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Abstract

In this paper we study two ways of generating multi-dimensional aggregation
functions. First of all we obtain multi-dimensional OWA operators in two differ-
ent ways, one of them through quantifiers and the other through sequences. In the
first case, we see that all the operators we obtain are multi-dimensional aggregation
functions. We then characterize the multi-dimensional aggregation functions that
are generated by quantifiers. In the second case, we characterize the sequences that
provide multi-dimensional aggregation functions and give examples and properties.
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1 Introduction

The problem of aggregating information has been studied during the last years
from different points of view. Particularly the n—dimensional OWA operators
introduced by Yager in [5] have proved to be interesting in this process. These
operators have been extensively studied by many authors ([1], [2], [4], [5], [6], [7],
[8]). In this way, the WOWA operators are studied in [4] as a generalization of the
OWA operators and the weighted means.

However, the common fact of these operators is their n-dimensionality. On
the other hand, [1] introduces the multi-dimensional (extended) OWA operators
(EOWA). The main contribution of these operators is their multi-dimensional na-
ture, that is, they can be applied to lists of n elements for any value of n > 1. A
step forward is the introduction in [3] of the multi-dimensional (extended) aggre-
gation functions (EAF) which, besides of being multi-dimensional operators, are
monotonic with respect to certain orders that allow to compare lists of elements of
different length. The relationship between these two types of operators is given in
[3] where the EOWA which are EAF are characterized through a property on the
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weights (see proposition 2).

In this paper, we present two ways to obtain EOWA operators that are EAF.
The first way is through the so-called quantifiers (fuzzy quantifiers, linguistic quan-
tifiers) represented by fuzzy subsets of the real line, that is, by monotonic mappings
Q@ :[0,1] — [0,1] (see [6], [7]). These references show how these quantifiers are used
to interpret concepts like “most”, “many”, etc. In this part of the paper we ver-
ify that the way of defining OWA operators through fuzzy quantifiers given in [7]
can be generalized to define EOWA operators and that these operators are always
multi-dimensional aggregation functions. We characterize the EOWA operators
generated by fuzzy quantifiers that are EAF and study their properties.

The second way of obtaining EAF consists of generating EOWA operators
through sequences of real numbers. In this case not all the operators we obtain are
EAF; in any case we characterize the sequences that generate EAF and give some
examples, like the decreasing sequences, the arithmetic and geometric progressions,
the Fibonacci sequence, etc.

2 Preliminaries

In this section we present the definitions and basic results we will use throughout
this paper.

Given a lattice (L, <) with minimum 0 and maximum 1, let us denote by E the
set E = |J L™ of all the ordered lists formed by elements of L.

n>1

Definition 1 The following relations <;, <, and <g define orders on the set E.

Given = = (x1,...,%s), ¥= (Y1,---,Ym) elements of E:
o <,y ifandanlyif n=m and =z <1,...,2, <y, (product order)
o <,y ifandonlyif n<m, =z <wy,...,2, <yn, and
if n<m then sup(z1,...,2n) <inf(Ynt1,---,Ym)
o z<gy ifandonlyif n>m, z1<y,....2n <¥Yn, and
if n>m then sup(Zmyts. . Zn) <inf(Yy1,...,Ym)

The following result gives a quite useful characterization of the monotonicity
with respect to the orders « and J.

Proposition 1 Let A: E — L be a monotonic with respect to the product order
mapping. Then:

a) A is monotonic with respect to <, if and only if A(zy,...,2,) <
A, ..o T, sup(T1,. .., Tn)),

b) A is monotonic with respect to <g ifand only if A(z1,..., &, inf(21,...,25)) <
Alzq,...,zp)

for all (z1,...,z,) € E.
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Definition 2 A mapping A: E — L is a multi-dimensional (Extended) Aggrega-
tion Function (A is an EAF) if it satisfies the following conditions:

1) A is monotonic with respect to the orders <, and < 8
n

2) A is idempotent, that is, A(Z,...,2) =z forallz € Ly n>1.

Definition 3 (Yager) A mapping A:[0,1]" — [0,1] is an n—dimensional OWA
(Ordered Weighted Averaging) operator if there exists W = (w1, ..., w,) € [0,1]"

(called the weighting list) with > w; =1 and such that
i=1

Az,...,zp) =W R(z1,...,2,) forall (zi,...,2,)€][0,1]"

where R(x1,...,2Zn) = (Y1,...,Yn) Is the initial list (z1,...,2,) realigned de-
n

creasingly and W - R(z1,...,x,) = 3, wily;
i=1

Definition 4 It is said that an application A : [J[0,1]" — [0,1] is an EOWA
n>1

operator (a multi-dimensional (Extended) OWA operator) if the restriction of A to

[0,1]" is an n—dimensional OWA operator. That is, if for all » > 1 there exists

an n—dimensional weighting list, W,, = (w7,...,w}), such that A(zy,...,z,) =

Wy - R(21,...,xy) forall (z1,...,2,) € [0,1]".

Remark 1 Notice that an EOWA operator is always idempotent, symmetrical
and monotonic with respect to the product order. Notice as well that an EOWA
operator can be represented through a weighting (or probabilistic) triangle in such
a way that every row n of this triangle comprises the corresponding n—dimensional
weighting list W,,. That is,

wi wy wy wi

Reciprocally, every weighting triangle (it means that the elements of any row add
up to 1) defines obviously an EOWA operator. From now on, we will represent an
EOWA operator or a weighting triangle by Aw}'.

The following examples show how some classical operators are EOWA operators
as well as Multi-dimensional Aggregation Functions.

Example 1 A(z1,...,2,) = min(x1,...,2,) is an EOWA operator with W, =
n—1
ﬂ‘ . . .
(0,...,0,1) for every n. Similarly, A(z1,...,z,) = maz(zy,...,x,) is also an
n—1

. fd“ .
EOWA operator with W,, = (1,0,...,0) for each n. It is easy to see that both
operators are EAF.
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Example 2 The arithmetic mean, A(x1,...,%,) = % is an EOWA oper-

n

e N,
ator with W, = (1/n,...,1/n) for each n. It is easy to see that A is an EAF.

Next result (see [3]) gives a characterization of the EOWA operators that are
EAF.

Proposition 2 Let A be an EOWA operator with W,, = (w?,...,w)) for each
n > 1. Then A is an EAF if and only if the following inequalities hold for all n > 1
and p=1,...,n

p+1

p p
S wrtt <y wp <y wptt (1)
i=1 i=1 i=1

Definition 5 It is said that a weighting triangle Aw? is regular if it satisfies the
condition (1).

Definition 6 Given an EOWA operator A with W, = (w},...,w!) for each
n > 1, let us define the reciprocal of A (represented by A") to be the EOWA
operator defined by U, = (uf,...,up) for every n > 1, where u} = wy ;.
for all n > 1 and for all j =1,...,n. On the other hand, it is said that an EOWA
operator A is symmetrical when A = A",

3 Generation through quantifiers
Definition 7 A guantifier is a mapping @ : [0, 1] — [0, 1] such that

i) Q(0) =0, Q(1) =
) r<t= Q(r) <Q(t)

This definition can be already found in [6] and [7] and in both cases these
quantifiers are used to represent concepts like “most”, “many”. Particularly, it is
shown in [7] how, given a quantifier @ : [0,1] — [0,1], it can be constructed an
n—dimensional OWA operator, Ag, with the weights given by

. q
wj:Q<%>—Q<]T) forall j=1,...,n.

Thus, for example, to evaluate a sentence like
“Most students are poor”

we would proceed in the following way: We represent the concept of “most” by a
quantifier @, to be “poor” by a fuzzy set B and then, given a sample of students
Z1,...,Tn, the value of the previous sentence would be given by Ag(b1,...,bs)
where Ag is the n—dimensional OWA operator obtained from () and each b; =
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However, there is no reason to be limited to n—dimensional operators. The
same process can be generalized to multi-dimensional operators and thus construct
an EOWA operator Ag from a quantifier ) by defining the weights as

w1, W =Qd)—el=t), j=1.

n
and then Ag(x1,...,2n) = > wly;, where (y1,...,Yn) = Rn(®1,...,20), and R,
j=1
is the increasing realignment over [0, 1]".

Remark 2 Notice that following this procedure we really obtain a weighting tri-
angle

e w?e[0,1], Vi=1,...,n, Vn>1

. ; wh = : [Q(1) - QUEE)] = (1) - Q) =1
k k , .
Observe also that ;w? = ;1 [Q(%) - Q(%)] = Q(%)

Example 3 From the quantifiers

0 ifz=0 1 ifz=1
(%@9{1 if 2 € (0,1] (b@){o if 2 €[0,1)

0 if0<az<1/2
Qs(z)={ 1/2 ifz=1/2
1 if1/2<z<1

we obtain the EOWA operators
Ag, = Mazx, Ag,=Min and Ag, = Median,

respectively.

The triangle corresponding to the Max operator would be formed by a “1” in
the first entry of each row and a “0” anywhere else. The one corresponding to the
Min operator would have a “1” in the last entry of each row and a “0” anywhere
else. Finally, the weighting triangle corresponding to the Median operator would
be the following:

1
1/2 1/2
0 1 0
0 1/2 1/2 0
0 0 1 0 0
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Example 4 If we consider the quantifier Q(z) = 22, frequently used (see [6],[7]) to
represent the fuzzy concept of “most”; we obtain the EOWA operator with weights
wi = %—2_1 and thus the corresponding triangle would be:
1
1/4 3/4
1/9 3/9 5/9
1/16 3/16 5/16 7/16
1/25 3/25 5/25 7/25 9/25

Proposition 3 Let @ : [0,1] — [0,1] be a quantifier. Then the EOWA operator

Ag is an EAF.

Proof. It is sufficient to prove that the weighting triangle generated by @ is
regular, that is,

P 4 p+1
w?“ﬁZw?S w?"'l Vp=1,...,n.
j=1 j=1 j=1
But this is equivalent to prove
p P p+1
<QEY<Q(—=) Vp=1,....n
Loy zed) <o) vy

p<p+1

.. . .. . D
and this is true since ) is increasing and le .
@ & n+1 qn “n+1

Proposition 4 Let A : [0,1]" — 0,1] be an EOWA operator with weighting

U
n>1
triangle Aw?. Let us suppose that A is an EAF. Then there exists a quantifier Q
such that A = Ag if and only if the following condition holds:

k T
k-m:n-r:>2fw?:2w§". (2)
j=1

j=1
Proof. Let us suppose firstly that the condition (2) holds. Let us define the
mapping @ over the rationals of [0, 1] as follows:

k
k n
Q(0) =0, Q(E)zigwj Vn>1 and Vk=1,....n
]:

Nowif%z%,n;ém,OSkSn,Oﬁrﬁm, then

k k i
Q=) =Y uj =Y uf = Q).
j=1 j=1
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Thus @ is well-defined over Q N [0, 1] and, consequently, it can be extended to a
mapping @ defined all over the interval [0,1]. Observe that A = Ag since

J Jj—1

Q) QU =Y ur - St =,

Reciprocally, let us now suppose that A = Ag and let us prove the condition (2).
According to the previous remark, we have:

k r
Zw = Z) and Zw}”:Q(T
j=1

j=1
Ifk-m=mn-r, then % = = and condition (2) holds because @ is a mapping.

Remark 3 In the first part of the proof, we have seen that () is defined over
@ N [0,1]. Let us see that if Ag = Ag, then Q = Q" over Q N[0, 1].

Observe that: Q(%) - Q(Tl) w Q’(%) —Q'(Z ;1)
Now if j = 1, then @(0) = Q'(0 ) =1, and Q() = Q'(2), and so on up to
Q) =Q'(1) =1

Remark 4 When (@ is uniformly continuous over @ N [0, 1], there exists a unique
extension of @ to [0,1] that is also uniformly continuous.

Proposition 5 Let () be a quantifier and Aw} the weighting triangle generated
by Q. Then Aw} is symmetrical if and only if () is symmetrical with respect to
(1/2,1/2) over Q N [0,1] (that is, Q(1 —z) =1 — Q(x) for all x € QN [0, 1]).

Dem. Let us suppose firstly that the given weighting triangle is symmetrical, that
is:

wi =wy_;4 Yn>2 and Vi=1,...,n

Let n > 2. We know that w} = Q(%) — Q(%) Then
j—1 —7+1
L)) -

n n n

QL) - a
and thus
j N -1, .
Q(E)+Q(17E)7Q(T)+Q(177) Vj—l,...,n.
Now if j = n, then:
ey +Qu-L)=Quy+@o =1 vj=1....n

and thus
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that is, @ is symmetrical with respect to (1/2,1/2) over Q N[0, 1].

Reciprocally, let us now suppose that @ is symmetrical with respect to (1/2,1/2)
over Q N[0, 1], that is,

Ql—z)=1-Q(z) Ve QnJo,1].
Let n > 2. Then ‘ ‘
n n

In particular

J J J—-1 Jj—-1
1=0Q(= 1— =) =Q(—— 1-
ey rou-Ly=ol—=)rea -2
and thus ] - - )
J J—-1 S n—g+1l S n—y
o) -t = o= ),
Then w} =wyp_;.4 Vj=1,...,n, and the triangle is symmetrical.

4 Generation through sequences

Let us consider a sequence of real numbers A1, As,... > 0 such that \; > 0. We
can generate a weighting triangle from this sequence as follows:

s
Yn>1, w?= G —
- J At A,
n i:l Aj
Observe that '21 wy = m =1, and thus we really obtain a weighting trian-
j=

gle.

Proposition 6 A triangle generated by a sequence {A,} is regular if and only if
} is decreasing, where S, = A1 + -+ - + Aj.

Sni1
S’n/

the sequence {

Proof. Let us suppose firstly that the triangle is regular. Then

p+1

P P
n+1 N n+1 _
g wi < E w; < E w; Vp=1,...,n.
j=1 j=1

Jj=1

A . . .
In our case, wi = g+, and the previous condition will be
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If we take p = n — 1 in the second inequality, then

Snfl 5%

Snt1

i reasing.
& s decreasing

which shows that the sequence {

Reciprocally, let us now suppose that {M} is decreasing and we want to prove
that

s .
SJ < L <
n+1 =1 n j=1

p
Jj=1

or equivalently

The first inequality holds because §,, is increasing, and the second one because
{5751_11} is decreasing.

Remark 5 Observe that if a weighting triangle is regular, then the corresponding
EOWA operator is an EAF.

Example 5 The triangles generated by the following sequences are regular.
a) decreasing sequences,
b) arithmetic progressions,

c) geometric progressions.

Example 6 The Fibonacci sequence: 1,1,2,3,5,8, ... generates the triangle

1
1/2 1/2
1/4 1/4 2/4
17 17 2/7 37
1/12 1/12 2/12 3/12 5/12

It is easily proved by induction that this sequence satisfies:

a) Sn == )\n+2 — ].,
b) (/\n+3 - 1)(>‘n+1 - 1) < (An+2 - 1)2

Snt1
Sr

sition (6), this fact proves that the weighting triangle generated by the Fibonacci
sequence is regular.

and this last inequality implies that { } is decreasing. According to the propo-
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We have seen in this paper that we can obtain EAF from quantifiers and also from
sequences. It follows from the proposition (4) that there exist EAF generated by
quantifiers as well as by sequences. Let us see examples that illustrate these facts.

Example 7 Arithmetic mean.

Let us consider Q(z) = z. An easy calculation shows that w} = 1/n Vn > 1, Vj=
1,...,n.

Observe that if we take the sequence A\, =1 ¥n > 1, we obtain the same EAF.

Example 8 Median.
According to the example (3), this EAF is obtained from a quantifier. On the other
hand, it can not be generated by a sequence since w} = 0.

Example 9 Let us consider the sequence )\, = 2"~1 V¥n > 1. It is easily proved
that the weighting triangle generated by this sequence can not be generated by a
quantifier.
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