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Abstract

In this paper, the method of least squares is applied to the fuzzy inference
rules. We begin studying the conditions in which from a fuzzy set we can build
another through the method of least squares. Then we apply this technique
in order to evaluate the conclusions of the generalized modus ponens. We
present different theorems and examples that demonstrate the fundamental
advantages of the method studied.
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1 Introduction

The classical modus ponens is expressed by

A— B
A
B
this means that if both:

A implies B and A are true, then
B is also true.

This reasoning scheme was extended to fuzzy reasoning by Zadeh [13 — 16] as
follows:

A) The implication A — B is replaced by the fuzzy inference rule
if x is A then y is B
where A and B may be fuzzy sets, A in a universe of discourse X and B in
a universe of discourse Y; and x is a variable which takes values in X, and

y is a variable which takes values in Y. The fuzzy rule represents a relation
between two variables x and .

B) Similarly, the premise A is replaced by a fuzzy premise:
zis A

141



142 H. Bustince, M. Calderén & V. Mohedano

where A’ is a fuzzy set, expressing the knowledge we have about the value of
z. A’ is a fuzzy set in a universe of discourse X.

Combining the rule and the premise, it is possible to deduce a new piece of infor-
mation, written

y is B’
where B’ is a fuzzy set in a universe of discourse Y.

The membership functions of A and A’ are written as pa(z) and pas(z) respec-
tively; the membership functions of B and B’ are denoted as pp(y) and pp/(y)
respectively. The other well known classic method of inference is the modus tollens
which is expressed as follows:

A— B
not B
not A

Therefore, exact reasoning modus ponens and modus tollens can be extended to
approximate reasoning which deals with the inherent vagueness of human language.
Thus, the generalized modus ponens (GMP) is introduced to reach a conclusion
from fuzzy premises. These rules can be expressed in standard as follows

If £ is A then y is B
xis A’
y is B’ (GMP)

The main advantage of these extensions to fuzzy reasoning is being able to
deduce new information, even when the knowledge is not exactly identical to the
condition of the rule or when the information we consider is not crisp. It is noted
that in (GMP) when A = A’, then the generalized modus ponens reduce to the
case of the modus ponens.

For the fuzzy inference rules, different methods have been suggested by various
authors such as Zadeh [9,12], Fukami [4], Mizumoto and Zimmermann [6], Ezawa
and Kandel [3].

In this paper we are going to study the generalized modus ponens following a
different reasoning from the one used by above-named authors. The basis will be
the ideas established by J.F. Baldwin [1], A. Nafarie [7], M.B. Gorzalczany [5], etc.,
which can be summarized in the two following steps:

1) First relate A to A’
2) Build the consequence B’ using the result of the comparison above and B.

We will carry out step 1) following the method presented by T.D. Pham and S.
Valliappan [8], analysing and afterwards formalizing its main consequences.

We begin the paper studying the way to obtain from a fuzzy set another which
is fuzzy as well, by means of the method of least squares. We focus above all on the
conditions in which said construction can be carried out. We conclude this section
analysing the main consequences of the method of construction presented. We must
make clear that in this paper we at no time consider whether the approximation we
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make is appropiate or not, that is, we at no time use Pearson’s coefficient, etc., for
as we will see in the following section of the paper, in fact what we are interested in
are solely and exclusively the coeflicients calculated from the approximation carried
out.

In section three we present a method for obtaining the consequence of the
GMP. In thise case we study the main characteristics of said method, highlighting,
through different examples, its great applicability when the membership functions
in the premises are characterized by the fuzzy linguistic hedge operators as defined
by Zadeh [9 — 11].

Like T. C. Chang, K. Hasegawa and C.W. Ibbs [2], for convenience we take the
universes of discourse in this paper as follows:

1)X:{$17 7xn}a Y:{y17 aym}andZ:{Zh"' axp}
Dz, y5,2 € (0,1 forall i=1,--- ,n, j=1,--- ,m, k=1,--- ,p

3z < wiv1, Yj < yjt1 and zp < zp4q for all 4,4,k

We will denote as F'S(X) the set of all fuzzy sets on X, we will denote as
FS*(X) the set of all fuzzy sets on X such that for all z; € X it is verified that
w(z;) # 0. We will denote as A, the complementary of the fuzzy set A and for
p € RT U {0}, we will write A? = {< x;, pfy (z;) > |z; € X}, evidently, p has to be
greater than or equal to zero.

2 Construction of a F'S(X) from a FS*(X)

Our objective is to approximate the membership functions of a fuzzy set A <
FS*(X) to az? type functions, where for each set A € F$*(X) constants a and b
are obtained by means of the following algebraic lineal equations:

3

nlna+ (> Inx;)b= > Ln pa(x;)
i=1 i=1

W] =n n n
(> Ln ;) Lna+ (Y. Lo%z)b= Y Ln @;Ln pua(x;)
i=1 i=1 i=1

obtained from taking logarithms in the expression y14(z;) = az? and applying the
method of least squares. Given the nature of the problem we are dealing with, it
is clear that the constant a has to be greater than zero and it also must always be:
foralli =1,---,n, az? < 1. The following theorem establishes the conditions in
which the above-mentioned condition holds.

Theorem 1. Let A € F§*(X) and let a and b be the solutions of (1).
ax? <1 if and only if

1) if b>0, then]| Z Ln pa(z:) > (nLn Tyee — Z Ln ;)b

i=1 i=1

2) if b< 0, then| Z Ln pa(z:) > (nLn Ty — ZLn x;)b.

i=1 i=1
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Proof.
=) a:vé’ <1, then Ln a +bLn z; <0 for alli=1,---,n, therefore

Ln a+bLn 2. <0
Ln a4+ bLn zpin < 0.

1) If b > 0, we have that

Ina+bLln zpax =

f: Ln pa(z;) — (zn: Ln ;)b

=1
= ! ‘ +b6Ln Tpax =
n

n

S Lo pa(z;) — (O Ln ;)b +bn Ln &pax
= =l =1 ~ < 0, therefore

ZLHMA Zi) ZLn:z:Zb—l—bnn:vmaXSO.

Since Tyin = 1 < T2 -+ < Tp = Tmax, it follows that Ln 21 < Ln 25 < --- <

mn n
Ln z, <0, therefore > Ln z; <n Ln x,,s0 | >, Ln ;| > |n Ln z,| from which

i=1 i=1

mn
we have that n Ln z, — > Ln z; > 0, and since
i=1

ZLHMA (z4) ZLnx b+ bnln xmax <0
i=1

is

|ZLn pa(z:)| > (nln Zmax — ZLHLL’

=1

2)Ifb<0,Ln a+bln z;, <Qforalli=1,---,n, then Ln a+bLn z; < 0, therefore

3

> Ln pa(z) — (i Ln x;)b+ bnln

i=1 i=1

<0
n

ZLn walz;) ZLn )b+ bnln z; <0
=1

n mn
since nLn 1 < 3 Ln ay, it follows that |nLn x1| > | > Ln 2;|, therefore nLn x1 —
i=1 i=

> Inx; £0,s0 (nLn 1 — > Ln 2;)b > 0, from which
i=1 i=1

| ZLH wa(z;)| > (nln Zpin — sz)b
i=1 i=1
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n

<) Ifb >0, then | > Ln pa(x;)] > (nLn Tmax — . )b, through the same rea-
i=1 i=1

n
soning as before we have (nLn z, — ) Ln ;)b > 0; since
i=1
n n

| > Ln pa(zi)| > (nLn omax — Y ;)b > 0, we have

i=1 i=1

ZLn palz;) + (nLn z, — ZLn x;)b <0, then
i=1 i=1

S Lo pa(w;) + (nLn z, — > Lo a4)b
= i=1

i=1

<0, then
n
> L i) — (32 Lo )b
i=1 i=1

+bLln z, <0
n

therefore Ln a+bLn ., < 0, that is a:z:fl < 1, since b > 0 we have that :vi? < 2%, then

n
aa:i? < a:z:fl since a > 0, therefore aa:é’ < a:z:% <1, then aa:i? <lforali=1,---,n.

2)Itb <0, > Ln pa(z;)] > (nLn Zmin — Y Lo @;)b, since @1 < 29 < -+ < @y
i=1 i=1

n
following a reasoning analogous to the above we have that |[nLn x| > | > Ln =,
i=1

then nLn 27 — > Ln 2; < 0 and since b < 0 we have (nLn 23 — ) Ln ;)b > 0,
i=1 i=1

therefore Y Ln pa(x;) + (nLn 21 — > Ln 2;)b <0, so

i=1 i=1

1=

Lo pa(z;) — (D L nx;)b
=1 i=1

+bLln 21 <0

n
that is, Ln a + bLn z1 < 0, from which aa:l{ < 1 and since b < 0 we have that a:l{ >
a:i?, taking into account that a > 0 it follows that ax’{ > aa:i?, then a:z;i? < aa:l{ <1
foralli=1,---,n. O

Corollary 1. In the same conditions as in theorem 1, the set A = {< x;, u:l(:z:i) >
|z € X} with u;‘(xi) = ax? is a fuzzy set on X.
Remark.

Up to now we have considered F.S*(X) fuzzy sets, that is, sets such that for all
x; € X it is verified that p(z;) # 0. Nevertheless, the construction analysed before
can be generalized to any fuzzy set as indicated below.

If in the set A € FS(X) considered there exists an x; with null membership

function, A is constructed by means of the following two steps:
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1) With the method above we build the new memberships of the elements with
membership value different from zero.
2) For the elements with null membership, this is maintained.

Theorem 2. Let A € FS§*(X).
b =0 if and only if (3 Ln @;) - (3_ Ln pa(z;)) = n- (30 Lo a;ln pa(zs)).
i=1 =1 =1

Proof. Is easily deduced clearing b in (1). O

Theorem 3. Let A, A’ € FS(X) and let ;1, A" € FS(X) the sets built from A and
A’ respectively in accordance with the corollary 1. Let p € RY U {0}, if A’ = AP,

then A" = (A)P, holds.

Proof.
Let uz(:z:i) = az? and 1, (z;) = a/z¥. From (1) we deduce that:

nLna + (Z Ln z;)b = Z Ln pa(z;) = ZLH ph ()
i=1

i=1 i=1

=pY Lo pale) =pn Lo a+p(} Inab (2)

i=1 i=1

(Z Ln ;) Ln o’ + (Z anzzzi)b' = ZLH xilm par(x;) =
i=1 i=1

i=1

= ZLH x; Ln () (x;) :pZLn x; Lo pa(x;) =

i=1 i=1
= p(z Ln z;) Ln a + p(z Ln’z;)b  (3)
i=1 i=1

solving (2) we have

, <Zzan z3)(p-b— V)

a
ILn — =
aP n

from (3) we have
n a n
() " Ln 2;)Ln —= (3" Lo?zi)(p- b V)
i=1 i=1

; 3
substituting Ln % in this expression and taking into account that () Ln ;)2
i=1

—n(> Ln?z;)# 0, we have ¥’ =p-b and o/ =a?. O

i=1



Fuzzy Inference Using a Least Square Model 147

All of the research carried out in this section will be much used in the following
sections of the paper. We are going to analyse operations of several linguistic
hedges the same as Zadeh did in [10, 11], for this reason it is important to bear in
mind the following consequences of the theorem above:

a) If A’ = A2, then A’ = (A)2,
b) If A’ = A%, then A’ = (A)3
¢) If A’ = A%, then A’ = (A)*

3 Fuzzy inference using a least square model

We have said earlier that in fuzzy logic, exact reasoning can be extended to ap-
proximate reasoning which deals with the inherent vagueness of human language.
Thus, the generalized modus ponens (GMP) and the generalized modus tollens
(GMT) are introduced to reach a conclusion from fuzzy premises.

Zadeh [10, 11] has introduced the operations of several linguistic hedges to con-
vey a better understanding of human language. The operators of such hedges as
very, more o less, highly, plus and minus are expressed in terms of the membership
functions. Thus, taking advantage of these properties, a method for fuzzy rules
of inference was proposed by T.D. Pham and S. Valliappan in [8]. This method
consists of three following steps:

MEeTHOD FOR THE GMP
1.- Introduce a function p4s{(x;) in terms of p4(x) in order to obtain the coefficients
of the relation between pa(x;) and pa(z;). We carry out this step approximating
the membership functions of the sets A and A’ to az? and a’'z¥ type functions
respectively; this is done by solving (1) for A and A’
2.- We calculate ¢; = aT;(obviouslyO < cp)and ¢g = % , so that f = clu%z ().
3.- These coefficients ofarelation can be passed to g (y;) for the inference of up (y;),
that is, pp/(y;) = cipp(y;) forall j=1,---,m.

T.D. Pham and S. Valliappan in [8] did not consider the possibility that for a y;
with j =1,---,m, cip7(y;) could be greater than one. In this line we enunciate
the following theorem.

Theorem 4. Under the conditions of the three steps above we have:
0 <cipfly;) <1lforallj=1,---,m, if and only if
{ ez >0 andeip,

(y;) <1
2)co <0 and c1p <1.

(y5) <

min

Proof. Evident. O
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Theorem 5. Let p € RT U{0}. In the conditions in theorem 4, if A’ = AP, then
B’ = BP holds.
a’ b

Proof. It is enough to remember that ¢; = 4~ , c2 = % and theorem 3. [J
a

o

Due to its importance, we highlight the following particular cases of the previous
theorem:

a) If A’ = A2, then B = B2,

b) If A’ = Az, then B’ = Bz

c) If A’ = A*, then B’ = B*.

4 Conclusions

In the case when this method can be applied, that is, if the conditions in theorem
4 hold, we find ourselves before a mecanism of inference that has the following two
advantages:

1) It can be generally applicable when the membership functions in the premises are
characterized by the fuzzy linguistic hedge operators as defined by Zadeh [9 — 12].
2) The mathematical operations on the generalized modus ponens are simple and
convenient for computer implementation.

It is important to say that the primary and fundamental disadvantage of this
method is the following: to approximate the membership functions of fuzzy sets to
ax? type functions, it should be noticed that az? type functions are monotone. If
the membership function pa(x;) of a fuzzy set A € F.$*(X) is not monotone, such
as “middle”, the approximation between pa(x;) and az? using the method of least
squares is unreasonable. In this case, the method of fuzzy inference using a least
squares model must be improved.
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