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Abstract

Fuzzy logic controller performance depends on the fuzzy control rule set.
This set can be obtained either by an expert or from a learning algorithm
through a set of examples. Recently, we have developed SLAVE an inductive
learning algorithm capable of identifying fuzzy systems. The refinement of
the rules proposed by SLAVE (or by an expert) can be very important in
order to improve the accuracy of the model and in order to simplify the
description of the system. The refinement algorithm is based on an heuristic
process of generalization, specification, addition and elimination of rules.
Keywords: theory refinement, fuzzy logic, machine learning, system mod-
eling.

1 Introduction

One of the most successful applications of fuzzy logic has been the fuzzy control
[1, 12]. A fuzzy logic controller is a rule-based system where the rules describe the
experience of a skilled operator or the knowledge of control engineers. The fuzzy
logic controller consists of the following basic components [9]:

e A Knowledge Base comprising of linguistic control rules about the controlled
system. The Knowledge Base consists of two components:

— a Data Base containing the definitions of the linguistic values of the
variables,

— a Rule Base containing the fuzzy control rules,

e a Fuzzification Interface which has the effect of transforming crisp values into
fuzzy sets,

e an Inference System that uses a reasoning method,

*This work has been supported by CICYT under Project TIC95-0453
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o a Defuzzification Interface that translates a fuzzy control action to a real
control action.

The design of a fuzzy controller implies different tasks. One of the most impor-
tant tasks is the obtaining of the fuzzy control rule set. A method for extracting
this knowledge consists of directly extracting the expert experience from the human
processes operator. However, in many cases it is not easy to express this knowledge
in terms of appropriate fuzzy rules. Thus, automatic learning methods can be used
as an alternative approach [5, 10, 11, 13]. In both cases of either the expert or the
learning algorithm, the final set of rules can be improved by simplifying them or
avoiding some possible errors. In this case, a refinement of the final set of rules can
produce a high performance system. Therefore, given an incomplete and/or incor-
rect fuzzy control rule set and a set of consistent examples, the problem consists of
modifying the initial set of rules so that it may be better adapted to the example
set.

Knowledge Base

Fuzzification Defuzzification
Interface Inference System Interface
State Variables Control Variables

Controlled System

Figure 1: Fuzzy Logic Controller

In [2, 3, 4] we proposed a learning algorithm of fuzzy rules called SLAVE. This
algorithm can be used for general system modeling, and therefore can be used for
learning fuzzy control rules. SLAVE uses a fixed semantic for the value of the
linguistic variables and a genetic algorithm to obtain the best rule in each step
based on an iterative approach [8]. This genetic iterative approach produces good
individual rules, and a revision of the complete set of rules may be advisable. In this
case, the set of fuzzy control rules obtained by SLAVE could be partially incomplete
and/or incorrect, in the same way as the expert rules can be, and the refinement
algorithm can be very suitable for improving the final set of rules. Therefore, the
main goal of this work is to develop a refinement algorithm for fuzzy rules obtained
by either an expert, or SLAVE or any other learning algorithm.

In [6, 7] a refinement algorithm for classification problems was proposed. In
many classification problems the consequent variable has a crisp domain and the
proposed refinement algorithm was based on this property. In order to extend this
refinement algorithm to fuzzy control rules, we need to adapt it so that it can deal
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with continuous consequent variables discretized by a fuzzy domain.

Many other algorithms try to improve the performance of a fuzzy controller by
changing the semantic of the rules; that is, by changing the Data Base or changing
the Rule Base or both simultaneously. The proposed refinement algorithm only
changes the Rule Base and supposes, like SLAVE, a fixed semantic.

The refinement algorithm is based on an heuristic process of generalization,
specification, addition and elimination of rules.

In the next section, we will briefly describe the refinement algorithm for crisp
consequents. Section 3 adapts this algorithm for control problems. The behaviour
of SLAVE plus the refinement algorithm (SLAVE+R) is analyzed step by step in a
detailed example in the next section. Section 5 applies SLAVE+R to a well-known
control problem. Finally, we show the conclusion of this work in the last section.

2 The refinement algorithm for crisp consequent

In [6] we proposed a refinement algorithm valid for fuzzy rules with crisp domain
for the consequent variable. The extension to fuzzy control rules will be proposed
in the next section. Let us now show the main ideas of this previous algorithm.

The refinement algorithm uses an heuristic function and a hill climbing strategy
for selecting the most promising action in each step of the algorithm towards a good
solution. We have considered it as a function that measures the global precision of
the current rule set on the training set. Thus, in order to define this function it is
necessary to describe the predictive module. The inference process begins with an
ordered rule set and the classification of an example is carried out in the following
way: the adaptation between the example and the antecedent part of each rule is
evaluated and the class of the rule with the best adaptation is returned. If there
are several rules with the best adaptation (conflict problem), the class from the
rule which is lowest in the order of the rule set is returned.

Thus, it is necessary to establish a priori criterion of relevance between the rules
in order to sort them. The refinement algorithm uses the same order returned by
SLAVE. Basically, this criterion is as follows: the most relevant rules are those that
removed the highest number of examples in the learning process. In this sense, the
most relevant rules are in the first positions and the less relevant rules are in the
last positions. The heuristic component of the refinement algorithm selects rules
through the order previously described in the rule set. However, we have not
considered a special order for variables and values. They are taken by considering
the default order.

The rule model that uses the refinement algorithm is the same as that which
was used in the SLAVE learning algorithm

IF Xy is Ay and ... and X, is Ay THEN Y is B

where each variable X; has a referential set U; and takes values in a finite domain
D;, for i € {1,...,p}. The referential set for Y is V' and its domain is F. The
value of the variable y is B, where B € F' and the value of the variable X; is A;,
where A; € P(D;) and P(D;) denote the set of subsets of D;.
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In this model, we can consider, in general, that the variables are linguistic, i.e.
the domains of the variable can be described using linguistic labels, or in general
fuzzy sets. The key to this rule model is that each variable can take as a value
an element or a subset of elements from its domain, i.e. we let the value of a
variable be interpreted more as a disjunction of elements than just one element in
its domain.

Now, we can better describe each of the following steps of the refinement algo-
rithm:

Improve the accuracy by specifying the rules.

Improve the completeness by generalizing the rules.

Improve the completeness by the addition of new rules.

e Determine the relevant variables for each rule.

The previous steps are repeated until the rule set is stable. In the algorithm,
the rule set is considered to be stable when the number of rules and the accuracy
do not increase in two consecutive iterations.

2.1 Improving the accuracy by specifying the rules

In this step, we try to improve the capacity of prediction from an incomplete and /or
incorrect fuzzy control rule set over the training set, increasing the prediction of
each rule.

1. The most relevant rule is selected.
2. Select a variable and do the following.

2.1. Select an active value.
2.2. This value is deactivated.

2.3. If the global accuracy is improved or maintained, the modification is
accepted. In all other cases, the value is activated.

2.4. If there are other active values, go to 2.1.

2.5. If all the values of the variable are deactivated, then this rule is removed
from the rule set.

2.6. If there are other unselected variables, go to 2.

3. If there are more unselected rules, select the next most relevant rule and go
to 2, in all other cases the process finishes.

Furthermore, we must note that this step permits the removal of rules from
the rule set. Therefore, the elimination of a rule in the rule set is considered as a
particular case of specification and it is caused when all the values of an antecedent
variable are deactivated.
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2.2 Improving the completeness by generalizing the rules

In this second phase, the refinement algorithm tries to improve the completeness
of the rules using an ordered process of generalization. In this process, new values
are appended to the antecedent variables for each rule. This generalization is done
when the global accuracy strictly improves, using the rule set that includes the
modified rule. There can be two reasons for the increase in accuracy:

a) Unclassified examples can be correctly covered by generalizing one of the
rules.

b) Examples incorrectly classified by one rule with a lesser order, can be correctly
covered when a rule with a higher order is generalized.

Then, this step of the algorithm improves the completeness and the prediction of
some rules from the rule set.
The procedure has a similar structure to the previous algorithm:

1. The most relevant rule is selected.

2. Select a variable and do the following.

2.1. Select a inactive value.
2.2. This value is activated.

2.3. If the global accuracy is strictly improved, the modification is accepted.
In all other cases, the value is deactivated.

2.4. If there are other inactive values, go to 2.1.

2.5. If there are other unselected variables, go to 2.

3. If there are more unselected rules, select the next most relevant rule and go
to 2., in all other cases the process finishes.

2.3 Improving the completeness by the addition of new rules

The next step in the algorithm, consists of appending new rules to cover the ex-
amples that are not covered by any other rule and which the previous process
cannot cover. This task consists in appending the most specific rule with the best
adaptation for each example that is not covered in the training set.

2.4 Determining the relevant variables for each rule

This is the last step in the refinement algorithm and it tries to determine the set of
antecedent variables, for each rule, that are needed to describe its class. This task
uses a special type of generalization that consists of activating all the values of a
variable. If the accuracy of the new rule set is equal to or better than the accuracy
of the previous rule set, we can say that this variable is irrelevant for determining
its class and the variable can be eliminated as a premise of the rule.

For more details about the behaviour of this algorithm see [6, 7].
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3 The refinement algorithm for fuzzy control rules

The refinement algorithm for fuzzy control rules is very similar to the previous
one, except for a special characteristic of such a set of rules. Usually fuzzy control
rules have a control action which varies in a continuous domain. Therefore, the
consequent variable has a continuous referential set and an associated fuzzy domain.
The inference process is completely different. The predictive process now depends
on the interaction between all the possible rules that are applicable. Therefore,
the refinement algorithm uses as an heuristic the decrease in the average number
of errors produced in the outputs in which a rule (or set of rules) is used.

Another important aspect of the algorithm is the inference module that deter-
mines the error. In this case, we have used a max-min method and a defuzzification
based on the average of the center of gravity weighted by the adaptation between
the example and the antecedent of the rule. The error is defined as

n

(yi — y{)Q
Error = Z —_
i=1 2n

where y; is the correct output, y; is the output of the inference module and n is
the number of examples.

The refinement algorithm starts with a set of ordered rules. The order is the
same as that which was considered in the crisp case. Thus the structure of the
refinement algorithm is as follows:

e Decrease the error by specifying the rules.

e Decrease the error by generalizing the rules.

e Decrease the error by the addition of new rules.
e Determine the relevant variables for each rule.

The previous steps are repeated until the rule set is stable again. As previously
established, the rule set is considered to be stable when the number of rules and
the accuracy do not increase in two consecutive iterations.

3.1 Decreasing the error by specifying the rules

In this step, we eliminate those values which are irrelevant for the rules. A value is
irrelevant if when it is eliminated from the rule, the global error is maintained or
decreased. This specification process reduces the number of rules that are applica-
ble to each example. Thus, the specification of the value of a rule means that in
the rule base there are other rules whose interpolation effectively decrease the error
when the influence of the first rule is decreased. Therefore, in this step, which is
similar to 2.1, we achieve two important things:

e to strengthen the most relevant rules,

e and to weaken and even eliminate the less useful rules.
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3.2 Decreasing the error by generalizing the rules

This step is the opposite of the previous one. Now, we try to increase the col-
laboration among rules by a process of generalization. The process is similar to
those described in 2.2. We add a new value of a rule whenever the error is strictly
decreased.

3.3 Decreasing the error by the addition of new rules

Let us suppose that in the previous step the collaboration among rules cannot be
improved by generalizing the rules. In this case, a new rule can reduce the error.
The solution is the same as those proposed in 2.3. However, now the process is
different. Our goal is to introduce a rule or set of rules that reduces the global error.
The idea is to introduce the most specific rule that covers the worst represented
example, that is, for the example with the maximum individual error, we introduce
the most specific rule covering this example. When there are several examples with
the maximum individual error any of them is selected at random. The new rule
consists of:

e in the antecedent part: the most specific antecedent covering the example,

e in the consequent part: the value of the domain that gets the least global
error when the rule is included in the set of rules.

The underlying idea of this proposal is that the rules that reduce the maximum
individual error have the possibility of reducing the global error, too.

This step is repeated until we have an example in which the associated rule
does not reduce the global error: in this case, this rule is not introduced in the rule
base.

3.4 Determining the relevant variables for each rule

The last step of the refinement algorithm tries to determine the minimum number
of variables for each of the rules that are necessary to maintain the current per-
formance. Thus, if a variable is eliminated from the rule and the global error does
not increase, we accept this elimination. This step can be interpreted as a special
generalization process as in 3.2, but now affecting the complete variables instead
of individual values of the variables.

4 A detailed example of the refinement algorithm
Let’s suppose that SLAVE has learned the function
hz,y) = 2* +y*

shown in Figure 2(a), randomly extracting a set of examples of this function. Pre-
viously, a set of fuzzy labels on its domain was defined for each variable. Each



182 A. Gonzélez & R. Pérez

domain consists of seven fuzzy labels with triangular membership functions cross-
ing at height 0.5 and distributed uniformly. The approximation obtained by SLAVE
appears in Figure 2(b) and we can see how SLAVE correctly approaches the central
zone of the surface, where there are enough examples, but the error is very high at
the extremes of the graph.
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(a) Function h(z,y) = 22 + 4%  (b) Approximation obtained by SLAVE
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(e) Approximation after step 3 (f) Approximation after refinement

Figure 2: An example of refinement algorithm

The refinement module attempts to correct the approximation obtained by
SLAVE using the error measurement. In Figure 2(c), the surface after the specifi-
cation process is shown. At first glance, this graph presents a worse approximation
on the original because a steep slope appears on the surface, but taking the average
error, this approximation is better. These steep slopes are due to the elimination
of the bad rules which result in some examples not being well covered by the rule
set.

From this step, we can see the evolution of the refinement algorithm as a process
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of smoother approximation on the original function. In Figure 2(d), the control
surface is improved using the generalization process where the examples badly
covered in the previous step, are covered to a better degree by the generalization
of the existent rules.

Figure 2(e) shows the behaviour of the rule set after the step 3. The criterion
used for introducing new rules consists in selecting a rule that reduces the maximum
individual error. With this criterion, we can see that the approximation of the
extremes of the graph are more similar to the original graph.

For this problem, the refinement algorithm is repeated 8 times until the termi-
nation condition is satisfied. Figure 2(f) shows the approximation returned by this
module. This surface is also similar to the original surface and the improvement
on the surface obtained by SLAVE is high.

5 Applying SLAVE to a Control Problem

A traditional control problem used for testing the behaviour of any new controller
is the pendulum problem. The pendulum problem consists of, given an example
set that describes the system’s performance, learning the rule set that permits the
pendulum to be controlled. On the assumption of |§| << 1 (radian) the nonlinear
differential equation that leads to the behavior of the pendulum is managed by the

equation:
2d2e 1 : de
My = 5(—]" +m g sinf — k%)
where k‘é—f is an approximation of the friction strength.

This system can be described using two state variables 8 (angle) and w (angular
speed) and the control variable f (force). A pendulum weighing 5 kg and 5 m long
has been considered in a real simulation, applying the force to the center of gravity,
for a constant time of 10 ms. With these parameters the universe of discourse of

the variables are as follows:
0 €[-0.277,0.277] w € [—0.458,0.458] f € [—1593,1593].

Experimentally, we have obtained two example sets using the previous restric-
tion: the first one contains 213 examples and it is used for learning (training set)
and the second one contains 125 examples and it is used for testing the behavior
of the learned rule set (test set). These example sets have been obtained from the
previous equation on two different initial conditions:

a) 0=-0.277 and w=0
b) 0=0.277 and w=0.

Figure 3a represents the control surface on the previous conditions.

The first step for working with the SLAVE learning system, consists of dis-
cretizing the range of variables using fuzzy labels. Figure 4 shows the labels used
for each variable.
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Figure 3: Control surfaces

We want to know the behavior of this refinement algorithm under different
knowledge bases for this problem. Therefore, we use the following fuzzy rule set:

o SLAVE. This is the knowledge base obtained by SLAVE.

e WM. This is the knowledge base obtained using the Wang and Mendel al-
gorithm [14].
For the experiment, we have studied the behavior of the previous knowledge
bases and their combination with the refinement algorithm.

Table 1: The knowledge base obtained by WM

If 4 is ZR and w is ZR Then f is ZR

If 4 is PS and w is PS Then f is PS

If 8 is PM and w is PM Then f is PM
If 6 is NS and w is PS Then f is ZR

If 8 is NM and w is PM Then f is ZR
If 6 is PS and w is NS Then f is ZR

If 4 is PS and w is NM Then f is ZR
If 8 is NS and w is NS Then f is NS
If 8 is NM and w is NM Then f is NM

© 00~ ULk Wi
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NL NM NS ZR PS PM PL
Angle
-0.524 -0.5021 -0.3493  -0.1746 0.00 0.1746 0.3493 0.5021 0.524
NL NM NS ZR PS PM PL
Velocity
-0.858 -0.822 -0.572 -0.286 0.00 0.286 0.572 0.822 0.858
NL NM NS ZR PS PM PL
Power
-2080  -2855.83 -1986.66  -993.33 0.00 99333 1986.66  2855.83 2980

Figure 4: Pendulum problem domains

The set of rules obtained by WM, SLAVE and SLAVE+R are shown in Tables
1, 2 and 3 respectively. It is important to note the simplicity of the set of rules
obtained by SLAVE+R.

Table 2: The knowledge base obtained by SLAVE

1 If 8 is greater than or equal to ZR and w is lesser than or equal to ZR
Then f is ZR

2 1If 4 is lesser than or equal to NS and w is NS Then f is NS

3 If 0 is greater than or equal to PS and w is PS Then f is PS

4 If 0 is lesser than or equal to NS and w is greater than or equal to ZR
Then f is ZR

5 If 8 is lesser than or equal to NM and w is lesser than or equal to ZR
Then f is NM

6 If 0 is greater than or equal to PM and w is greater than or equal to ZR
Then f is PM
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Table 3: The knowledge base obtained by SLAVE+R

If 0 is NS and w is NS Then f is NS

If 0 is PS and w is PS Then f is PS

If w is ZR Then f is ZR

If 8 is NM or NS and w is NM Then f is NM
5 If6is PS or PM and w is PM Then f is PM

SNEEUURE NOR

Table 4 shows the number of rules and the error obtained using the test example
set with the previous knowledge bases and the refinement algorithm. In all the
cases, we have taken the max-min inference system and the average of the center
of gravity weighted by the matching value as a defuzzification method and the
minimum operator as t-norm.

Figure 3b represents the control surface obtained by SLAVE and Figure 3c the
control surface obtained by SLAVE+R.

The Wang-Mendel result has been obtained from the learning algorithm pro-
posed in [14] and using the same fuzzy discretization as we used in SLAVE.

Table 4: Table of results

Rule Database Error Number of Rules

WM 7.45 9
SLAVE 492.16 6
WM+R 6.92 6

SLAVE+R 1.21 5

6 Concluding Remarks

In this paper we have proposed an algorithm for the refinement of fuzzy control
rules. In this process, the semantic of the rules has not changed. The algorithm
begins with an incomplete and/or incorrect fuzzy rule base that represents the
initial knowledge (where this set can be empty) and a set of consistent examples, the
refinement problem consists of modifying this initial set of rules in order to better
adapt it to the example set. The algorithm is based on a process of specification
and generalization. The initial set of rules can be obtained from an expert or from
a learning algorithm like SLAVE.

In the examples we have shown how the evolution of the refinement algorithm is
a process of smoother approximation on the original system. SLAVE+R has been
shown to be an improved version of SLAVE also for control problems.

A very interesting combination that will be investigated in future works is the
definition of a refinement algorithm capable of modifying the semantic of the rules.
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