Mathware & Soft Computing 6 (1999) 5-32

A Hybrid Evolutionary Approach to Intelligent
System Design

Amr Badr*, Ibrahim Farag™ & Saad Eid***
*Dept. Computer Science, Inst. Statistical Studies & Res. (ISSR),
Cairo Univ. e-mail: ruaab@rusys. EG.net
** Dept. of Computer Science at ISSR, Cairo Univ.
“** Dept. of Elect. Eng., College of Engineering , Cairo Univ.

Abstract

The problem of developing a general methodology for system design has al-
ways been demanding. For this purpose, an evolutionary algorithm, adapted
with design-specific representation data structures is devised. The represen-
tation modeling the system to be designed, is composed of three levels of
abstraction: the first, is an ’abstract brain’ layer- mainly a number of com-
peting finite state machines, which in turn control the second level composed
of fuzzy Petri nets; the third level constitutes the component automata of the
Petri nets. Several mutation operators have been developed acting on that
representation. The function of these operators is controlled by a ’stochastic
L-system’- representing the chronological application of design tasks. The
Petri nets’ layer receives tokens from the abstract brain layer and serves in
modeling synchronous and asynchronous behaviour. The framework is specif-
ically suited to what is called ’distributed design’- design of communicating
systems. For that purpose, a methodology has been developed and imple-
mented/ tested in the system GIGANTEC: Genetic Induction for General
Analytical Non-numeric Task Evolution Compiler.

Keywords. Genetic Algorithms- Evolutionary Algorithms- Finite State
Machines- Petri Nets- Fuzzy Sets- Symbolic Computing- Model Design- State
Spaces- Mutation Operators- Search- Exploration- Stochastic Context Sensi-
tive Grammar- Stochastic L-system.

1 Introduction

The quest for the development of a general framework specifically suited for lin-
guistic large-scale designs has always been a problem. Genetic algorithms have
been known for their application in design problems. A genetic algorithm is a
model of machine learning which derives its behaviour from a metaphor of some
of the mechanisms of evolution in nature. This is done by the creation within a
machine of a population of individuals represented by chromosomes, in essence, a

6 A Hybrid Evolutionary Approach to Intelligent System Design

set of character strings that are analogous to the chromosomes of our DNA. The
individuals in the population then go through a process of simulated evolution.
Genetic algorithms are used in a number of application areas. An example would
be multi-dimensional optimization problems in which the character string of the
chromosome can be used to encode the values for the different parameters being
optimized. In practice, a genetic model of computation is implemented by having
arrays of bits or characters to represent the chromosomes [Gol89]. Simple bit ma-
nipulation allow the implementation of ’crossover’, 'mutation’ and other operators.
Evolutionary algorithms are broader in scope. In fact, any genetic algorithm with
a chromosome representation other than the bit string can be termed an evolution-
ary algorithm [Mic96]. Other examples of evolutionary algorithms are evolutionary
programming, evolution strategies, classifier systems and genetic programming.

It is evident that the majority of applications tackled so far were directed to-
ward the 'nmumerical’ optimization scheme, constrained or unconstrained. Design
problems are no difference. Systems tackling the symbolic side of the design has
always been scarce. The problem considered in the system GIGANTEC is the
evolution of a symbolic design plan. This is comparable to Genetic Programming
techniques. [K0z92] [Koz94]|. This conforms with the principle of “Less Numerics-
More Intelligence” [Wan93] [Lim94]. Evolutionary algorithms have been utilized
for state space search and exploration. Exploration is search in ill-defined state
spaces. The work presented is novel in the method and way it tackles the design
problem. A methodology of design is forwarded. The designer should provide a
‘context sensitive L-system’ that defines the behavioural interaction between ab-
stract system tasks. As mentioned before, there are three levels of abstraction:
the finite state machine, the Petri nets and the component automata. The tokens
generated by the finite state machines (FSMs) abstract layer are forwarded into a
petri net dispatcher (PND). The PND in turn distributes & selects the potential
sub-petri net to fine-tune the abstract task represented by that token.

Tokens...
[TT 11 I
Compeing FSMs]
PND
/\‘ Tokens
- 1 .| Foay
+ Task Fine Tunning... ' PNs
Symbolic Plan Output
Figure 1

Methods and techniques of object-oriented programming are utilized to their
utmost. Each FSM is an instance by itself. Each petri net is a class by itself where

A. Badr, I. Farag & S. Eid 7

synchronous and asynchronous actions are built into the class. Synchronous and
asynchronous actions are modeled by means of intra- and inter- concurrency within
a Petri net, or between Petri nets.

2 Problem Definition

Mathematically speaking, the problem can be formulated as follows: an intelli-
gent design, represented algorithmically by a finite state machine, is intended to
complete a given task:

T ={t1,t0, ..., tm}

where 4, ..., 1,, are subtasks which compose T. Fach subtask is represented by a
Petri net and is defined by a set of performance specifications to be fulfilled by that
subtask:

X = [v1, @2, ..y 0]

The state variables describing the current status of an intelligent design are given
by:
Sti = {Sih 832y veny Sm}

where t; = 11,12, ..., tm
Sy, = states for task 2;

and s;; indicates the performance specification for the state variable z; in the
subtask t; such that z; C s;; indicates that specification {ij} has been met. A
potential function describes the cost of task T in terms of its subtasks, and can be
defined as:

pot(T, x) = vp

where v = W(vy,) = W[pot™ (¢, s,)]
and ¥ is a problem specific function which is usually a composite one and evaluated
according to conflict matrices, cubes or hypercubes used to determine the fittest
finite state machine on basis of a conflict between FSM; and F'SM; among the
population. This will be clarified in later sections and in the experiments.

The intelligent design has a set of available low-level designs:

D= {D17D27 "'7DT}

where r is the population size and each design D; is composed of sub-designs d;;
associated with the m subtasks of T: D; = {d;1, d;2, ..., dim }

Each D; is represented by a finite state machine. Each d;; is represented by a Petri
net or a Petri net component automaton. The intelligent design problem is defined
as the intelligent selection of the optimum design D, from D given a specified task
T. The optimal design Dy, is defined as the design that maximizes the "potential’
of the system, and the probability that the task T is completed successfully, such
that:

Pr(T) = pot(T,x) = maximum

8 A Hybrid Evolutionary Approach to Intelligent System Design

where Pr(T) is the probability of a selected design to complete the required task. As
mentioned, this probability is determined by a problem-specific function ¥ which
is in turn evaluated according to conflict matrices.

The design itself, made up of m components, is represented mathematically as
follows:

fl(ﬁlevPva CAl)

[Token (s)] _ M
D; = FSM; ———— | f;(;, A, PN;, CAy)
M

Fon(Toms Ay PNy, CAry)

where 77; and X]— are the input and output points of the jth component sub-design
(the jth Petri net) referred to as ’semaphores’ in the formal description of the
representation data structures. The C'A; are the ’component automata’ of PN;.

3 System’s Functionality.

Due to the large variations in design problems and internal representation, GI-
GANTEC was implemented as a compiler for the code generation of both "GA
operators’ and 'representation’ depending on a description of the design problem.
The system is composed of two main components:

1. A problem independent part (GIGANTEC)- which receives the problem’s
directives and description and generates the problem specific source code for design.

2. A problem dependent part- which is the source code generated by GIGAN-
TEC, to be compiled by a C++ compiler, which once executed, carries out the
design analysis specific to the problem.

The function of the system can be easily visualized. Inputs to the system con-
stitute an L-system of stochastic context sensitive grammar (SCSG) that acts as a
directive to the operation of the GA operators to be generated; and a problem de-
scription part. The problem description part defines the resolution/decomposition
of tasks into sub-tasks, and the interactions between tasks both synchronously and
asynchronously.

The inputs are passed to the GIGANTEC compiler, which in turn generates
source code for the representation and genetic operators for that problem. The
problem representation data structures are finite state machines, petri nets and
ADT tokens. Generated representation inherits from base classes, which are com-
mon to all problems’ definitions. Base classes, common to all problems, are also
provided for genetic operators to inherit from.

4 Schematic Model

The generated source (representation/ operators) in its executable version func-
tions as follows. The outer layer is the global evolutionary algorithm which acts
upon the abstract brain layer (FSMs) by problem specific evolutionary operators.
The abstract brain layer generates ’tokens’ to be received by the inner layer of

A. Badr, I. Farag & S. Eid 9

"decomposable’ petri nets. Each token has a specific petri net to receive it. The
token represents an ’abstract entity’ (a high-level ADT) that identifies the respec-
tive Petri net. This specific petri net act as a simulator of the abstract task’s
functional behaviour. The petri nets are decomposable in the sense that they can
be partitioned into component automata [Bat93]. Component automata represent
the inner-most ’discrete’ and 'non-decomposable’ task.

The schematic decomposition of the problem-dependent part is shown in the
following diagram:

FSMi "Process”

{} Token Stream

N

J :Input Points
Component I I

SI.. Semaphores
state-machines

CAij Inter-
Concurrency Concurrency

NS

tra-
urrency

fSO... Output

Semaphores

I

fO :Output Points

Linguistic Design Model Output
Figure 2

The terminology used in the above diagram is verified in the next section.

5 Representation Data Structures

5.1 The Abstract Brain.

The abstract brain data structure is represented by a population of finite state
machines. A finite state machine has a finite number of states and produces outputs
on state transitions after receiving inputs. A finite state machine (FSM) M can be
defined as the quintuple:

M=(1,0,5,6,X)

where I: a finite and nonempty set of input symbols

10 A Hybrid Evolutionary Approach to Intelligent System Design

O: a finite and nonempty set of output symbols

S: a finite and nonempty set of states

6:5 x I — S is the state transition function

A: S x I — O is the output function

When the machine is in a current state s in S and receives an input a from
T it moves to the next state specified by §(s,a) and produces an output given by
A(s,a). [Lee96].

The finite state machine in this definition is fully specified in a sense that at
a state and upon an input there is a specified next state by the state transition
function and a specified output by the output function. Otherwise, the machine is
partially specified. At certain states with some inputs, the next states or outputs
are not specified. Also, the machine defined is deterministic. At a state and upon
an input, the machine follows a unique transition to a next state. Otherwise, the
machine is non-deterministic. The machine may follow more than one transition
and produce different outputs accordingly.

5.2 Fuzzy Petri Nets

5.2.1 Coordination Structures.

The coordination structures’ basic component is the Petri Net (PN). A Petri
net consists, as opposed to the previous definition of a net, of a finite set of places
P, a finite set of transitions 7', an input function I, and an output function O. A
Petri net is thus defined as the quadruple:

N=(P,T,1,0).
where I : T' — P°° is the input function, a mapping from transitions to bags of
places.

O : T — P is the output function, a mapping from transitions to bags of
places.

The idea of the Petri net transducer (PNT) introduced by Wang and Saridis
[Wan88] is borrowed. The PNT is defined as:

PNT = (N7 E? A? 0-7 /’L7 F)

The PNT is basically a language translator that translates one language to an-
other. The controller of the translation is N = (P, T, I, O), a Petri net. pu is the
initial marking of N. X is the input alphabet representing output tasks. ¢ is the
translation mapping from T x (X U {)\}) to finite sets of A* (where X is the empty
string and A* is the set of all finite length strings over A). F is the set of final
markings. Thus a model can be formulated to the controlling coordination struc-
tures, analogous to [Wan88] and [Wan91], composed of a dispatcher D, and a set
of coordinators C. The dispatcher D is defined as a PNT,

D= (Nd7 207 AO? 04, Hd, Fd)

with the Petri Net,
Ny = (Py, Ty, 14, Oa)

A. Badr, I. Farag & S. Eid 11

The coordinators are defined as C' = {C1,Cy, ..., Cp,}, n > 1, where each coordina-
tor C; is a PNT, S
C; = (Név 2107 Azcv Ug, /’chv FCZ)
with the Petri Net, _ S
Ne = (PLTE 12, 00).

cy Te?

The connection points,

n
F=J{fh For 16, Fso}
=1
are the input point, input semaphore, output point and output semaphores of C;.

5.2.2 Fuzziness and ADT Tokens

Tokens represent the entities marking the Petri Net, whether initial, or current
or final. In the following definition, tokens are formulated as an algebraic ADT;
the token is defined as the triple,

Tok = (Nom, D, M),
where Nom: Name of the token

D : Data parts of the token

M : Methods

The token T'ok is Il-respecting, that’s to say, has a strong relationship with the
Petri net partition. A token with a fuzzy membership, is defined as,

TokF = (Tok,F, u., R)

where T'ok : is the token

F : is the fuzzy sets

Lo o is the current PN marking

R : is the response schedule.

The representation using fuzzy tokens provide the respective entities with fuzzy
sets that readily model data available only in numeric form into descriptive forms.
Thus, fuzzy tokens were selected rather than crisp ones. Tokens forwarded to the
Petri Net Dispatcher (PND) by the abstract brain layer, are re-directed to the
appropriate PN. Tokens are defined as an algebraic ADT with fuzzy memberships
(implemented as a C++ class). Fuzziness in the token is fired according to three
schemes [Cao96],

1- A Global Scheme,

2- Current Marking of the PN,

3- A Local Scheme.

A simple example is the following PN,

12 A Hybrid Evolutionary Approach to Intelligent System Design

START: Home

47 D 47 MARKET

GAS STATION
Figure 3

A suitable token for the given PN can be ’ Money’ with fuzzy memberships: Low,
Medium, and High. For example, amount of money can be 'medium’ at "Home’,
"High’ at 'BANK, etc... i.e. The ADT token is sensitive to the current marking of
the PN.

5.2.3 Parallelism.
Analogous to the definitions in [Eng91]- Definition-1 and [Bat95]- Definition-1,
a parallel system (object-oriented) can be formulated as the tuple,

Paript o = {D, C, F, In, 0bj, mod)

where D : Dispatcher structure

C : Coordinator PNs

F : Connection points

In : Initial Configuration

obj : is an object function which associates an object with each coordinator.

mod : is a mode function which specifies the state of C; € {unborn, alive, dead}.

This accounts for inter-object concurrency. Namely, concurrency between dif-
ferent threads, each representing an object- PN.

Intra-object concurrency, within a PN, (note: a PN is decomposable to CA)
can be formulated as the tuple,

Pa/rint ra — (C’Lv CAiva In’b)

where C; = the ith PN Coordinator
CA;= the component automata of C;
F; = connection points of C'A;
In;= Initial configuration of the PN.

5.3 Component Automata

Each Petri Net is supposed to be decomposable into its component automata (CA).
A definition can be formulated, analogous to [Bat94] as follows:

CA = (N,1IL)

A. Badr, I. Farag & S. Eid 13

where N = (P,T,1,0) is a PN as defined before
IT: is a partition of P into disjoint classes Iy, Iy, ..., I1,, such that Vi(1 < i < m)
{4 ¢ is the initial marking of N where ¢ C P such that Vi € [1, ..., m], |TI;Np| = 1.
The nets generated by the classes of I are called elementary sub-nets (or com-
ponent automata) of N.

S1 S3 S3

OO 8 O
e LN ST
S A S @ ?
v] N]

Initial PN. Component State-Machines.

—

V\H
[
=

B/H

o

th

Figure 4

The mathematical definition of component automata of a Petri Net, have been
previously given in a preceding section. The initial marking of the PN,

H= {817 83}
The net can be partitioned into,
H1 = {81, 82} and
H2 - {837847857}

Given that g C P, such that Vi € [1,2], |[], Nu| = 1, where in this case,

TNl = [{s1,82F N {s1,53} = [{s51}] = 1 and
Ty Nl = [{s3,84,85) N{s1,83} = [{s3}| =1

The gates of communication among the partition II are the transitions T1 and
T2. This is an example of intra-object concurrency; where the original PN is
created as an object instance operating in a thread of its own. The ’synchronous’
communication here, is through the gates T1 and T2.

6 The Evolutionary Algorithm

The global evolutionary algorithm [Bad98] is the outermost layer acting upon the
abstract brain layer (of FSMs). A FSM is shown in the diagram below.

A single FSM is shown. Its source code is generated by GIGANTEC, and is
inherited from a base FSM class. The code is problem dependent and incorporates
within, the operation of mutation operators. Embedded also, is the code for the

14 A Hybrid Evolutionary Approach to Intelligent System Design

problem states/ transitions and input/ output symbols of the FSM. Several muta-
tion operators are generated, which are, in their broad sense, described as an: add
node, delete node, alter initial state, mutate output symbol, mutate transition.

Global GA Population of FSMs
Abstract
| | | Brain
- }-‘SMi | """
ESNA
Selection Operators
L-system Dl Mutdion Operators

AddNode

Delete Node

Alter Initial State

Mutate Output Symbol

Mutate Transition

Figure 5

6.1 L-systems and Context Sensitive Grammar

All operators are guided by context sensitive grammar. Compare with Fogel’s
operators which are not grammar guided [Fog92]. For example, given the following
grammar:
1: S — AAA
:A>A— B, (]
:A—B
:B<C—B
:C>C—B
:A<C—B
:B>A—-CB

Is resolved (in a broad sense!) as follows:

O)
65 by 2. e
O

~ O Ut W N

:;2?6/

®
<3

Figure 6

A. Badr, I. Farag & S. Eid 15

@ by 6. ° by 7.
() &

Figure 7

An alternative can be:

by 2.

® g ®b
g

Each FSM represents a program description (algorithm) for a particular de-
sign. The population of FSMs compete together to elect the fittest design amongst
the population. For the global evolutionary algorithm to function properly, the
population size must be a small number.

6.2 Mutation Operators

The mutation operators were designed to work on the proposed data structure for
the EA based on state-machines. The section on L-systems and context sensitivity
is a prerequisite to this section. The stochastic context sensitive L-system is used
as a 'controller’ to all mutation operators used in GIGANTEC. There are five
main mutation operators developed:

1- Change output symbol.

2- Change transition.

3- Add state

4- Delete state

5 Alter initial state.

These operators are dependent on that developed by David Fogel in his excellent
thesis [Fog92]. However, they differ largely in the method of their evolution- they
are context sensitive; they are L-system guided, and they are stochastic. Following,
are pseudo-descriptions for these operators.

Mutation-1. Change Output Symbol.

1- Pick a state randomly.

2- Pick randomly an input symbol.

3- Change output symbol with a random alternative symbol.

4- For the newly generated status:
a- Apply pattern matching algorithm until a contradiction is reached.
{contradiction to the contextual rules of the L-system provided.}
b- If YES, then exhaust 3. then 2. then 1. in sequence.
c- If NO, then FINISH.

Explanation. Best done by an example. Given the following 'part’ of a FSMI,

16 A Hybrid Evolutionary Approach to Intelligent System Design

/

—

Figure 8

Consider the symbols shown to be the output symbols. Pick the link 2-4 with
output symbol e. Transform ¢ — ¢’ . If aei is a pattern that should be maintained,
then the mutation is reset (rejected). Also, the same applies if aek is another
pattern that is violated.

Mutation-2. Change Transition.

1- Pick a state randomly.

2- Pick randomly an input symbol.

3- Pick randomly a new output state.

4- For the newly generated status:

a- Apply pattern matching algorithm until a contradiction is reached.
{contradiction to the contexrtual rules of the L-system provided.}
b- If YES, then exhaust 3. then 2. then 1. in sequence.
c- If NO, then FINISH.
Explanation. Best done by an example. Given the following "part’ of a FSMIi,

Figure 9

A. Badr, I. Farag & S. Eid 17

The state selected randomly is state 2, with the randomly selected input symbol
at link 2-4. The new output state is 5. if aei is a pattern that should be maintained,
then the mutation is reset (rejected). Also, the same applies if aek is another
pattern that is violated. Also if aed is a contradiction, then mutation is reset.
ete...

Mutation-3. Add State.

1- Generate a new state.

2- Pick random old stales to point to the new state.

3- Generate for each input/ output symbols according to rewriting rules of

L-system if exists, else generate input/output symbols randomly.

4- For the newly generated status: the random case
a- Apply pattern matching algorithm until a contradiction is reached.
b- If YES, goto 2. for this specific path.
c- If NO, then FINISH.

Explanation. Best done by an example. Giv7 the following "part’ of a FSMi,

Figure 10

The newly generated patterns, for example hkln and abcmn and so on, should
conform with the L-system rewriting rules.

Mutation-4. Delete State.
1- Pick a random state to delete.
2- Delete all transitions to this state.
3- For the newly generated status:
a- Apply pattern matching algorithm until a contradiction is reached.

18 A Hybrid Evolutionary Approach to Intelligent System Design

b- If YES, restore old state and goto 1.
c- If NO, then FINISH.

Explanation. Best done by an example. Given the following "part’ of a FSMIi,

_/

SNy -

\
™~
_

e / S
Figure 11

If state 3 is the one to be deleted, then, if abcd and ged are patterns, then they
should not be violated, and mutation is reset.

Mutation-5. Alter Initial State.
1- Pick a random state.
2- If it is specified as one of the initial states in L-system! then FINISH,
else
goto 1.

A pattern matcher, the Aho-Corasick machine is utilized in these mutation op-
erators. The Aho-Corasick machine is a Finite State Machine used for pattern
matching. This machine lends itself to automatic construction- according to the
provided context sensitive L-system. It is used to match multiple patterns in par-
allel. This machine is developed by A. Aho and M. Corasick [Aho75]. The machine
takes a set of (possibly overlapping) patterns to be matched and producing a finite
state machine that can be used to match any of the patterns. A deterministic
machine was devised for speed purposes.

6.3 System Evaluation

A particular design representation is evaluated by carrying out a conflict process
(competition) between an FSMi and FSMj (j # ¢ and j : 1..population-size).

A. Badr, I. Farag & S. Eid 19

Conlflict matrices, cubes or hypercubes are constructed to provide conflict-indices
to be accumulated, as shown in the algorithm EvalFSM below:
Algorithm. EvalFSM.

begin
for i = 1 to population_size
begin
for j = 1 to population_size
begin
-check i not equal to j, if YES continue, else break to next iteration.
- run conflict between FSMi and FSMj
begin
for n = 1 to contest_length
fitness(FSMi) = fitness (FSMi) +
conflictindex [il[j];
end
end
end
end
Scan population i: 1 — population_size for FSMk, the filtest
ndividual;

The concept of the conflict-index is borrowed from game theory. When applied
in fuzzy terms, it is analogous to fuzzy associative memories (FAMs).
An example of a conflict matrix:

FSMi
Yariable k

FSMj |variable k

6.4 The Algorithm
The proposed algorithm is shown, in an abstract form, as follows:

Algorithm PEA: Proposed Evolutionary Algorithm.
begin
*initialize population P(t) - by applying L-system rules and Add-
node mutation operator.
*for gen = 1 to generation_size do
begin

20 A Hybrid Evolutionary Approach to Intelligent System Design

- Evaluate P(t) by competition between FSMs (EvalFSM algorithm).

sort

- Sort population P(t) = P'(t)
- for i = 1 to population_size do
begin
- Apply roulette (SUS) to to select individual 1;.
- Mutate n;- according to mutation operators’ probabilities.
end
- Pass the new population P7(t) to next generation P(t) = P (t);
end
end.

As shown, the PEA utilizes components such as the EvalFSM algorithm, for
evaluating fitnesses, the Stochastic Universal Sampling (SUS) [Bak87| algorithm
with elitist strategy and the five mutation operators discussed before.

7 A Methodology of Design

The research proposes a methodology for design. A sequence of system-independent
framework of steps steers the design wheel. The theoretical concepts of each step,
are explained in previous sections. The framework is summarized as follows:

1- Identify the chronological constraints- in terms of a stochastic L-system
rewriting rules.

2- Analyze the system to identify input variables and output variables.

3- Identify dependent and independent variables, and exclude those that can be
computed from other variables by equations, or other means.

4- Verify the different components on basis of discrete tasks.

5- Identify the variables associated with each component and associate a token
with each variable.

6- Select the range of application of each variable and define fuzzy sets for each
variable according to its relevance.

7- Identify the inter-relationships between each component and the other- in
terms of synchronization- whether synchronous or asynchronous.

8- Construct a Petri Net for each component- if relevant.

9- Define a synchronization scheme between the constructed Petri nets, on basis
of inter-relationships defined previously. {Inter-synchronization}

10- Subdivide component PNs on basis of an intra-synchronization scheme-
concurrent and communicating actions within a particular PN component.

11- Identify a starting action for the system.

12- Define an objective function (potential) for the evaluation of designs.

13- Identify component functions of the overall design potential.

14- Design Fuzzy Associative Memories (FAM) or a Conflict Matrices (or hyper-
cubes) relating the interactions between variables for potential component functions
(Need an expert in the respective field!)

15- Design an overall output function relating component potential functions.

16- Select the number of generations, size of population, and conflict period.

A. Badr, I. Farag & S. Eid 21
17- Run the system to generate designs.

8 Experiments

8.1 Experiment (1): Design of a Medical Diagnosis System-
The Cerebro-spinal Fluid Circulation.

The four ventricles and the subarachnoid space, formed by the cerebral meninges
(membranes which cover the brain and spinal cord, and which enclose the cere-
brospinal fluid (CSF)), contain a watery fluid. As this fluid also appears in the
spinal compartments, it is called the cerebrospinal fluid (CSF) or liquor cere-
brospinalis. The fluid serves as a buffer that reduces the effect of skull impact
on the brain. The CSF also serves as a heat buffer and takes care of the disposal
of certain waste products. Secretion from the choroid plexus (nerve junctions), on
the walls of the first and second ventricle, is the main source of CSF formation.
CSF is also formed in the third and fourth ventricle and in the spinal cord. [Wij93]
and [Dun92].

Under normal conditions, when there is free communication of CSF between
the cranial and spinal compartments, the processes of CSF formation and CSF
absorption are in equilibrium. Then the pressure is equal in all compartments.
When this equilibrium is disturbed, the craniospinal system must compensate for
changes in volume. The parameters concerned, should provide information on the
rate of CSF formation and absorption as well as on the storage capabilities of the
system. The absolute values of these parameters, however, depend largely on the
assumptions made in the mathematical relationships.

The basis of the CSF circulation model is given by the equilibrium existing
between CSF formation, CSF absorption and changes in total craniospinal volume.
This equilibrium exists under all circumstances within the craniospinal system,

F,—F,—F,,=0

where F; = CSF formation rate (ml/ hr)

F, = CSF absorption rate (ml/ hr)

F.; = rate of changes in CSF volume (ml/ hr)

The exact relationship between CSF formation and the pressure gradient across
the choroid plexus is not known. It is assumes that CSF formation is linearly
dependent on the pressure gradient between the arteries in the choroid plexus and
the cerebral ventricles,

F,=(P,— P)/R; {Egqn — 1}

where P, = arterial pressure in the choroid plexus (mmHg)

P = pressure in the cerebral ventricles (mmHg) = ICP

ICP = Intra- Cerebral Pressure

R; = resistance to formation of CSF

Since the arterial pressure in the choroid plexus is difficult to measure, it is
often replaced by the systemic arterial pressure (SAP).

22 A Hybrid Evolutionary Approach to Intelligent System Design

The CSF absorption rate is generally accepted to be linearly related to the
pressure difference between the subarachnoid space and the dural sinuses, if and so
long as the ICP exceeds the dural sinus pressure,

F, = (P — P3)/Ro for P > P, {Eqn —2}

F,=0for P < Py

where P,; = sinus pressure (mmHg)

R, = resistance to absorption of CSF or outflow resistance

The storage capabilities of the system are deduced from the volume-pressure
relationship,

P = Py+ PLexp(ELV.) {model — 1}

where P = ICP (mmHg)
Py, P, = constant pressure terms (mmHg)
FE, = elastance coeflicient

V. = elastic volume, change in total craniospinal volume with respect to equi-
librium volume

boundary conditions: Fy > 0so P >0 and P, < P

We can derive,

dP/dV = E\(P — P,)

and dP/dt = (dV/dt).(dP/dV) = F.s.F.(P — P,)
The model can be tested and parameters calculated by adding known external
flow to the physiological flows. The ’continuous liquor infusion test’ will be im-

plemented in this model. The infusion rate is chosen so that a new equilibrium
pressure is reached within a few minutes,

Fop = const

A pressure independent CSF formation can be formulated by,
P = RoF.: + RoFy + Py =ICP {model—Q}

A pressure dependent CSF formation can be formulated by,

- RiROFe:c PaRo + PdRz

“ROR TR {model — 3}

A suitable L-system to model such a behaviour, can be a one that allows any
sequence of ICPs in equal probabilities:

A. Badr, I. Farag & S. Eid 23

Rewriting rules | Probability
S — ICP(L) 0.33
S — ICP(M) 0.33
S — ICP(H) 0.33
L<L—L 0.33
L<L—M 0.33
L<L—H 0.33
M<L—=L 0.33
M<L—-M 0.33
M<L—H 0.33
H<L—L 0.33
H<L—-M 0.33
H<L—-M 0.33
Table 1

and so on. This L-system simplifies matters by allowing all sequences to be possible.
A more rigid analysis can enforce other sequences according to the experience of
the physician.

The fig. below shows the Petri net modeling the formation, absorption and

storage of the cerebrospinal fluid.
SAP

@%T ——®

CSF Production CSF Storage Tokens:
A2 SAP(L,M,H): Systemic Arterial Pressure

Pd (L,M,H): Sinus Pressure

Eqn-1

ICP(L,M,H): Intra-Cerebral Pressure
Eqn-2

model-i Note: i:1..3

%

O

CSF Absorption

i ©
I— O

Figure 12

The partition IT = {C Ay, CAy, C Az} with three component state-machines,
each with a token. The tokens are SAP, Py, and ICP. Each token has three fuzzy
sets: Low, Medium and High. The input variables are defined to be SAP (Systemic
Arterial Pressure) and P (Sinus Pressure). Each was given its range in its fuzzy

sets,
LOW MEDIUM HIGH

L M H

SAPorPd

Figure 13

24 A Hybrid Evolutionary Approach to Intelligent System Design

The output variable is ICP (Intra-Cerebral Pressure). The system was provided
with a FAM modeling the interaction between SAP and P,.

S AP

Pd

Figure 14

The F;’s are Petri nets of the structure shown before. This PN is decomposable
into its component state-machines, each modeling a particular process. This is a
perfect example of intra-concurrency within a Petri net, which exactly matches
reality; as the CSF production, storage and absorption, all take place in parallel!
The component state-machines are shown more detailed below,

P
SAP d
© == —©
AN
A L
CSF Production x\ CSF Storage
CA2

CAl1
Eqn-1 Eqn-1
Eqn-2 Eqn-2
model-i model-i
Eqn-1 Component State-Machines.
Eqn-2
model-i Tokens:

SAP(L,M,H): Systemic Arterial Pressure

ICP(L,M,H): Intra-Cerebral Pressure

CA3 Pd (L,MH): Sinus Pressure
CSF Absorption

ICP
:lﬁ—@ Note: i:1.3
Figure 15

For the purpose of fitness evaluation of the suitability of the generated FSMs,
a hypercube of weights, modeling the interaction between FSMi and FSMj- con-
taining all variables SAP, P; and ICP of each FSM is provided.

A. Badr, I. Farag & S. Eid 25

ICP()
S AP (i) uo feP®
N
L & @ &
S AP () u o . s A Hypercube of weights.
H G7 G8 (€]

Figure 16

The dimension of the hypercube is equal to 6. The entries Gi are to be put
according to the experience of the physician. An annotated branch of the resultant
FSM is shown below, with input and output variables.

state

o

SAP{L.MH}, P {L,M,H} /ICP {L,MH}

state

G

Figure 17
An evolved FSM is shown below:
Input: SAP/Pd
Output: ICP>Next State

An Annotated Branch in the FSM

state | L/L | L/M | L/H | M/L | M/M | M/H | H/L | H/M | H/H
0 L>8 | M>13 | M>4 | M>0 | L>10 | M>14 | L>8 | H>6 | H>15
1 L>7 | H>6 | M>12 | M>8 | L>8 | M>10 | M>8 | M>1 | H>6
2 | M>14 | H>10 | L>2 | L>8 | L>0 | L>3 | M>1 | H>13 | M>11
3 L>4 | M>8 | H>0 | H>5 | M>11 | M>6 | H>12 | M>5 | M>0
4 | M>6 | M>4 | H>3 | M>7 | L>7 | L>2 | M>11 | M>2 | H>12
5 | L>15 | L>14 | M>6 | M>4 | L>0 | L>10 | M>5 | M>13 | M>5
6 M>4 | M>15 | H>6 | L>0 | M>5 | M>15 | M>7 | H>13 | >3
7 | M>4 | M>0 | M>15 | L>4 | L>5 | H>8 | L>0 | M>3 | H>10
8 M>8 | M>6 | M>14 | L>6 | M>5 | L>12 | H>5 | H>4 | M>8
9 | L>14 | L>10 | M>13 | M>8 | H>11 | L>1 | M>5 | M>0 | M>5

10 | L>14 | L>4 | H>10 | L>S | L>6 | M>0 | M>15 | M>5 | M>4
11 | M>0 | H>12 | L>9 | L>4 | L>6 | L>2 | H>14 | H>15 | H>11
12 | L>% | L>1 | H>I1 | L>1 | M>16 | H>4 | H>2 | M>10 | H>4
13 | L>% | M>12 | L>15 | L>15 | M>0 | L>2 | M>14 | H>0 | H>14
14 | M>12 | M>0 | M>4 | M>7 | L>2 | M>2 | M>0 | M>2 | M>10
15 | L>10 | L>6 | H>6 | L>11 | L>10 | M>0 | M>8 | H>10 | M>3

Table 2

26 A Hybrid Evolutionary Approach to Intelligent System Design

Note: In cases of diagnosed high ICP, surgery may afford relief.

8.2 Experiment (2): Design of a Control System for Effluent
Substrate Concentration in an Activated Sludge Process.

Nitrification is the process of ammonia oxidation by specialized organisms,
called nitrifiers. Their growth rate is much slower than that of the heterotrophic
organisms which oxidize organic carbon, and they can be washed out of the re-
actors by the sludge wastage stream. In an activated sludge system, when the
organic load is high, then the high biomass growth rates require high waste rates.
Nitrification will not be possible under these conditions because the concentration
of nitrifiers will become very low. (see fig. below) [Dun92]

0, F 1,F 2,F
40? 1 %7 — 4 >
Settler
] Reactor 2
1

2,F

3
2, l;‘ 2 F; {>

Figure 18

The dynamic balance equations can be written for all components around the
reactor and around the settler. The settler is simplified as a well-mixed system
with the effluent streams reflecting the cell separation.

Reactor

Organic

B ” %= & (RS0 RS- RS - BE) BeR)
Ammonia

Substrate Ui = & (Fodo + Fodz — Fidy - B4) | BoR2
Heterotrophic

Organioms (G (50, ro)| ek
Nitrifying

e e e T R

Table 3

Similar equations can be presented for settler.

A. Badr, I. Farag & S. Eid 27

Settler
Organic
Substrate % — VLz (FySy — F3S3 — FyS3) Eg-S1
Balance
Ammonia
Substrate dﬁz _ VLz (FlAy — F3Ay — FyA) Eqg-52
Balance
Heterotrophic
Organisms ddOtz _ VLZ (F101 — F305) Eq-S3
Balance
Nitrifying
Organisms dUJi\tfz — VLz (FLN| — F3N») Eqg-54
Balance

Table 4

The equations for the flow rates are given below,

Recycle flowrate: Fy = FyR Eqn-1
where R is the recycle factor
Reactor outlet flow: F|, = F; + Fj Egn-2
Flow of settled sludge: F5 = % Eqgn-3
where C is the concentration factor for the settler
Flow of exit substrate: F,=F| — I} Eqn-4
Flow of exit sludge wastage: Fs= F5 — I Eqn-5
Growth rates for the two organisms,

Ry = 110

Ry = p1a\Nq

The problem now is to devise a control system for the recycle to maintain a
constant value of the effluent substrate concentration. The following variables were
identified:

Input Variables:
Fy = Input flow rate
N1, Ny = Concentration of Nitrifiers in Reactor and Settler
01,02 = Concentration of Heterotrophs in Reactor and Settler
11, o = Specific Growth Rate of Heterotrophs and Nitrifiers

Output Variables:
Ay, Ao = Ammonia Substrate Concentration in Reactor and Settler
51,99 = Organic Substrate Concentration in Reactor and Settler
Fuzzy sets {Low, Medium, High} were chosen for input and output variables,

28 A Hybrid Evolutionary Approach to Intelligent System Design

LOW MEDIUM HIGH

1.0

Input Variable(s) / Output Variable(s)
Figure 19
The following Petri Nets are devised to model the process:

Token F Token Sl
0

@ — b= PN1 @ — b= PN2

Reactor Eqn-1 R
eactor 4'> Eq-R1
Semaphores [[I ° Eqn2 Semaphores f !
J7 AN

I o

Settler
Settler

Eqn-3
Eqn-4
Token Al Token q

@ — > a3 @ P pw
! !

Reactor
Reactor > Q 4‘>
EqR3
Q EqR2 Semaphores f f 1
s AN

Semaphores f
I o I o

L L
Q Seter Q Seter

! !
I R]

A. Badr, I. Farag & S. Eid

Token N1

(@) —b

[

!

PN5

29

Token S2

(@) —b

Reactor

Semaphores f fI

Eq-R4

() —
AN

Token A2

(@ —

Reactor

[

!

PN7

Semaphores f
I o

Token N2

(@ —>

Reactor

[

!
O

VAN

PN9

—

Semaphores f f I

L
() e

!
N

[I

l

PN6

Reactor

Semaphores f
I

Token O2

O—C]

Settler

L
O
!

Eq-S2

]

!
Q Setn
!

EqS4

Figure 20

T !
Q Setter
l
©—=

Reactor
Semaphores f f
I o

Thus, a model for fuzzy sub- Petri nets can be shown- A model of Inter-

30 A Hybrid Evolutionary Approach to Intelligent System Design

Synchronization.

Tokens...

> Dispatcher

Reactor (t)

Input
Semaphore

(PN (PN (PN PN 4 [P J PN PN T PN (PN

Reactor (t+1)

Output
Semaphore

Figure 21

The competition between FSMs is carried out on basis of a contest length
between FSMi and FSMj- and the FSM with the minimum change in substrate
concentration (Ammonia, Organic)/ (Reactor, Settler) is selected. Thus,

Y =1roiporp3oy

A cube for each ;.

i for :
A® -
A (t+2)
L M H 1
M A Gb (€3]
H Gr (€3] (€]
Figure 22
and so on up till ¥y.
1y for Ss:
S ®
S (t+2
L M H 2()
S (t+1) L Gl G2 G3
M A (€3] (€3]
H Gr (€3] (€]

Figure 23

A. Badr, I. Farag & S. Eid 31

The final potential is taken as,
¥ =min) 1; over similar paths,

K3
Again, for simplicity and ease of experimentation only, these were taken as
constant numbers.

9 Conclusion

A novel design framework is presented that utilizes the power of GAs in search and
exploration with the expressiveness and modeling capabilities of FSMs and PNs.
A large potential of applications is expected to be modeled by such a system- all
which have in common the characteristics of not having a predefined sequence of
design steps and are distributed and communicating in nature.

The proposed evolutionary algorithm, together with its data structure, com-
posed of finite state machines and fuzzy Petri nets, proved to be adequate in ex-
ploiting the search space of a particular design problem. The problem tackled here,
is a linguistic one, with fuzzy variables. Numerical designs were not considered.
The evolutionary algorithm has been utilized as a ’exploration’ technique, rather
than its optimization sense.

The main contribution of this research is considered as three-fold:

1- The introduction of a 'methodology’ of design- which is an umbrella covering
a large potential of applications.

2- The flexible data structure formulation (FSMs + FPNs), incorporating a
large potential of application formalisms.

3- The adaptation of an evolutionary algorithm with specific operators for each
instance of application-specific data structure formalisms.

These points were accomplished through a subdivision of application-dependent
and application independent parts.

Design problems such as the design of 'monitoring’ systems, 'control’ systems,
"diagnostic’ systems, and economical systems, are suitable for such a system. Thus,
the design problem considered, is an unperceived one; that’s to say, without a
governing equation.

References

[Aho75] Aho, A.; Corasick, M. (1975). “Efficient String Matching: An Aid to
Bibliographic Search”, Communications of the ACM, v18, n6, pp333-340.

[Bad98] Badr, Amr. (1998). “A Hybrid Framework for Optimal System Design”,
PhD diss. Cairo Univ.

[Bak87] Baker, J. (1987). “Adaptive Selection Methods for Genetic Algorithms”,
in Proc. of the 2nd International Conference on Genetic Algorithms.

[Bat93] Battiston, E.; De Cindio, F. (1993). “Class Orientation and Inheritance in
Modular Algebraic Nets”, International Conference on Systems, Man, and Cyber-
netics, Conference Proceedings v2, pp717-723.

32 A Hybrid Evolutionary Approach to Intelligent System Design

[Bat94] Battiston, E.; De Cindio, F.; Mauri, G. (1994). “A Class of Modular
Algebraic Nets and its Support Environment”, International Course on Petri Nets
Notes, G. Rozenberg, C. Fernandez, M. Solar and V. Parada (Eds.), Editorial
Universidad de Santiago.

[Bat95] Battiston, E.; Botti, O.; Crivelli, E.; De Cindio, F. (1995). “An Incremen-
tal Specification of a Hydroelectric Power Plant Control System using a Class of
modulus Algebraic Nets”, in De Michelis, G.; Diaz, M. (1995). Application and
Theory of Petri Nets, pp84-102.

[Cao96] Cao, T.; Sanderson, A. (1996). Intelligent Task Planning using Fuzzy Petri
Nets, Series in Intelligent Control and Intelligent Automation, v3, World Scientific.
[Dun92| Dun, I.; Heinzle, E.; Ingham, J.; Prenosil, J. (1992). Biological Reaction
Engineering, VCH.

[Eng91] Engelfriet, J.; Leih, G.; Rozenberg, G. (1991). “Net based Description of
Parallel Object-based Systems, or POTs and POPs”, in de Bakker, J.; de Roever,
W.; Rozenberg, G. (eds.). (1991). Proc. of School/Workshop in Foundations of
Object-oriented Languages; LNCS 489, Springer Verlag.

[Fog92] Fogel, D. B. (1992). “Evolving Artificial Intelligence”, PhD diss. UCSD.

[Gol89] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley.

[Koz92| Koza, John. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Complex Adaptive Systems Series, MIT
Press.

[Koz94| Koza, John. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs, Complex Adaptive Systems Series, MIT Press.

[Lee96| Lee, D.; Yannakakis, M. (1996). “Principles and Methods of Testing Finite
State Machines: A Survey”, Proc. of the IEEE, v84, n8.

[Lim94] Lima, P. U. (1994). “Intelligent Machines as Hierarchical Stochastic Au-
tomata”, PhD thesis, Rensselaer Polytechnic Institute, Troy, NY.

[Mic96] Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Edn., Springer Verlag, New York.

[Wan88] Wang, F. Y.; Saridis, G. N. (1988). “A Formal Model for Coordination of
Intelligent Machines using Petri Nets”, in Proc. of the 3rd IEEE Int. Intell. Contr.
Symp., Arlington, VA.

[Wan91] Wang, F. Y.; Kyriakopoulos, K. J.; Tsolkas, A.; Saridis, G. N. (1991). “A
Petri-Net Coordination Model for an Intelligent Mobile Robot”, IEEE Trans. on
Systems, Man and Cybernetics, v21, n4.

[Wan93] Wang, F.; Saridis, G. (1993). “Task Translation and Integration Speci-
fication in Intelligent Machines”, IEEE, Trans. on Robotics and Automation, v9,
nJ.

[Wij93] Wijk, R.; Moller, D. (1993). Biomedical Modeling and Simulation on a
PC, Springer Verlag.

