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Abstract

The basic tool considered in this paper is the so-called “graded set”, de-
fined on the analogy of the family of a-cuts of a fuzzy set. It is also considered
the corresponding extensions of the concepts of a point and of a real number
(again on the analogy of the fuzzy case). These new “graded concepts” avoid
the disadvantages pointed out by Gerla (for the fuzzy points) and by Kaleva
and Seikkala (for the convergence of sequences of fuzzy numbers).
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1 Introduction

We can find a great variety of definitions and criteria when we work with the differ-
ent aspects of the Fuzzy Mathematics (as it is pointed out by Kerre [15]). Against
this heterogeneity (which is often due to the use of membership functions), the
use of the families of a-cuts provides a fruitful and unifying method [19]. Indeed,
this method has been used in theoretical as well as in applied fields of the Fuzzy
Mathematics, especially in the Decision and Optimization Theory in a Fuzzy En-
vironment [1, 2, 21, 22]... Nevertheless, the families of a-cuts of fuzzy sets are
restricted by the conditions stablished in the Negoita and Ralescu’s Representa-
tion Theorem, which sometimes give rise to certain disadvantages. For example,
when operating fuzzy numbers via the Zadeh’s Extension Principle [17] or when
calculating the limit of a sequence of fuzzy numbers via their a-cuts [13].

In order to make use of the fruitful tool provided by the families of a-cuts, but
also avoiding the disadvantages derived from the conditions of the Representation
Theorem, the author introduces the so-called “graded sets” [8]. They are defined
as non-increasing families of subsets (let us note that the non-increasing condition
is weaker than the conditions imposed by the Representation Theorem). This also
enables us to define several “graded concepts” on the analogy of the corresponding
“fuzzy concepts” [10]. In particular, we consider here the definitions of a “graded
point” [8] and a “graded number” [9], because of their interesting properties (as
we shall see below).

The non-increasing condition imposed to the graded sets gives rise to a strong
relationship with the fuzzy sets. Specifically, the author proves [8] that given any
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graded set 1, there exists only one fuzzy set p,; (called the “fuzzy set associated
with” ) such that 1 is greater or equal to the family of strong a-cuts of py and it
is lower or equal to the family of [weak] c-cuts of p,. Conversely, given any fuzzy
set p, it is obvious that any family of subsets fullfilling this condition must be a
non-increasing family of subsets (and so these families of subsets will be called the
“graded sets associated with” the fuzzy set p).

The preceding result suggests representing a fuzzy set by any of their associated
graded sets (not necessarily equal to its family of a-cuts). This procedure gives
rise to a representation method which takes the graded sets as a useful tool in the
Fuzzy Mathematics. In this paper, this method is used in order to obtain properties
of the fuzzy numbers via the graded numbers. More specifically, relationships
between the Zadeh’s fuzzy numbers and the Hutton’s fuzzy numbers (which are
studied separately in the Fuzzy Mathematics) are stablished and it is defined the
“oraded convergence” for sequences of fuzzy numbers. This new criterion extends
the usual convergence in R (which is not fullfilled by the pointwise convergence
of membership functions) and ensures the existence of a limit for any monotonic
and bounded sequence of fuzzy numbers (which is not fullfilled by the a-level
convergence).

The paper is organized as follows. First (in Section 2), it is fixed the definitions
and notations corresponding to the different fuzzy concepts used in the following.
The Sections 3, 4 and 5 are devoted to the definitions and fundamental results
about graded sets, graded points and graded numbers, respectively. Finally, in
the Section 6, it is enumerated some of the results about fuzzy numbers which are
deduced from the analogous results corresponding to the graded numbers.

2 Fuzzy sets, fuzzy points and fuzzy numbers

In the following, I denotes the unit interval [0, 1], R the real line and N the set
of positive integers. Given any set X, P(X) = 2% denotes the power set of X
and F(X) = I*X := {u : X — I} denotes the set of fuzzy parts of X. We assume
that P(X) C F(X), via the identification A = x4, where x4 is the characteristic
function of A, crisp subset of X. For each « € T and each p € F(X), we have the
[weak| a-cut pl®l := o, 1] and the strong a-cut p(® = p~(a, 1].

The extension of arbitrary mappings f : X — Y (resp. f : X2 = Y) to
f:PX) = P(Y) (resp. P(X)? — P(Y)) is made in the usual form, while the
extension to f : F(X) — F(Y) (resp. F(X)? — F(Y)) is performed via the
Zadeh’s Extension Principle.

The fuzzy set A, := AX{,) is called a fuzzy point (or fuzzy singleton) with
the support z € X and value A € (0,1]. Let us consider now three different
criteria to define where a fuzzy point belongs to a fuzzy set:

o Following Kerre [14], we have:
Az €Epe A Cp

(which is equivalent to: A < p(x)).
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e According to Wong [23] (who gave the original definition) and to Gottwald
[7] (who changed it in order to avoid some drawbacks), we have this other
criterion, which does not admit the value A = 1 for the fuzzy points:

Az € s A < plx).

o Pu and Liu [18] define the quasi-coincidence of the fuzzy sets v, p € F(X)
as the existence of an « € X such that v(z) + p(x) > 1. For the particular
case v = A, it results in the following criterion:

Az €E e A+ pl(z) > 1
(which is equivalent to: A; € 1 — p according to Kerre’s definition)

If we use the definition given by Kerre, then the following property does not
hold in general (when I is an infinite index set):

Ameuui@HiGI,Ameui.
iel

This fact induces Wong’s definition. Thus, using it we obtain the fullfillment of the
previous property. Nevertheless, Wong’s definition does not ensures the fullfillment
of this other dual property (which is obtained with Kerre’s definition):

Ao € [ i Vi€ LAy € pi
iel

In this respect, Pu and Liu’s definition acts similarly to Wong’s definition.

Another remarkable fact is that Wong’s definition discards the crisp [or ordi-
nary| points as fuzzy points, because it does not admit the value A = 1 for the
fuzzy points.

In this situation, Gerla [5, 6] considers different properties in order to obtain
axiomatic definitions of fuzzy point and of its belonging to a fuzzy set (simultane-
ously). In particular, he proves the impossibility to define a pair (X’,€’) such that
X' is a set of fuzzy points, € is a crisp relationship of belonging to fuzzy sets and the
following properties are simultaneously verified: (VP,Q € X', Vu, i, v,v; € F(X)):

o Pe'J;c i & di € I, Pe ;.

o Pe'(N;cp i & Viel, Pep;.

{P:POxx} =0, {P:Pxx}=X"
e u=v&{P:Pu} ={P: Pev}.
o P=Q& {p:Pe'pt ={p:Qu}.

The concept of “fuzzy number” has grown, fundamentally, into two different
ways. On the one hand, we have several definitions of common use in Artificial
Intelligence, consisting basically of membership functions which first increase from
0 to 1 and then decrease to 0 again. All these definitions can be put together under
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the denomination of “Zadeh’s fuzzy numbers” (according to the original definition
given in [24]). On the other hand, we have the “Hutton’s fuzzy numbers” [12, 4]
used in Fuzzy Topology, whose membership function is non-increasing. Similarly to
these, we also have the “Hohle’s fuzzy numbers” [11], whose membership function is
a probability distribution function. Let us remember that the Hutton’s fuzzy num-
bers are, by definition, conditioned by an equivalence relation. Nevertheless, this
equivalence can be ignored when we only consider upper-semicontinuous member-
ship functions [16]. In this paper we shall use specifically the following definitions
and notations:

Definition 1 The Zadeh’s, Hutton’s and Hohle’s [fuzzy] numbers are, re-
spectively, the elements belonging to the following sets:

FzR) = {peFR):p is convez, normal
and u.s.c., and M(O) is bounded},
FauR) = {peFMR):p is non-increasing, normal
and w.s.c., and p'® is bounded above},
Fp(R) = {pe FR): u is increasing, normal

and w.s.c., and p® is bounded below}.

(Where “u.s.c.” stands for “upper-semicontinuous )
We shall say simply “fuzzy numbers” to refer to any of the elements of the

set:
.7-']\/(][{) =Fz(R)UFg(R)U Fp(R).

3 Graded sets

Definition 2 ([8], Definitions 3.1, 3.2) Given any set X, by a graded subset
or graded part of X (or simply graded set) we means any mapping ¢ : T —
P(X) such that verifies the following condition:

Va,B 1, [a< = (a)DP(F)]

We say that v is normal when Y(a) # 0, Va € 1. We denote by G(X) the set
of graded parts of X. The inclusion P(X) C G(X) is given by: A — (A)1, where
(A)(a) := A, Va e I

Whenever possible, we use the following general criterion in order to extend to
graded sets any property or concept “C” known for crisp subsets:

¥ is “C7 o YPla) is “C7 Va el
In particular, we define (Y, 1, ¢ € G(X)) :

oY= ﬂie[ i ’Lﬁ(a) = ﬂie] 771)1'(0‘)7 Vo € L
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o ¥ =Ues ¥i & P(a) = Use, Yi(@), Va € L.
o« ¥ C 610 () C éla), Vae L
o Anymap f: X =Y is extended to f : G(X) — G(Y) defined by:
W) (@) == f(3(a)), Ya € L.
o Anymap f: X2 Y is extended to f : G(X)? — G(Y) defined by:
W, 9)(@) = f(¥(a), §()), Va € L

e In the case X = R, we say that 1 is convex (resp. closed, bounded below
or bounded above) when, Va € I, ¥(a) is convex (resp. closed, bounded
below or above).

Obviously, 9 is normal iff (1) # () and v is bounded (below or above) iff 1/(0)
also is.

The main result with regard to the relationship between graded sets and fuzzy
sets is the following theorem. From here on, we assume that pl% = X and p) =

0, Ve F(X):

Theorem 1 ([8], Theorem 4.3) For any set X and any map ¢ : I — P(X), the
following holds:

1. v is a graded set if and only if there exists only one fuzzy set iy verifying:
ufpa) C (a) C ”1[/?]’ Va € 1.

2. The fuzzy set py is given by:
py(x) =sup{acl:z c (o)}, Vo € X,

and its a-cuts are: N«[E] =Mv(B):0< 8 <al, uff) =U{w@B):a<p <
1}, Va e L

When the conditions given in this theorem holds, we say that p,, is the fuzzy
set associated with the graded set i) and that ) is a graded set associated
with py. In particular, the family of a-cuts of any fuzzy set p (as well as its family
of strong a-cuts) is a graded set associated with p. Taking into consideration this
particular case in the previous theorem, they result as corollaries the Negoita and
Ralescu’s Representation Theorem (which stablishes the conditions that character-
ize to the a-cuts) and the so-called Resolution Principle (which obtain a fuzzy set
from its a-cuts).

In [8] it is proved that the operations and relations previously defined for graded
sets are related to the corresponding operations and relations defined by Zadeh for
their associated fuzzy sets, in the following sense:

Proposition 1 For any sets X, Y and any ¥;,v, ¢ € G(X), we have:

1' lu'nigj"/)i - ﬂie[ lu”‘/)l
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2. HU,crvi = UieI Hops -
3 C o= py © o

4. The extensions G(X) = G(Y) and F(X) — F(Y) obtained from any map
f: X =Y verify:

By = fpp)-

5. The extensions G(X)? — G(Y) and F(X)? — F(Y) obtained from any f :
X2 Y verify:

yp,g) = f by po)-

Corollary 1 For any set X and any p,v € F(X), we have the inclusion p C v if
and only if there exist two graded sets, ¥ associated with p and ¢ associated with
v, such that ) C ¢.

These properties enable us to extend the representation of fuzzy sets by a-cuts,
via the additional use of other associated graded sets. This “extended method” is
used in [10] in the study of several aspects about sets, binary relations, topological
spaces and some algebraic structures. Here, the method will be used (in Section 6,
for the case X =Y = R) to transfer certain properties from the graded numbers
to the fuzzy numbers.

4 Graded points

Definition 3 By a graded point with support z € X and value A € (0, 1], we
means the graded subset xy of X defined by:

za(a) ={z}, fa<A,
=10, ifa>A\

We say that the graded point x) belongs to the graded set ¥ € G(X) when we have
the inclusion xx C 1 as graded sets. Obuviously, this definition can be expressed in
the form:

Ty €Yoz € P(A). (1)

With this definition, all the conditions considered by Gerla in [5, 6] are satisfied:

Proposition 2 The set of graded points of X, Xg :={zx:xz € X, € (0,1]}
together with the previous definition of belonging, satisfies the following five condi-
tions:

1ozx € Ujer i & i€ Lz € s
2. x) € ﬂieli/)i@ViEI,ﬂb\ EQ/)Z',

3. {:EA::EAGQ}:@, {QZ)\:QZAGX}:XQ,
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4o =9 {zy:zy e} ={an: N € S}
5. ZE,\:yn@{q/Jiil?,\Glﬁ}:{?/“ynGlﬁ}

Proof: Parts 1 and 2 result immediately from (1) and the corresponding classical
properties. Part 3 is trivial, as it is side “=" in the two remaining parts. Let us
prove both converses:

4. If ¢p # ¢, then there exists o € I such that ¥(a) # &(a). Therefore,
Ja € I, 3z € X such that z € Y(a)\¢(a) (or z € ¢p(a)\(a) ), and so Tz, € Xg
such that z, € ¥ and z, € ¢ (or vice versa). In conclusion, {z) : z) € ¥} # {zx:
Ty € (b}

5. Let us assume that zx # y, and A < k (we should have a similar proof in the
case A > k). Next, let us consider the graded set ¢» = x, which verifies obviously
that x € 9. Nevertheless y,; & ¥, because the initial hypothesis implies that z # y
or £ > A. Therefore, {1 : x\ € ¥} #£ {¥: y, €Y}

5 Graded numbers

Definition 4 Using the following classes of intervals

C:= {[a,b]:a,bceR, a <0},
Cooo = {(=00,a] : a € R},
Cioo = {la, +oc) : a € R},

we define the sets Gz(R) (resp. Gu(R), Gp(R)) of Zadeh’s (resp. Hutton’s and
Hohle’s) graded numbers by:

GzR):= {YeG): Vael, ¥(a)eC},
GuR)= {YveGR):Vael, ¥(a) el o},
Go(R):= {YvegGR): Vacl ¥(a)€ Cioo}-

By graded numbers we refer to any of the elements of the set:
QN(R) = gz(]R) U QH(]R) U QD(]R)

Via the Definition 2 we obtain the usual operations and partial order between
the graded numbers. This is done in [9, 10], with the additional obtaining of several
properties (and with the consideration of alternative definitions, less restrictive, for
the graded and fuzzy numbers). With regard to the unary and binary operations
there are stablished conditions which ensure that they are inner operations. In gen-
eral terms, we obtain the conclusion that the Zadeh’s (graded or fuzzy) numbers
admit more such operations than the Hutton’s or Hohle’s numbers. This consider-
ation can be added to others given in [3] with respect to the comparison between
those three kinds of fuzzy numbers.

Here, we shall restrict ourselves to the order and the convergence of sequences of
numbers. First, we consider the following proposition (which can be easily proved
via the equations [a,b] = [a,4+00) N (—o0,b] and —[a,+o0) = (—o0, —al.)
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Proposition 3 The following mappings are bijective:

1. {(Q/JD,’lﬁH) c QD(]R) X QH(]R) : ’LﬁD QQZ)H 18 normal} — gz(]R) : (QZ)D,’LﬁH) —
Yo NYH.

2. Gu(R) - Gp(R) : ¢p — —1p (extension of R >R :xz — —x).
3. {(¥1,v2) € Gu(R)? : —p1 Ny is normal} — Gz (R) : (¢h1,9P2) = —41 Naha.

;From now on we use the notation given in 3.1, thus expressing each Zadeh’s
graded number 1 as the intersection of a Hutton’s graded number ¥y with a
Hohle’s one 1. Moreover, we extend this notation as follows:

Vip € Gu(R), Ym:=¢ and ¢Yp = (R);
vy € Gp(R), ¢p:=1¢ and ¢y := (R (2)
Definition 5 In GN(R) we use the notation given above and we define:

e The partial order:

P < ¢:e Yy C oy and Yp O ¢p.

e The graded convergence for sequences in GN (R), written {1, }nen 259,
which happens if and only if:

Vael, {inf¢pp(a)} = infyp(a)
and {sup¥,g{a)} = supyy(a),

where — denotes the usual convergence in R U {—o0, +00}.

With the last definition we obtain the conditions considered by Kaleva and
Seikkala:

Proposition 4 ([9], Proposition 3.13) For the three sets of graded numbers Gx (R),
corresponding to the cases X = Z, H, D, the following properties hold:

1. The graded convergence defined in Gx(R) extends the usual convergence in
R.

2. If {i,} C Gx(R) is a monotonic and bounded sequence, then it is convergent
in Gx (R), with respect to the graded convergence.

6 Properties obtained for the fuzzy numbers

There is a great analogy between the graded numbers and the fuzzy numbers. More
specifically we have:

Theorem 2 ([9], Theorem 4.3) For any u € F(R) and any of the three kinds
of numbers corresponding to the cases X = Z, H, D, we have:

weFxR) e e Gx(R) associated with p.
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The usual operations are performed in Fz(R) via the Zadeh’s Extension Prin-
ciple. Lowen [16] proves that this can also be done in Fg(R), for the operations
previously defined by Rodabaugh [20] in the fuzzy real line. As a consequence of
the Theorem 2 we obtain the following bijection:

{(pp, tm) € Fp(R) x Fy(R) : pp N pg is normal}
= Fz(R): (up,pn) = 1o N pa-
This fact gives rise to the notation = pup N pug, extended by:

v‘u G ’FH(]R’)7 ,U’H = M and MD = XR;
VM € fD(]R)v WD ‘=l and LH = XR-

The partial orders considered by Zadeh [24] and by Hutton [12] are then sub-
sumed into the following definition (Vp,v € FN(R)):

p<v:&s up 2vp and pg Crg.

Moreover, this order for the fuzzy numbers is related with the order for the graded
numbers as follows:

Proposition 5 For any of the three cases X = Z, H, D, we have (Vu,v € Fx (R)):

w<v << < Gx(R) associated with p and 3¢
€ Gx (R) associated with v, such thaty < ¢.

All these considerations enable us to transfer to the fuzzy numbers the prop-
erties obtained for the graded numbers in [9, 10], with regard to the unary and
binary operations as well as with regard to the partial order defined. Finally, we
obtain a new criterion for the convergence of sequences of fuzzy numbers such that
extends the usual convergence in R (this does not happen with the pointwise con-
vergence of membership functions) and such that ensures the existence of a limit
for any monotonic and bounded sequence (this does not happen with the a-level
convergence). That is, the two drawbacks considered by Kaleva and Seikkala [13]
are avoided with this new criterion:

Definition 6 In FN(R), we define the graded convergence as follows:

{pn} sy e Vn, Ry, associated with pn

and T associated with p such that {1, } - 1.
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