 2z = 2, z — x = x, thus
2 € Nyex H{z}. Therefore 1Y = ﬂerL{y} CNpex {2} =*x0O

Theorem 3 If() £ X C L, then

X c ‘ttx, (28)
tx = +tx, (29)
X = HX). (30)
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Proof. *tX ={a€ L|aVvae=1forallz €-X}. Ifnow b€ X, then bV z =
1 for all z €+ X, hence b €+ X and (28) holds. By (28), X C +*1X and, by
Proposition 23, -+ X C +X. Therefore (29) holds. To verify (30), we first reason
that a fact X C (X) implies -(X) C +X. To see that also the converse inclusion
holds, assume y €-X. Then, for any ; € X, i = 1,...n, ; Vy = 1. We
demonstrate, by induction on n, that also (z; ®...®z,)Vy = 1. If n = 1, then
the claim is clearly true, so assume it is true for n = k. Let n = k + 1 and set
x = (21 ®...3 ). By induction hypothesis,

1 = (yVva)o(yVarea)
= WoVae)]Vizo Vel
= yVizoy V(O rK)
yViyViz©.. 0k
= yV(r1O...0xk11)-

IN

Thus, the claim holds for all natural numbers n. If now z € (X) then, for some
21,2, €X,210... @2, < 2. Therefore 1 = yV (210 ...0x,) <yVz. We
conclude that y vV 2 = 1 for any z € (X) and so y €{X). This proves - X C +({X)
and the proof is complete.[]

Proposition 24 If a linear ds D contains an element x £ 1 and xVx* =1, then
x is the least element of D.

Proof. Since x V 2* = 1 we have, by (13), that z A 2* = 0. Let a € D. Then a =
avVO0=aV(zxAz*)=(aVa)A(eV "), where the last equation follows by the
distributivity of L. By Proposition 22, *D is a prime ds. Since z V z* = 1, either
x €D or x* €D and, as xVx = = # 1, we necassarily have * €-D. Now a € D,
hence a VvV z* = 1, whence @ = a V z, thus x < @ and the proof is complete.[]

References

1. L.P. Belluce, Semisimple algebras of infinite valued logic and Bold fuzzy set
theory, Can. J. Math. 38 (1986), 1356-1379.

2. L.P. Belluce, Semi-simple and complete MV-algebras, Algebra Universalis 29
(1992), 1-9.

3. C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math.
Soc. 88 (1958), 467-490.

4. C.C. Chang, A new proof of the completeness of Lukasiewicz axioms, Trans.
Amer. Math. Soc. 93 (1959), 74-80.

5. W.M. Faucett, Compact semigroups irreducible connected between two idem-
potents, Proc. Amer. Math. Soc. 6 (1955), 741-747.



BL-algebras of Basic Fuzzy Logic 61

6.

10.

11.

12.

13.

D. Gluschankof, Prime deductive systems and injective objects in the algebras
of Lukasiewicz infinite-valued calculi, Algebra Universalis 29 (1992), 354-377.

P. Hajek, Metamathematics of fuzzy logic. Inst. of Comp. Science, Academy
of Scienec of Czech Rep. Technical report 682 (1996).

P. Héjek, L. Godo and F. Esteva, A complete many-valued logic with product-
cojunction. Arch. Math. Logic 35(1996), 191-208.

C.S. Hoo, MV-algebras, ideals and semisimplicity, Math. Japonica 34 (1989),
563-583.

U. Hoéhle, Residuated l-monoids, in Non-classical Logics and Their Appli-
cations to Puzzy Subsets: A Handbook of the Mathematical Foundations of
Fuzzy Set Theory (Eds. U. Héhle and E.P. Klement) Kluwer, Boston 1994.

J. Menu and J. Pavelka, A note on tensor products on the unit interval,
Commment. Math. Univ. Carol. 17 (1976), 71-82.

P.S. Mostert and A.L. Shields, On the structure of semigroups on a compact
manifold with boundary, Annals of Math. 65 (1957), 117-143.

E. Turunen, Well-defined fuzzy sentential logic, Math. Log. Quart. 41 (1995),
236-248.



