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Abstract

This paper focus on the problem of decomposing multivariable fuzzy
controllers using a hierarchical approach based on the application of meta-
knowledge. Usually, hierarchical fuzzy systems are based on a cascade struc-
ture of fuzzy logic controllers where the output of each level is considered
as one of the inputs to the following level. The paper introduces a different
approach, to the idea of hierarchy, where the output of a level is considered
not as input to the following level controller but as a semantics modifier.

1 Introduction

Fuzzy Logic Controllers (FLCs) have being widely and successfully applied to differ-
ent areas. However the application of FLCs to large scale systems presents different
problems. The definition of Fuzzy Rules is a key task when designing FLCs, and
its difficulty may range from the simplicity of designing a regulation system using
a PD-like fuzzy controller, for which multiple Rule Bases are available in literature,
to the complexity of most industrial applications with a large number of variables
and a highly non-linear behavior. A fundamental problem that the application
of FLCs to large-scale complex systems encounters is the high dimensionality of
the rule base. As the number of variables increases, the number of rules increases
exponentially ([7]).

The application of fuzzy techniques to large scale systems ([3]) is a challenging
problem. Different approaches to reduce the complexity of the rule base have been
proposed. These approaches try to cope with the complexity of the system in a
variety of ways, that following [3] are:

1. Fusing sensory variables before feeding them to the inference engine, thereby
reducing the size of the inference engine.

2. Grouping the rules into prioritized levels to design a hierarchical fuzzy con-
troller.

3. Reducing the size of the inference engine directly using notions of passive
decomposition of fuzzy relations.
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4. Decomposing a large system into a finite number of reduced-order subsystems,
thereby eliminating the need for a large-sized inference engine.

Most of these approaches are based in decomposing the system using different
techniques. In this paper, hierarchical decomposition will be analyzed. In [8], game
theory is applied, considering the different subsystems as players that correct each
other actions.

2 Hierarchical Fuzzy Controllers

Hierarchical fuzzy controllers were proposed in [7] as a way of coping with the
dimensionality problems of rule bases in FLCs.

A fuzzy controller with n input variables where each variable is represented by
I linguistic labels, will have a rule base with ™ rules. This fuzzy controller will
apply rules of the following form:

R; :if (21 is Aqj) and ... and (z,, is A,;) then y is B;

where z; to z,, are the input variables, y is the output variable and A;; and B; are
fuzzy sets related to the corresponding input or output variable.

In a conventional FL.C, all the rules are used, in a single step, when calculat-
ing the output of the controller. In a hierarchical fuzzy controller, variables, and
consequently rules, are divided into different levels in such a way that the most
influential variables are chosen as input variables at the first level, the next most
important variables are chosen as input variables at the second level, and so on.
In addition, the output variable of each level is introduced as input variable at the
following level.

The rules in the first level of such a controller are as follows:

Ry if (x11s A11:) and ... and (2, IS A1nyi)

then wuq is By,
The rules in the k-th level (k > 1) are as follows:

Rij: if (xzn,411s Ariy) and ... and (TNy+ny 18 Aknyj)

and Uk—1 is kalj then Uk is Bkj
where
k—1
Ny = E Tt
t=1

and n; is the number of system variables used as input at level ¢.
With this structure it is shown ([7]) that:

e For a hierarchical fuzzy controller with L levels of rules, n system variables,
m fuzzy sets per variable, and ny variables (including the output variable of
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X1
x, | FLC, | y,
X5 FLC, | y,
X, FLC, |~

Figure 1: Minimal hierarchical structure.

the previous level) in the k" level of the hierarchy, the total number of rules
is given by

with

L
n1+Z(nkfl):n
=2

e In addition, if there is a constant number of input variables per level, i.e.

n1 = ng = ... =ny, the number of rules is
- N
T:(?\[,l—i—l)*mN
WithNZ?”Ll:’I”LQ:...:TLL.

e Finally, if m and ny satisfy conditions m > 2 and ng > 2, the total number of
rules will take on its minimum value when n; = 2, and this minimum value
is

T=(n—1)*m?

This third approach producing the lowest dimension of the rule base is illus-
trated in Figure 1 using a four input one output system.

The result is that in such a hierarchical FLC, the number of rules in a complete
rule base is a linear function of the number of variables, while in a conventional
one it was an exponential function of the number of variables.

In general, this hierarchical approach is based on a cascade structure where the
output of each level is considered as one of the inputs to the following level. This
approach represents only a functional decomposition by which an n-dimensional
FLC that can be represented, from a functional point of view, as

y=F(zy,...,2,)
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is replaced by (in the case illustrated in fig. 1, with four input variables) the
functional composition of n — 1, in this case three, two-dimensional controllers,
that is,

y = fs(fo(f1(m1, 22), 23), 24)

This approach defines the decomposition problem from a merely functional
point of view, but it is possible too to apply a knowledge based point of view to
the decomposition problem. The idea is to use meta-knowledge about the problem
to be solved, this meta-knowledge defines the semantics of the hierarchy, while the
syntax is defined by the structure of the hierarchy. This semantics try to describe
how the variables of the system are coupled, in such a way that using the semantics
information it is possible to decouple the variables. The meta-knowledge (the se-
mantics) is then incorporated into the hierarchical FLC as contextual information.

3 Designing a hierarchical fuzzy controller

A fuzzy system can be viewed from two different points: as a knowledge based
system or as a nonlinear map with some properties, as being an universal ap-
proximator. That applies to hierarchical fuzzy systems (HFSs) too. It is possible
to analyze a HFS as an universal approximator ([10]), but as a knowledge based
system too. In the following, the study will be centered on this second approach.

To apply a knowledge based design to a HFS, special attention has to be paid
to variables interaction and coupling. The hierarchy has to be designed considering
how and why the different variables of the system are coupled, trying to translate
that information to the hierarchical structure.

To illustrate the design process, a well known control problem will be used, the
cart pole balancing system.

3.1 The Cart-pole Balancing System

The cart-pole balancing system is a classical control problem that the literature has
established as a benchmark on learning control system evaluation. The objective
of such a system is the control of the translational forces applied to a cart, to
position it at the center of a finite track, while balancing a pole hinged on the top
of the cart. In our experiments we use the model applied in [1] maintaining the
parameters and dimensions of the system.

The problem is represented through a set of nonlinear differential equations sim-
ulating the dynamics of the cart-pole system. The nonlinear differential equations
are:

F — pesign(i) + F

i=Hy(&0,0,F) = T

(1)
and

é:Hz(:t,H,é,F):—%(i’cose—gsiHH—l— Hﬂ%g), (2)
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Figure 2: Cart-pole balancing system

Fuzzy F
0 Controller

Figure 3: Non-hierarchical fuzzy controller.

where .
F =mlf?sind + %m cos (9(/;%9 — gsinf) (3)

and 5
m=m(l— 1 cos? 9). (4)

3.2 Knowledge based design

The first possibility when designing a fuzzy controller to balance the cart-pole
system is to use a non-hierarchical fuzzy controller like that shown in fig. 3. Con-
sidering a controller with five linguistic terms per variable, the obtained rule base
will contain 5% = 625 rules.

Different approaches to solve that problem from a non-hierarchical point of view
has been proposed, as the use of an indirect adaptive fuzzy controller ([9]) or the
application of learning techniques as in [2, 5, 6]. It is possible to use techniques
that reduce the dimensionality of the rule base, as the sensor fusion described in
[4], integrating the four system variables into two input variables (u1 = az+b& and
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Figure 4: Hierarchical structure using contextual information.

uy = cl + d@) The objective of this paper is not to outperform these controllers
but to focus on a different approach, a knowledge based hierarchical design.

A possible approach is to use the structure defined in Figure 1, consisting of
three fuzzy controllers, selecting which variables have to be assigned to each level
and what are the intermediate variables. Considering again five linguistic terms
per variable, the overall number of rules will be 3 x 52 = 75 rules. But our proposal
is to follow a third approach based on the block diagram in Figure 4. With the
same assumptions the overall number of rules will be 2 x 52 = 50 rules.

To select the variables applied at each level of the hierarchy and to obtain the
corresponding rule bases, a knowledge extraction process will be applied to the
problem. The main idea is that of generating a hierarchical structure and a rule
base (in this case two rule bases) that reflects the expert knowledge (in this case
we play the role of experts).

3.3 Knowledge extraction

In a first step the four input variables will be grouped according to its role in the
system and with the different levels of coupling they have.

The cart-pole balancing system is a multi-objective system where a first ob-
jective is balancing the pole and a second one is centering the cart on the track.
Each one of these two objectives is related to a subset of the input variables. The
achievement of the first objective (balancing the pole) relates to the values of the
variables @ and 0, while the variables z and # reflect the attainment of the second
objective (centering the cart). That means that variables 6 and 0 are tightly cou-
pled and must be considered as a single subset of the input variables, consequently,
they will probably constitute the input variables of one of the FL.Cs composing the
hierarchical structure. The same applies to z and %.

Considering the two objectives separately it is easy to solve the problem of
centering the cart or balancing the pole, a simple regulator such as a PD could
control the applied force and achieve the objective. But the question is not so
simple because of the coupling between both tasks. This coupling creates two
opposite situations:
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1. Both objectives require an opposite action, i.e., its deviations have the same
sign. This is the situation when cart and pole are simultaneously in a positive
(negative) position, as the one illustrated in Figure 2.

2. The two objectives require a similar action, i.e., its deviations are opposite.
This is the situation when cart is in a positive (negative) position while pole
is in a negative (positive) one.

Considering now the way a human would solve this control problem, each one
of the two previously described situations will have a partial solution that will be
described in following paragraphs.

The first situation could be reduced to the second one by applying a force to
move away the cart from the track center, where the intensity of the force has to
be high enough to change (in sign) the orientation of pole.

The second situation requires a force towards the center of the track, i.e., with
the opposite sign to the cart position, but the intensity of that force has to be
bounded to stop the pole changing its position and consequently converting the
system situation from the second to the first one.

These two actions could be expressed in the following single rule

anywhere the cart is, apply the force required to place and maintain the
pole deviated towards the center of the track.

3.4 Adapting the knowledge to the hierarchical structure

The control rule obtained in the previous section is now going to be adapted to a
two level hierarchical fuzzy controller.
The knowledge base of a FLC has three main components:

1. the scaling factors or the scaling functions,
2. the membership functions, and
3. the control rules.

iJFrom a linguistic point of view, the scaling factors could by interpreted as
context information. While the membership functions describe the relative seman-
tics (context independent) of the linguistic variables contained in the rules, the
union of the scaling functions and the membership functions generates the abso-
lute semantics of the linguistic variables (context dependent through the scaling
functions).

In this paper context information will be considered as intermediate variables
applied to connect the levels of the hierarchical structure, as shown in fig. 4. In
this case, the intermediate variable v will constitute not an input variable to the
second level fuzzy controller but a different kind of information.

At the first level of the hierarchical fuzzy system a control meta-rule is obtained
that constitutes context information (in this case the objective) for the second level
controller. The meta-rule is:
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maintain the pole deviated towards the center of the track.

At the second level a control rule ensures the achievement of the objective (that
changes according to first level output). The control rule is:

achieve the desired pole position by applying a force with the same sign
as that of the deviation (from the desired position) of the pole.

When Interpreting these two levels of knowledge in the context of the applica-
tion, it is important to notice that the control problem is, in this case, a multi-
objective problem. The control system tries simultaneously to center the cart and
balance the pole. From this point of view, the meta-rule represents meta-knowledge
describing how to synchronize the attainment of both objectives. The control rule
contains the information to achieve one of these objectives while the meta-rule
keeps both objectives synchronized.

3.5 Increasing the Contextual Information

It is possible to incorporate more contextual information into the interface between
both levels of the hierarchical structure.

In the previous paragraph the output of the first level defines an objective value
for the pole position. The main idea is to maintain different levels of angular devi-
ation for the pole, according to the linear deviation of the cart. When comparing
the objective of maintaining the pole in a vertical position or maintaining it with
a certain deviation it is easy to notice (without needing to know the mathematical
model) that the vertical position represents a point of unstable equilibrium while
the other cases are not equilibrium points. If only considering the pole it intuitively
seerns possible to transform any pole position in an (unstable) equilibrium position
only by applying the suitable force to the system. In other words, if the controller
does not consider the cart position, it is possible to maintain a certain deviation
of the pole with a first derivative equal to zero by only applying an appropriate
constant force to the cart.

The idea is to generate as the output of the first level a pair (8, Fy) representing
the equilibrium condition. To do that it is possible to use a two input two output
system generating (8, Fp), or only a two input one output system assuming a linear
relationship between 8y and Fy. The hierarchical controller described in previous
subsection is the one considering Fy = 0.

4 The hierarchical fuzzy controller

Considering again the block diagram in Figure 4, a first fuzzy controller (FLCy)
incorporates as inputs the variables x and &, generating as output a desired equilib-
rium point (8o, Fo). The second fuzzy controller (FLCy) has as inputs the variables
8 and 6 and generates the force to be applied to the cart (F'). The role of 8y and Fy
in the second controller will be described below. The dimensions and parameters
of the system are represented in table 1.
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Table 1: Model Dimensions and Parameters

Symbol Description Value
x Cart position [-1.0,1.0] m
0 Pole angle from vertical [-0.3,0.3] rad
F Force applied to cart [-10,10] N
g Force of gravity 9.8 m/s?
l Half-length of pole 0.5 m
M Mass of the cart 1.0 kg
m Mass of the pole 0.1 kg
Lhe Friction of cart on track 0.0005 N
p Friction of pole’s hinge | 0.000002 kg m?

NL NM NS Z PS PM PL

Figure 5: Membership functions.

The linguistic labels are similar for all the variables (including the output vari-
ables of both controllers) and are described in Figure 5. All the term sets contain
seven terms {NL (Negative Large), NM (Medium), NS (Small), Z (Zero), PS (Pos-
itive Small), PM (Medium), PL (Large)}. The membership functions are defined
in [-1,1] and consequently the four input variables have to be normalized from their
ranges to [-1,1] interval. This normalization process is based on a linear function
applying the following normalization ranges:

ranges for cart position and its first derivative (x, %) are [-1,1] in meters and
m/s respectively,

the ranges for the output of the first level representing the desired equilibrium
point (fy, Fy) will be obtained below,

the range for pole position (8) and applied force (F) are defined as a function
of the desired equilibrium point generated at first level, producing ranges
contextualized by means of the defined condition. The applied ranges are
[-0.3460,0.3+8] rad. and [-10+F,10+F] Nw., and

the range for pole position derivative (6) is [-1,1] rad/s.

The hierarchical controller will use the structure shown in Figure 4 with the
normalized fuzzy sets in Figure 5 and the previously defined normalization ranges.



300 L. Magdalena, F. Monasterio & C. Rivero

Table 2: Control Rule Base (FLC; and FLCy)

z NL NM NS Z PS PM PL
T 6o, Fo
NL PL PL PL PL PM PS Z
NM PL PL PM PM PS Z NS
NS PL PM PS PS y/ NS NM
Z PL PM PS y/ NS NM NL
PS PM PS Z NS NS NM NL
PM PS Z NS NM NM NL NL
PL Z NS NM NL NL NL NL
0 NL NM NS Z PS PM PL
9 F
NL NL NL NL NL NM NS y/
NM NL NL NM NM NS y/ PS
NS NL NM NS NS Z PS PM
Z NL NM NS Z PS PM PL
PS NM NS Z PS PS PM PL
PM NS Z pPS PM PM PL PL
PL Z PS PM PL PL PL PL

The definition of the rule bases will consider the meaning of the control meta-rule
and rule defined in the previous section. Both of them reflect a regulation action
that could be implemented by using a standard fuzzy PD, in this case the applied
rule base will be similar to that described in [11] (2).

The next step is the determination of normalization ranges for 8y and Fp, and
the analysis of the behavior of the controller. To determine the suitable range for
both 6y and Fy tests will be carried out by applying different values that will be
evaluated using the following expression

6000

ITAE = Y ) nrlafr (5)

10init. n=1

This expression is equivalent to the ITAE (Integral Time Absolute Error) index,
with n7 representing the time, || the error and 7 the integration step.

The evaluation results of considering the ranges [—a, a] and [—2, 8] for 8y and
Fy respectively, with the values of « from 0 to 0.35 (rad.) by 0.05 and 3 from
0 to 3.5 (Nw) by 0.5, are shown in Figure 6. The system presents a very similar
performance for a wide range of values, finally the point (0.35,3.5) that generates
the minimum is selected and consequently the variables 6y and Fy are normalized
in [-0.35,0.35] and [-3.5,3.5] respectively.

Figures 7 and 8 have been obtained by applying the hierarchical fuzzy controller
to the cart-pole system with initial conditions z = 0.5 m. and § = 0.15 rad. The
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position (m)
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Y

30
tyme (s)
Figure 7: Cart position (using linear normalization).

controller achieves a stabilization of the system in a limit cycle with maximum
deviation of 2.6 cm. and 0.018 rad.

4.1 Refining the fuzzy controller

The results shown in the previous subsection are clearly outperformed by other
fuzzy controllers, but the main question was the reduction of complexity of the
design process that has been obtained with the hierarchical structure.

Once the idea of an easy design process has been established, and the possibility
of using a standard rule base has been shown, a second step will be added to improve
the behavior of the hierarchical fuzzy controller. The idea is the use of the non-
linear normalization functions previously described in [6], that replaces the linear
normalization with a non-linear normalization of the input (output) variables from
(to) its universe of discourse to (from) the normalized universe [-1,1].
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Figure 8: Pole position (using linear normalization).

A two step normalization (denormalization) process is applied. In a first step,
the variable is linearly mapped from its range defined through the lower and upper
limits ([Vinin, Vinaz]) to [-1,1]. In the second step the non-linearity is introduced
through the parameterized function (f : [-1,1] — [-1,1])

f(z) = sign(z) x |z|*, with a > 0. (6)

The final result is a value in [-1,1].

Working with a normalized fuzzy partition like the one shown in Figure 5 (where
the fuzzy sets are uniformly distributed in [-1,1] interval), it is possible to obtain
a denormalized fuzzy partition with uniform sensitivity (a = 1), higher sensitivity
in medium values or higher sensitivity in extreme values ([6]).

Applying genetic algorithms to obtain the suitable values of V4. (as the system
has a symmetric behavior the value of Viin is —Vinaz) and a for the different input
and output variables of the hierarchical controller (and maintaining the rule base) it
is possible to considerably improve the behavior of the system as shown in Figures
9 and 10 being equivalent to Figures 7 and 8 but using the non-linear normalization
functions.

5 Concluding remarks

The paper focus on the problem of decomposing multivariable fuzzy controllers
using a hierarchical approach based on the application of meta-knowledge, intro-
ducing a new approach to the application of FLCs to large-scale systems. For this
kind of systems, where the high dimensionality of the rule base represents a signifi-
cant difficulty, the use of a hierarchical structure produces an interesting reduction
of the rule base. The proposed hierarchy introduces the idea of contextual informa-
tion as a way of obtaining a larger reduction in the size of the rule base if comparing
it with previously defined hierarchical structures. To allow an easier description
of the method, the cart-pole balancing system is used as an application example,
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Figure 9: Cart position (using non-linear normalization).
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Figure 10: Pole position (using non-linear normalization).

demonstrating the reduction of the number of rules and the good performance of
the generated FLC when controlling the system.
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