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Abstract

The paper introduces a general axiomatic notion of approximation map-
ping, a mapping that associates to each crisp proposition p a fuzzy set rep-
resenting ”approximately p”. It is shown how it can be obtained through
fuzzy relations, which are at least reflexive. We study the corresponding
multi-modal systems depending on the properties satisfied by the approxi-
mate relation. Finally, we show some equivalences between possibilistic log-
ical consequences and global/local logical consequences in the multi-modal
systems.
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1 Introduction

Recently, similarity-based reasoning has been investigated from different perspec-
tives [1, 2, 3, 7, 9, 12, 16, 17, 18, 22, 23]. The kind of statements which are in
the scope of similarity-based reasoning are of the form if p is true then q is close
to be true, in the sense that, although it may be false, g is semantically close or
stmilar to some other proposition which is true. The matter is to take into account
that some situations resemble more than anothers. Apart from some qualitative
approaches like [13] or [23], the formalism which has been considered in most of
the above papers is related somehow to the approach initiated by Rupini in [18],
which is based on the introduction of a fuzzy binary relation

S W x W — [0,1]

*This is a revised and extended version of the paper “Approximate-based Multi-Modal Systems
and Possibilistic Logic: A comparative study” in proc. of ESTYLF’96, Publi. Univ. Oviedo
(Spain), pp.113-118.
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called similarity relation, that maps pairs of possible worlds into numbers between
0 and 1. This function captures a notion of semantical proximity between possible
worlds, with a value of 1 corresponding to the identity of possible worlds and a
value 0 indicating that knowledge of propositions that are true in one possible
world does not provide any indication about propositions that are true in the
other. Some requirements must be satisfied by similarity relations. Usually, the
similarity degree of any world with itself has the highest value (S(w,w) =1, i.e. it
is reflexive), it is symmetric (S(w,w’) = S(w',w)) and satisfies a relaxed form of
transitivity. This is expressed as : S(w,w”) > (S(w,w’) ® S(w', —w”)), where, in
general, ® is considered to be a triangular norm (or t-norm).

However, it can be argued that a notion of semantical proximity or similarity
may be also captured by fuzzy relations which are not necessarily neither sym-
metric nor transitive. Reflexivity is much harder to be dropped out. In this pa-
per we focus on weaker relations than similarity relations. Namely we introduce
an axiomatic definition of what we call upper approzimation mappings which are
proved to be obtained through the so-called approximation relations, i.e, fuzzy re-
flexive relations on the set of interpretations. In section 2, axioms characterising
approximation mappings and symmetric, t- norm transitive and separating approx-
imations mappings are also provided. Following Ruspini we generalise implication
and consistency measures for approximation relations. Section 3 is devoted to
present semantical definitions, axiomatic systems and some completness results of
the multi-modal systems which arise from these generalised implication measures.
Kripke structures are defined as triples (W, R, =) where W is the set of possible
worlds and R is a fuzzy relation R: W x W — [0, 1]. Local and global logical con-
sequence relations with respect to different classes of models are studied. Finally,
section 4 is devoted to the study of relationships between consequence relations in
the multi-modal system with respect to different classes of models and the possi-
bilistic consequence relation. Although possibilitic logic [4] is a logic of uncertainty
and similarity (or approximation) logic is rather a logic of graded truth (see [6] for
a discussion), it turns out that they share some features from a formal point of
view. Previous results in that direction already appear in [7] and [14, 15, 16]. In
this paper we extend some results appearing in [16] to classes of models defined by
different types of approximation mappings.

2 Upper Approximation mappings

In this section we give an axiomatic approach to upper approximation mappings of
classical propositions and prove to be in direct relation with a kind of fuzzy relations
for which we generalise the notions of implication and consistency measures.

Let L be a classical propositional language obtained from a finite set of
propositional symbols and connectives V, A, —, — and let {2 be the (finite) set of
boolean interpretations of L. We will denote by [p] the subset of interpretations w
that make the proposition p true, written w |= p, and by J, : Q — {0,1} its char-
acteristic function. It is well known that the mapping between propositions and
subsets of interpretations given by p — [p] is one-to-one and so we will sometimes
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identify, if no confusion is possible, an interpretation w with the proposition p,,
such that [p,] = {w}. Besides, we will denote by PF () the set of fuzzy sets on
with values on [0,1], by pup the characteristic function of a fuzzy set F' € PF(Q)
and by [Fq the a-cut of a fuzzy set F, that is, [Flo = {w € W | pp(w) > o.
Finally we will use the symbol ® to denote an arbitrary t-norm on the unit interval
[0,1].

In previous papers [3, 9], the starting point to model similarity- based reasoning
was to assume to have a fuzzy similarity relation, i.e. a t-norm transitive, symmetric
and reflexive fuzzy relation [25, 20], defined on the set of interpretations . A fuzzy
relation R : Q — [0,1] is:

o reflexive if R(w,w) =1, Yw € Q,

e symmetric if R(w,w’) = R(w',w), Vw,w' €

o ®-transitive if R(w,w’) ® R(w',w”) < R(w,w”), Yw,w’,w” € Q.
Usually a similarity relation is also required to be separating:

e R is separating if R(w,w’) =1 iff w =u', Yw,w’ € Q.

However, in this paper our main interest is in the weaker notion of approxima-
tion relations, modelling statements of the type p is approzimately described by q,
and for which we only require to be reflexive fuzzy relations.

Let R : Q@ — [0,1] be a reflexive fuzzy relation. Then, for each proposition
p € L, we define the fuzzy set p* of interpretations which approximately describe

p by:
pp+(w) = max {R(w,w)|w’ € [p]} (1)

Actually, p* is an (fuzzy) upper approximation of p in the sense that p* includes
[p], i.e. it holds,

Al: Hp* 2 (Sp.

Moreover, it can be easily checked that the kind of upper approximations
defined by (1) is functional w.r.t the disjunction: the upper approximation of a
disjunction is the union of the upper approximations, that is, it holds

A2: (Vierpi)* = Uier(ps)*,

where U denotes the fuzzy set union defined by the maximum, i.e.
BUser (o) (W) = MaXier fi(p,)«(w). What it is interesting is that A1l and A2
completely characterize fuzzy upper approximations which are definable from
reflexive fuzzy relations by (1), and therefore they provide an axiomatic definition
of (fuzzy) upper approximations.
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Proposition 1 A mapping = : L — PF(R), satisfies A1 and A2 if and only if
there exists a reflexive fuzzy relation R : Q — [0,1] such that

pp+ (w) = maz{R(w,w’) | & € [p]}
for any proposition p € L.

Proof: If « : L — PF(Q) satisfies A1 and A2 then the relation defined as
R(w' w) = ps(w'), for all w,w’ € 2 does the job. O

From now on, mappings satisfying A1 and A2 will be simply referred as up-
per approximation mappings. Proposition 1 shows that upper approximations are
determined by the upper approximations of the interpretations. Moreover, it is
not difficult to see which are the required properties needed to characterize upper
approximations defined by fuzzy relations stronger than reflexive.

Proposition 2 Given an upper approzimation mapping * : L — PF(Q) , con-
sider the fuzzy relation R on § defined by R(w',w) = pu«(w'). Then the following
conditions hold:

1. R is symmetric iff, for every p,q € L, [p*]a N lg] # 0 iff [g¥]a N [p] # O for
every a € [0, 1].

2. R is ®-transitive iff, for every p,q,r € L,

[p] € [g#]a and |q] € [r+]s imply [p] < [r+]aes
for every a, 3 € [0, 1].
3. Rx is separating iff [p*]1 = [p], for every p € L.

Proof: In one direction, take p,q and r as propositions such that [p], [q] and [r]
are singletons. Then the corresponding conditions for R are easily verified. The
other direction is obvious for cases (1) and (3), so we will only prove case (2). Let
p,q and r be propositions and let R be ®- traunsitive. Suppose [p] C [¢*]o and
[q] € [r*]3. Recall that [p] C [¢*]o means that for all w |= p there exists w’ such
that &' |= ¢ and R(w,w’) > . For this «’, since [g] C [r#]g, there exists w” such
that w” | r and R(w',w”) > B. Therefore, by the ®-transitivity of R we have
R(w,w”) > R(w,w") @ R(w',w”) > a® . Thus, [p] C [r*]ags- O

3 Multi-modal Systems based on Approximation
Relations

Generalizing Ruspini’s definition for similarity relations [18], given an appproxima-
tion relation R, we can define its corresponding implication measure on pairs of
propositions as:

Ir(p|q) = inf sup R(w,w’) = ir'if Hp= (W).
wl=q

wkEq ' l=p
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It is obvious that if ¢ is a proposition such that [q] is a singleton {w}, then,
identifying ¢ and w, we have that Ir(p | w) = pp+(w). Moreover, Ir(p | ¢) provides
the degree with which p can be considered an upper approximation of ¢, in the
sense that the following relation holds:

Ir(plg)>a il [q] C[p]a
iff for each w € [g], there exists w’ € [p] and R(w,w’) > a.

By interpreting the fuzzy relation R as a graded accesibility relation, this
last condition makes clear the suitability of a modal framework to capture some
form of reasoning based on upper approximations, in an analogous way the modal
systems introduced in [9] model similarity-based reasoning. In the rest of this
section we provide the main semantical notions of multi-modal systems based on
fuzzy approximation relations which will be used in next section.

e Modal Language: Formulas of the new language £ are built over the formulas
of L by adding modal operators (¢ and (¢ for every rational a € [0, 1].

e Approximation Kripke Models: An approximation Kripke model is a struc-
ture M = (W, R, =) where W is the set of possible worlds, R is a reflexive
fuzzy relation on W, and =p: W x Prop — {0,1} gives, for each world a
truth-value assignment of propositional variables (Prop) of L. We shall write

(M,w) = p for Fp (w,p) = 1.

e Satisfiability: Let M = (W, R, =), w € W and A be a formula of £. Then,
a) (M,w) 054 I IM(Alw) > q,
b) (M,w) E0SA f IM(A]w) > a.

we define:

The rest of conditions are the usual ones.

Note that this notion of satisfiability needs a definition of implication measure
for modal formulas since the definition given above is only valid for non modal
formulas. Nevertheless, the implication measure for modal formulas A is defined
as a natural extension in the following way,

I (A | w) = sup{R(w, o) | (M, ') |= A}.

We can also introduce the corresponding family of dual modal operators LIS, and
09 as =0¢¢— and =09 — respectively, and whose satisfiability conditions are:

¢) (Myw) =LA i IM(-A|w) <aq,

d) (Mw)EDO5A UIN(-A|w) <o

In the case when W is finite, (¢ and [0S have usual Kripke semantics with
respect to the accesibility relation RS defined as

wRLW T R(w,w') >«

In contrast, the strict cuts RS of R, i.e. wR2w' iff R(w,w’) > «, always provide
the modal operators ¢9 and 19 with usual Kripke semantics, even when W is not
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finite. As usual, the above definitions of satisfiablity can be extended to the notion
of validity of a formula A with respect to a model M, written by =y A, and with
respect to a class of models ¥, written by ¥ = A

e Logical consequence: We will consider three different definitions in this paper.
Given a set of formulas I' and a formula A, then we define:

1. Logical consequence inside a model M (written =pr): Ty A iff (Vw €
WH(M,w) |= B for every B € I implies (M,w) = A].

2. Locallogical consequence in a class of models X (written =x): ' Ein 4
ifft (VM e )T =pm A)

3. Global logical consequence in a class of models ¥ (written =gx): T |=gn
Aiff (VM € 3)(Ep T implies | A).

Notice that the notion of local consequence is stronger than the notion of
global consequence, i.e. I' |=;x A always implies I' |=¢5 A, but the converse
is not true in general.

In [9] the authors studied the corresponding multi-modal system for the case of
Kripke models corresponding to separating similarity relations. In [14, 15] Liau
and Lin define a multi-modal system like the one presented here. One goal of
that paper is the relationship of their modal system with possibilistic logic and
therefore they consider models such that the relation R only satisfies the so-called
serial property, i.e. for all w € W, sup,, ey R(w,w’) = 1. Obviously this property
is weaker than reflexivity, but to model approximation mappings it does not
seem meaningful to consider serial relations which are not reflexive, since in that
case the corresponding mapping might be such that the approximation p* of a
proposition p could not contain the set [p] of interpretations of p. Nevertheless, for
the sake of a global perspective about the already known results of axiomatization
of different multi-modal systems, we shall consider all the following classes of
models:

o = {(W,R,E)|Ris a fuzzy relation },

¥ = A{(W,R,E)| R is a serial fuzzy relation },

Yo = A{(W,R,E)|R is a reflexive fuzzy relation },

Y3 = {(W,R,E)| R is a reflexive and symmetric fuzzy relation },
Ys = {(W,R,E)|Risa ®- similarity relation }.

Moreover, we will use the notation X} to denote the subclass of &; (i € {1,2,3,®})
where the fuzzy relation is separating as well. As it is obvious, we have that
0 D ¥ D Yo D XN3 D Xg, and therefore, their corresponding sets of valid
formulas fullfil the inverse inclusionships. As for the axiomatic characterization
of the different multi-modal systems, let us consider the following schemes, where
G denotes the rang of the fuzzy relations and it is assumed to be of the form
{0,1} € G C [0,1] and closed with respect to the operation ®:
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Ke.
Ke:
D:
Te:
Te:
Ce:
Be:
Be:
4¢:
40
N¢:
Ne:
EXe:
EXe:
CO:
ocC:

0¢(A— B) —» (OA - 0O5B), Va e G
[°(A— B) —» (LA - [B),YVac G
LA — OfA

A — A VaeG

A —- A fora<1

A—0O5A

A - EOCA, for o >0

A—-L[20%A, Vae G

HegpA — L3LGA, Vo, B € G

UogsA — LU A, Va, B e G

UeA — L34, for 8 > a,

UaA — L34, for 8> «

064,

ﬁ<>(1)A’47

A —-0%A, Vae G

Ua A — L34, for a < g,

and the following inference rules

MP:
RN¢:
RN°:

From A and A — B infer B
From A infer 0% A, for o > 0
From A infer %A, Vo € G

157

In [14, 15] Liau and Lin propose a Quantitative modal logic (QML) with
G = [0,1] and prove the following completeness results (in the following, PL
stands for propositional tautologies):

e The axiom system SK consisting of PL, K¢, K°, CO, OC, EX¢, EX°,
together with the M P and RN inference rules is complete with respect the
class of models .

e The axiom system SKD = SK + D is complete with respect to the class of
models ;.

e The axiom system SKT = SK + T° is complete with respect to the class of
models Y.

In [9] the authors prove further completeness results:

e The axiom system MS57" (G, min) = SKT + B° + B¢ + 4° 4 4¢ 4 C°
plus MP and RN¢ is complete with respect to the subclass of finite models
of X% when G is a dense and denumerable and ® = min.

e If G is finite, then the axiom system MS5% (G, ®) consisting of PL, K¢,
Te, B¢, 4°, C° N°¢ EX° plus MP and RN° is complete with respect to the
class of models ¥, , for any t-norm ®. Notice that in this case the open and
closed modalities are interdefinable, and the resulting modal system can be
simplified to :
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PL: Tautologies of propositional logic,
K: Oa(A — B) = (0, A — O, B),
T: LA — A,

B: A= 004,

4. Da®ﬁA — DgDaA,

C: A — 1A,

N: oA = UgA, with 8 > «,

EX: <>0A,

where [, stands for [,
Moreover, it can be easily checked the following:

o If we remove axiom C° from the system MS51+ (G, min) we get a complete
system with respect to the subclass of finite models of g when G is dense
and denumerable and the ® = min.

e If G is finite and we remove axiom C° from the system MS57 (G, min) we
get a complete system with respect to Xg.

e If G is finite and we remove axiom 4¢ (+ C¢) from the system MS571(G,
min) we get a complete system with respect to 33 ( w.r.t. 3o respectively).

4 Relationship to Possibilisitic Logic

In [16] the relationships between similarity-based multi-modal systems and possi-
bilistic logic (PL) were explored. In this section we will complete and extend those
results by taking into account the multi-modal systems corresponding to different
classes of approximation relations. The basic features of Possibilistic logic! [4] are
the following ones. Possibilistic formulas are pairs of classical propositions and
lower bounds of necessity or possibility measures, so the language of possibilistic
logic over a propositional language L is Lpy, = {(p,I1), (p, No) | p € L, € [0, 1]}.
Models are normalized possibility distributions @ : Q@ — [0, 1], where  is the set of
classical interpretations of the propositional language L. Possibilistic satisfiability
relation is defined by:

ml=pL (pla) it Possy(p) = sup{n(w) |w = p} > a,

7 EpL (p,No) it Neci(p) =1— Poss:(—p) > a,

The notion of logical consequence in PL is defined as usual: a possibilistic
formula ¢ is a logical consequence of a set of possibilistic formulas I', written
I' =pr ¢, if for every normalised possibility distribution 7 such that = |=pr %,
for all ¥ € T, it is the case that @ |=pr, . Let us recall now some results relating
similarity relations and possibility distributions given in [7]. First two definitions:

1. Given a similarity relation S and a subset A of €2, we may define the following
possibiliy distribution:

7g,a(w) = sup{S(w,w’) | ' € A}.

1 Although Possibilistic logic has been developped along multiple facets, here we refer only to
its monotonic fragment
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2. Given a possibility distribution 7, we may build the similarity relation S;
generated by 7 according to Valverde’s representation theorem [21] as follows:

Sr(w,w') = min(r(w)@— 7(w'), (W)@ T(w))
being ®— the residuated implication defined by ®.

Lemma 1 ([7]) The following relations hold:
(i) IfS=58; and AC Core(n) ={w | n(w) =1}, then 74 = 7.
(i) If S’ is the similarity relation defined from ms a, A being a subset of Q,
then 8" > § and S'(w,w’) =1 for every w,w’ € A.

In order to relate the modal systems and possibilistic logic we need some preliminar
settings. Possibilistic models are defined on the set {2 of classical interpretations of
L. Therefore in all this section we shall restrict ourselves to approximation Kripke
models where the set of worlds is just €2, that is, models of the type Mg = (0, R, =),
where R is an approximation relation on §2, and thus fulfil (Mg, w) = p iff w(p) =
true, for every propositional variable p of L. We will also need a way to translate
possibilistic into multi-modal formulas. The following proposition shows how to do
this.

Proposition 3 Given a similarity Kripke model Mg = (2, S, =) and a non-modal
formula p € L, then, for all w € Q, the following equivalences hold:

(i) (w,Ms)=0ap iff 7swErL (p1la),

(i) (w,Ms) ELRp iff mswE=rL(p,Nica)

Proof: One can show that Possr, (p) = Is(p | w). From that, the proposition
easily follows. O

Therefore, the natural transformation T from the language Lp; of possibilistic
logic to the language £ of multi-modal logic we propose is defined as:

T(p,1la) = Oqp and T(p, Ni_,) = Lp.
It is interesting to remark that T is one-to-one but the image set
’CI - T(LPL) - {sza Dgp ‘ yAS L,Oé € [07 1]}

is only an strict sublanguage of £. Next theorem proves that the possibilistic
consequence is equivalent to the local consequence in the multi-modal system with
respect to the class of models X corresponding to ®-similarity relations.

Theorem 1 For any proposition p € L, any subset I' C Lpy, and any o € [0,1],
the following equivalences hold:

(i) TEpL(p,1a) iff T(L) Fise Oops

(i) Thrr(pNi—a) if T() =is, Cap,
where T() = {T(p) | ¢ € T'}.
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Proof: We will prove only the first equivalence. Suppose that T(I') =iz, OFp, this
is, for every w of 2, if (Mg,w) E T(y), for every ¢ of I, then (Mg,w) | 0%p. Now
let = such that 7 |=pr, T (i.e. @ |=py, 9, for every ¢ € I') . By Lemma 1, there exist
S = 8; and w € Core(rw) such that m = wg,,. Thus applying (i) of Proposition 3,
(Mg,w) E T(%) for every ¥ € T', and by our asumption, (Mg,w) |= ¢%p, which
is equivalent, by (i) of Proposition 3, 7 |=p; (p,Il4). Therefore we have proved
that T' E=pr, (p,I1,). The proof of the converse is analogous taking into account
the second equivalence of Proposition 3. O

These equivalences do not hold for the global consequence relation, as the following
counterexample shows.

Counterexample 1. Let p and ¢ be two different mazimal elementary conjunctions,
and let [p] = {w'} and |¢] = {w”} with &’ # w”. Let o € (0, 1] such that a® o # 0.
Then, the following global logical consequence holds:

0P Fose Qagal:

The proof is as follows. If a similarity relation S satisfies Is(p | w) = S(w,w’) > «
for every w € Q, then Is(q | w) = S(w,w”) > S(w,w’) ® S(W,w”) > a® a. But
that consequence relation is not true in the local sense. Namely, if S is the minimal
classical equivalence relation (S(w,w’) =1 if w = w’ and S(w,w’) = 0 otherwise),
it is obvious that

(Ms,w') |5 0ap and (Ms,w') £ O4gad.

Perhaps it is even more evident that the “translated” consequence relation is not
true in possibilistic logic, that is,

(p7 Ha) %LP (Q7 Ha®04)'

An easy calculation shows that the possibility distribution 7 defined by w(w) = 1 if
w=w’ and 7(w) = 0 otherwise, satisfies the left hand side but not the right hand
side of the consequence relation. ]

On the other hand, Liau and Lin prove in [16] that the possibilistic logical con-
sequence coincides with the global multi-modal consequence relation with respect
to the class of serial models 3y. Of course, the multi-modal language has to be
restricted also to possibilistic formulas, i.e. formulas of the type ¢Sp and Ulop, p
being a classical proposition. We present next an extension of this result based on
the following propositions.

Proposition 4 Given a serial relation R on 2, and for every w € Q let w,, be the
possibility distribution defined by w,(w') = R(w',w), for all ' € Q. Then, for any
p €L and a € [0,1], the following equivalences hold:

(i) (w,Mg)E=Oop iff m EpL(p1a),

(”) (w7 MR) ‘: Dgp Z.[f Tw ':PL (p7 Nl—a)-

Proof: The proposition follows from the following equalities: Ir(p | w) =
sup{R(w',w) | w’ = p} = sup{m, (') | ' = p} = Possx, (p). O
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Proposition 5 Given a possibility distribution 7, let Ry be the serial relation given
by Re(w,w') = w(w). Then for any p € L and « € [0, 1], the following equivalences
hold:

(Z) 0 |:PL (pv Ha) iff,  for all w, (waMRw) ‘: 0310;

(ii) 7wkEpL (0, Ni—a) iff, foralw, (w,Mg_)E Oo%p.

The proof is analogous to the one of Proposition 4. The main result is the following
one which extends Liau and Liu’s results in [16] which are given only for global
consequence.

Theorem 2 Let Yy be the class of serial models. Then for anyp € L and o € [0,1],
the following equivalences hold:

()T pr (p1a)  if T() bimy 050 iff T(T) =gz, 050,

(ii) T pr (p.Ni—a) iff T(T) sy % iff  T(T) Fgm Dop.

Proof: The proof is an easy consequence of propositions 3 and 4, taking into account
that R;(w,w’) = w(w), i.e. Rr is not dependent on the second variable. As a
consequence, a formula is satisfiable in a world w of the model (w, Mg_) iff it is
satisfiable in the model Mp_. This implies that the local and global consequence
for formulas of T(Lpy) with respect to serial models coincide. O

Remark. From Proposition 4, and as it is noted in [16], it is obvious that serial
models can be determined by giving, for every w € W, a possibility distribution
7w, 1.6. R and the family of «,,’s are related by the equality R(w',w) = 7, (w'). In
some sense we can identify the consequence relation with respect to serial models
with some kind of local possibilistic logic in the sense that for each world we have
a different possibility distribution 7. But surprisingly, the consequence relation
with respect to the class of serial models coincides with possibility consequence
relations. This result seems to indicate that this type of “local possibilistic logic”
has no sense because it coincides with usual possibilistic logic.

Finally we turn our attention to logical consequences with respect to the
classes Y1 and Yo corresponding to approximation and symmetric approximation
mappings respectively.

Theorem 3 For any p € L and o € [0,1], the following equivalences hold:
(i) T Epr (p,1a) iff T(I) ks, Oop  iff T) Fuws, 040
(i) U'lE=pL (9, Ni—a) iff T() m, Oop iff T(D) =i, L.

Proof: The equivalences follow from the fact that they hold in the class Xy, which
contains Y1 and g, and in the class g, which is contained in 3; and . ]

Analogously to Theorem 1, (i) and (ii) of Theorem 3 do not hold for the global
consequence relation. This can checked in the following counterexample.

Counterezample 2. Let p € L such that p and —p are satisfiable and let o € (0, 1).
Then there exists at least one world w such that w = —p and so, for every reflexive
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R, we have Igr(—p | w) = 1. Thus, for any approximation relation R, (£, R) = [%p.
Therefore, for any proposition ¢, the following global consequence trivially holds:

Hap Egx Lo (p A ),

where Y stands either for 3; , g or for Xg. But this logical consequence is
obviously not true in the local sense. It is easy to see that the corresponding
translated possibilistic entailment

(P,N1-a) FLp (PN G N1a)

is not true in general. ]

Finally, the following counterexample proves that Theorem 3 does not hold either
for none of the classes of models 7, Y3 , X3 and 3§ corresponding to separat-
ing relations that are besides reflexive, proximity (reflexive and symmetric) and
similarity relations respectively.

Counterezample 3. Let p,q,7 € L be three different propositions such that [p] =
{w}, [g] = {w'} and [r] = {w”}. An easy computation shows that the following
local logical consequence holds:

{01p, 01¢} Fis+ Ofr,

where ».* stands for any of the classes 37 , X5 , ¥3 or ¥§. However this is not
the case if the class of models is any of the classes ¥1 , 39, 33 or Xg. The reason
why is the separating property. No model in ¥* satisfies the left hand side and
so the logical consequence is trivially valid. But one can easily find models with
non-separating relations satisfying the left hand side and not the right hand side.
It suffices to take a model (w, Myg) defined by a similarity S such that S(w,w’) =1
and S(w,w”) = S(w',w”) # 1. O

The following schema summarizes the relationships which have been considered
in this section. As usual, I' and ¢ denote a family of possibilistic formulas and
a possibilistic formula respectively and T(I') and T(y) denote the corresponding

formulas of £'.
T(T) =5, T(¢) < TI) =T =1 TT) == T(p)

) 12 I3

I'EpLe = T@) = T() = TI) =g T(e)

where Y stands for any class Xp, 31 or Yg, and X* stands for the corre-
sponding class X7, X5 or X, respectively. Moreover T(T'") =5, T(y) means that
the consequence is true both in the local and in the global sense. On the other
hand subscripted arrows mean that the converse does not hold. Counterexample 3
proves that the converse of =1 does not hold, and counterexamples 1 and 2 prove
that the converse of =5 does not hold. To prove that the converse of =3 does not
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hold is easy and it is left to the reader. Moreover, the following relationships hold:
Egs, Is stronger than =gx,, =g, is stronger than |=g5,, and |=¢5, is stronger
than |=¢5,. These relations hold in the strict sense, i.e. it is easy to show that
the converse relationships do not hold. Namely, take the axioms characterising
serial, reflexive, symetric and transitive relations in the multi-modal system and
prove that these axioms are valid only in the classes of models defined by relations
satisfying the corresponding property. Of course, in this schema it is necessary
to remark that the multi-modal system is restricted to the formulas of £’ and so,
the general result is that possibilistic logical consequence is only a restriction of
logical consequence respect to the class ¥ and also with local logical consequence
respect to the classes 31, Y9 and Yg. Obviously, the same arrows are valid when
considering the corresponding “separating” classes 37 for i € {1,2,3, ®}.

5 Conclusions and future work

In this paper we have proposed an axiomatic definition of so-called approximation
mappings which provide, for each crisp proposition p, an upper fuzzy approxima-
tion representing the fuzzy set of interpretations which are (semantically) close
to p. The basic type of approximation mappings have been proved to be defin-
able through fuzzy reflexive relations. Then, we have shown some multi-modal
systems accounting for the notion of approximation and finally we have explored
some relationships between logical consequences in these modal systems and the
possibilistic entailment. As for a natural extension of the work presented here, one
could consider the problem of defining upper approximations of fuzzy propositions.
For instance, a possible definition of what an upper approximation (with respect
to a ®-similarity relation S on X) ¢g(h) of a fuzzy set h : X — [0,1] is has been
proposed in [10] as

¢s(h)(x) = supyex (S(z,y) ® h(y)). (3)

This kind of upper approximation also appears in [5]. Of course, this definition
agrees with our approximation mapping when restricted to crisp subsets (taking
X = Q). The mapping ¢g provides, for every fuzzy set h , the least extensional
fuzzy set (w.r.t. S) containing h, and it is proved [11] to satisfy the condi-
tions of a fuzzy closure operator in the lattice (FP(X),<,V,A) of fuzzy subsets
of X with pointwise max and min, in the sense that it fulfils the following propeties:

e C1: h < ¢s(h),

o C2: ¢g(h1V h2) = ¢s(h1) V ds(h2)

e C3: ¢50¢s = ¢s

o C4: $s(k) = k, for all constant fuzzy set k (i.e. k(z) = k, for all z € X).

Notice that C1 and C2 correspond to the axioms A1l and A2 of approximation
mappings (see Section 2). Moreover, the mapping ¢g satisfies this further property:
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o C5%: gs({a} A k) = ¢s({z}) @ F,

where {2z} denotes a singleton, i.e. {z}(z) =1 and {z}(z) =0 for all z # z, and
k a constant fuzzy set. C5%® basically states that ¢g is determined by the approx-
imations of the (crisp) singletons of X. Then, we can extend the characterization
of approximation mappings given in Proposition 1 to fuzzy approximations defined

by (3).

Proposition 6 A mapping ¢ satisfies C1,C2, and C5% if, and only if, there exist
a fuzzy reflexive relation R on X such that ¢ = ¢g.

Proof: 1t is easy to show that, for any fuzzy reflexive relation, ¢p satisfies C1,
C2, and C5%. The proof of the converse is as follows. For all z,y € X, define
R(z,y) = f({z})(y). Notice thatR so defined is reflexive due to C1. Any fuzzy
set h can be written as b = Vyex {2} A kp(a), where ky(,) is the constant fuzzy set
kn(z)(y) = h(z), for all y € X. Therefore, by C2, ¢(h) = Vaexd({x} A kn(z)), and
by C5%, 6(h) = Vaexd({z}) ® h(z), and thus ¢(h)(y) — supeex dz)(y) © h(z) —
supzex By, ) @ h(z) = ¢r(h)(y)- 0

So, C1, C2, and C5% are the natural counterparts of A1 and A2 when considering
upper approximations of fuzzy sets. Moreover, C4 is a consequence of C1, C2, and
C5®. If we further require to the approximation mapping to be a closure operator
(C3), then we are led to fuzzy ®-transitive relations.

Proposition 7 A mapping ¢ satisfies C1, C2, and C5%® and C3 if, and only if,
there exist a fuzzy reflexive and ®- transitive relation R on X such that ¢ = ¢p.

Proof: A simple computation shows that, for any fuzzy reflexive, ®- transitive
relation R, then ¢ satisfies C1, C2, C3 and C5%. On the contrary if ¢ satisfies
conditions C1, C2, C3 and C5%® and we define R as in Proposition 6, then one
can show that the relation R is ®-transitive. It is sufficient to apply condition C2
to a singleton, i.e. (po@)({z}) = ¢({z}), and take into account condition C5%. [J

Notice that the symmetry of the relation does not play any role in the axiomatic
definition of closure operators. This agrees with the fact that closure operators are
related to fuzzy preorderings rather than to fuzzy similarity relations (see [19] and
the references there). Of course, if needed, we could add a condition to guarantee
the symmetry of the relation. One obvious way is by requiring the following axiom:

o C6: 6({a})(y) = 6({y}(a), for all 2,y € X.

Analogously to the approximation mappings considered in Section 2, a natural
question is to look for the corresponding modal systems to these more general
fuzzy approximation mappings. Obviously, in this case, the initial logical system
will be many-valued rather than two-valued as in Section 3. This subject is clearly
an interesting matter of future work.



Fuzzy Approximation Relations, Modal Structures and Possibilistic Logic 165

Acknowledgments

This research has been partially supported by the CSIC-CNRS grant called
Similarity-based reasoning and its applications and by the CICYT, TIC96-1138-
C04-01 project SMASH.

References

[1] BOIXADER D., JAacas J. (1996). CRI as approximate reasoning tool: an anal-

ysis via T-indistinguishability operators. Proc. Fuzz-ieee’96 (New Orleans), pp.
2094-2097.

[2] DuBois D., EsTEvA F., GARCIA P., Gopo L., PRADE H. (1995). Similarity-
based consequence relations. In: Symbolic and Quantitative Approaches to Rea-
soning and Uncertainty (C. Froidevaux, J. Kohlas, eds.), Lecture Notes in Arti-
ficial Intelligence, Vol. 946, Springer Verlag, Berlin, 171-179. Extended version:
Tech. Report ITIA 96/7, ITIA-CSIC.

[3] DuBois D., EsTevA F., Garcia P., Gopo L., Prabpe H. (1997). A Logical
approach to interpolation based on similarity relations. Int. J. of Approximate
Reasoning, 17 (1), 1-36.

[4] DuBois D., LANG J., PRADE H. (1994). Possibilistic logic. In: Handbook of
Logic in Artificial Intelligence and Logic Programming, Vol. 3 (D.M. Gabbay,
C.J. Hogger, J.A. Robinson, D. Nute, eds.), Oxford University Press, 439-514

[6] DuBois D., PrRADE H. (1992). Putting Rough Sets and Fuzzy Sets Together,
Handbook of Applications and Advances of the Rough Set Theory, (Roman
Slowinski ed.) Kluwer, pp. 203-232.

[6] DuBois D., Prabe H. (1995). Comparison of two fuzzy set-based logics:
similarity logic and possibilistic logic. Proc. FUZZIEEE’95, Yokohama, Japan,
1319-1326

[7] EsTEvVA F., GAarcia P., Gopo L. (1994). Relating and extending semantical
approaches to possibilistic reasoning. Int. J. of Approximate Reasoning, 11, 312-
344.

[8] ESTEVA F., GARCIA P., Gopo L. (1996). Approximate-based Multi-Modal
Systems and Possibilistic Logic: A comparative study. In proc. of ESTYLF’96,
Publi. Univ. Oviedo (Spain), pp.113-118.

[9] EsTEvA F., GARrcIA P., Gopo L., RODRIGUEZ, O. (1997). A Modal Account
of Similarity-based Reasoning, Int. J.of Approximate Reasoning, 16 (3/4), 235-
261.

[10] Jacas J., RECASENS J. (1994). Fixed points and generators of fuzzy relations.
J. Math. Anal. and Applic. 186, pp. 21-29.



166 F. Esteva, P. Garcia, L. Godo & R.O.Rodriguez

[11] Jacas J., RECASENS J. (1995). Fuzzy T-transitive relations: eigenvectors
and generators. Fuzzy Sets & Systems 72, pp. 147-154.

[12] Krawonn F., KrRUSE R. (1993). Equality relations as a basis for fuzzy control.
Fuzzy Sets and Systems, 54, 147-156.

[13] LEwIis D. (1973). Counterfactuals. Basil Blackwell. London.

[14] Liau C.J., LN B.I-PENG (1992). Qualitative Modal Logic and Possibilistic
Reasoning. Proc. ECAT’92 (B.Newmann ed.) John Willey & Sons ltd., pp.43-47

[15] Liau C.J., LiN B.I-PENG (1995). A theoretical investigation into possibilistic
reasoning. Fuzzy Sets & Systems 75, pp. 355-363.

[16] Liau C.J. (1996). Possibilistic residuated logics and applications, Proc.
IPMU’96, Granada, pp.935- 940.

[17] NAKAMURA A. (1993). On a Logic Based on Graded Modalities. IEICE Trans.
Inf & Syst., Vol. E76- D, No. 5, May 1993, pp. 527-532.

[18] RuspINI E. (1991). On the semantics of fuzzy logic. Int. J. of Approximate
Reasoning, 5, 45-88.

[19] TRrILLAS E., ALSINA C., TERRICABRAS J.M. (1995). Introduccién a la Ligica
Borrosa. Ed. Ariel.

[20] TriLLAS E., VALVERDE L. (1984). An inquiry on T-indistinguishability op-
erators. In: Aspects of Vagueness (H. Skala et al., eds.), Reidel, Dordrecht,
231-256.

[21] VALVERDE L. (1985). On the structure of F-indistinguishability operators.
Fuzzy Sets and Systems, 17, 314-328.

[22] YING M. (1994). A logic for Approximate Reasoning. Journal of Symbolic
Logic, Volume 59, Number 3, 830-837.

[23] WILLIAMSON T. (1988). First-Order Logics for Comparative Similarity. Notre
Dame Journal of Formal Logic, Vol. 29, Number 4, 457-481.

[24] ZADEH L.A. (1965). Fuzzy sets. Information and Control, 8, 338- 353.

[25] ZADEH L.A. (1971). Similarity relations and fuzzy orderings. Information Sci-
ences, 3, 177-200.



