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Abstract

Using the notion of a vaguely defined object, we systematize and unify dif-
ferent existing approaches to vagueness and its mathematical representations,
including fuzzy sets and derived concepts. Moreover, a new, approximative
approach to vaguely defined objects will be introduced and investigated.

1 Properties, vaguely defined objects, sets and
subdefinite sets

Let us consider the class P composed of all properties which: (i) can be formulated
in a natural language, (ii) make sense for the elements of an infinite universe M,
and (iii) do not lead to antinomy. Although the definition of P is not very formal-
ized, it seems to be intuitively clear and sufficient for the purpose of this paper.
The assumption (i) implies that, generally, P contains properties which are more
or less vague, e.g. ’to be a tall man’, 'to be a number approzimately equal to 1’,
'to have a high salary’. Therefore, the elements of P will be called vague prop-
erties. Consequently, even infinitely many intermediate states between the states
of fulfilment and nonfulfilment of a property peP are generally possible, and the
transition from one of these extreme states to the other is generally gradual.

In particular, the number of the intermediate states can be equal to zero and,
then, p will be called a sharp or crisp property (e.g. 'to be a prime number’ or ’to
be married’; indeed, either a natural number is prime or not, and any intermediate
states are not possible, etc.). The transition between the states of fulfilment and
nonfulfilment of p is now abrupt. Thus, by definition, each sharp property is also
a vague property, however its “vagueness” is reduced “to zero”.

We shall assume that each (vague) property from P separates in M an object,
generally distinct in each case, which will be called a vaguely defined object(VD-
object, in short). Clearly, a VD-object is a set if the property separating it is a
sharp property. VD-objects which are not sets will be called proper VD-objects,
and can be imagined as nebular objects in M. As one knows, sets can be identified
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with (sharp) properties separating them. Analogously, arbitrary VD-objects can
be identified with vague properties separating them. Generally, if the properties
differ, VD-objects differ, too. However, we remind that some sharp properties are
“isomorphic” in that sense that they separate the same set in M, e.g. the properties
'to be a solution of the inequality > —1 < 0’ and ’to be a real number between -1
and 1’. The same can happen for arbitrary vague properties from P.

As concerns sets, the problem of practical settlement "Does x € M have a
(sharp) property p or not?” is certainly not in the domain of set theory, naive or
axiomatized. However, that problem is often essential and nontrivial in solving.
It happens that a set is incompletely known because, practically speaking, we are
not able to indicate or to recognize all elements of that set. The difficulty lies in
unknown or uncertain status of some z’s with respect to p, caused by a lack of
sufficient information/knowledge about the z’s. For instance, we are practically
unable to check (at least, in a reasonably short time) if an arbitrarily large integer
belongs to the set of all prime numbers or not; the reader can easily give a lot
of similar examples from outside mathematics. Such incompletely known sets will
be called subdefinite sets. Obviously, the treatment of a set as a subdefinite set is
generally a question of one’s personal choice.

2 Mathematical representations of vaguely defined
objects

In this section, we like to recall some existing approaches to the problem of math-
ematical representation of (proper) VD-objects and subdefinite sets.

As concerns proper VD-objects, most of the approaches make use of an in-
tuition which incites us to apply a “generalization” of characteristic functions of
sets. More precisely, a VD-object is then represented or described by a gener-
alized characteristic function or membership function M — V, where V denotes
a set differing from {0,1}. In some approaches, one assumes that membership
functions are precisely determined, at least theoretically speaking. In the others,
membership functions are generally treated as imprecisely determined functions.
VD-objects can be identified with their membership functions. Consequently, the
classical two-valued logic, which supports the classical set theory, has to be replaced
by another supporting logic (sl, in short), namely by a many-valued logic (see [5]).
Throughout the paper, membership functions will be denoted by capital letters in
italic A, B, C, ... , whereas bold capitals A, B, C, ... symbolize sets. The sum
AU B, intersection AN B, and cartesian product A x B, respectively, represent the
sum, intersection, and cartesian product of the VD-objects represented by A and
B, respectively, where

(AUB)(z) := A(z)VB(z), (ANB)(z) := A(z)AB(z), (AxB)(z,y) := A(z)AB(y).

The symbols V and A, respectively, denote binary operations which are numer-
ical interpretations (in the sl one uses) of inclusive disjunction and conjunction,
respectively, whereas := stands for ’equals by definition’ or 'denotes’. Further-
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more, inclusion between VD-objects is defined in the classical way with implication
interpreted by means of an implication operator — specific for the sl (see [5]).

On the other hand, the idea of semisets can be viewed as an attempt at repre-
senting VD-objects without the use of any generalization of characteristic functions
of sets. Finally, subdefinite sets can be represented in a probabilistic or possibilistic
way. The following list contains a more detailed characterization of the approaches.

L. Representations of proper VD-objects

I.1. The membership functions are used

L.1.1. The membership functions are precisely determined, at least theoretically
speaking

(a) V :=10,1], sk:= infinite-valued Lukasiewicz logic L.
Consequently, V:= max, A:= min and p = ¢:=1A1—p+ q for p,q € [0, 1].

VD-objects are then called fuzzy sets (see [20], [3]). Worth mentioning here is
the case of V:= residuated lattice and so-called bold fuzzy sets (see e.g. [10]).

(b) V :=[0,1], sk= intuitionistic logic.
So, V:= max and A:= min, whereas p — ¢ := (1 if p < g, else q).

VD-objects are called intuitionistic fuzzy sets (see [14]).

(c) 'V := complete Heyting algebra, sl:= intuitionistic logic. Consequently,.

pVva:=\/{p.a}, pAq:= \p.a}, p—> a:=\/{r:pAr<q}forpgeV.

VD-objects are then called L-fuzzy sets or Heyting algebra valued sets (see

[4], [6], 9], [13]).
(d) V :=[0,1], sk= intuitionistic type logic.

Then A:= residual t-norm t, V:= related t-conorm, p — ¢ := \/{r : ptr < ¢}

VD-objects collapse to fuzzy sets with triangular norms (see [5]).

1.1.2. The membership functions are generally imprecise
(a) V :=[0,1]%; VD-objects are called type 2 fuzzy sets (see [8]).

(b) V:={[p,q] : p,q € [0,1]}; VD-objects are called ultrafuzzy sets or interval-
valued fuzzy sets (see [12]).

(c) Approximative approach to VD-objects in which membership functions are
approximated by some other membership functions which fulfil some simple
postulates. It will be presented in detail in Section 3.
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1.2. No membership functions are used

It is evident that any assumption about preciseness of the membership functions
of VD-objects is practically difficult to defend. Moreover, type 2 fuzzy sets and
ultrafuzzy sets do not solve the problem of impreciseness, but they only move it a
bit farther. On the other hand, one can try to find a representation of VD-objects
without the use of membership functions. In [15], a new notion has been added
to the Godel-Bernays set theory, namely that of a semiset which is defined as a
proper class being a subclass of a set, whereas a class is defined as a property being
understood as an object. Proper VD-objects in M can be treated as semisets.
Unfortunately, semisets do not seem to be useful as a basis for applicational theories
or models. The reason is that the membership functions (in spite of their immanent
imperfectness) are convenient and “handy”. They make fuzzy sets and derived
concepts a more constructive tool than semisets are.

II. Representations of subdefinite sets

II.1. Probabilistic representations

We shall disregard them in this paper. Probabilistic representations (e.g. prob-
abilistic sets or random sets) deserve an exhausting treatment which goes beyond
the scope of this paper. We do focus our attentions on nonclassical, possibilistic
representations which seem to be more universal and flexible.

I1.2. Possibilistic representations

(a) A subdefinite set A in M is represented by a pair (D, E) called a partial
(or flou) set (see [2], [7], [9]). One assumes that D C E C M. The set
D contains sure elements of A, whereas E is composed of sure and possible
elements of A. Basic operations on partial sets are defined via operations on
their components. Finally, partial sets can be identified with membership
functions M — {0,1/2,1} and this representation via 3-valued membership
functions can be extended to sums and intersections of partial sets. Worth
mentioning here is also the idea of rough sets which is connected with the
concept of knowledge bases (see e.g. [11]). Quite formally, rough sets are
pairs (D, E) with D C E C M, too. However, D and E, respectively, are
now the interior and the closure, respectively, of a set in a topological space
generated from M by an equivalence relation. This topological feature of
rough sets and (hence) operations on them causes that the representation of
rough sets via 3-valued membership functions cannot be extended to sums
and intersections of rough sets.

(b) A subdefinite set A in M is represented by a twofold fuzzy set which is a
pair (C, P) of generalized characteristic functions belonging to GP:= [0, 1]™
and such that

C C lyer(p)s
where
ker(Y) :={z:Y(z) =1} for Y € GP,

YCZ&Ve: Y(z)<Z(x)
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and 1g := the characteristic function of H C M (see [1]). The fuzzy sets
characterized by C and P, respectively, are composed of elements which,
respectively, more or less certainly and more or less possibly are in A. More
precisely, C'(x) expresses a minimal degree of certainty that x is in A, whereas
P(z) expresses a maximal degree of possibility that z is in A. The condition
C C lyer(p) says that the more or less certain elements of A have to be
considered to be ’totally’ possible elements of A.

3 Approximative approach to vaguely defined ob-
jects

In this section, we like to develop the idea of approximative approach to VD-
objects which was initiated in two variants in [17, 18] and [19] as a starting point
for a nonclassical cardinality theory. We shall investigate that approach in a more
detailed way. Generally speaking, we shall represent VD-objects by means of gen-
eralized characteristic functions rejecting, however, the fiction of their preciseness.
Throughout, V := [0,1] and Lo, will be used (cf. [16]). Again, two variants will
be considered. The first one seems to be especially suitable for proper VD-objects,
whereas the second one is useful also for subdefinite sets.

Variant 1.

We shall assume that a VD-object in M is described by a function
A € GP which is maybe imprecisely determined. Therefore, A will be approxi-
mated by two other membership functions f(A) and g(A), where f,g : GP - GP
are defined by means of the following system of postulates (z,y € M, B €GP,
PS:={0,1}M, &:= conjunction, L:= inclusive disjunction, id:= the identity func-
tion):

(A1) f(4) Cc ACg(A),

(A2) A €PS = f(A), g(A) €PS,

(A3) A(z) < B(y) = f(A)(z) < f(B)(y) & g(4)(z) < g(B)(y),
(A4) (f,9) #(id,id) = f(GP) C PS L g(GP) C PS.

Obviously, (f(A), g(A)) is an ultrafuzzy set, but the lower approximation f(A)
and the upper approximation g(A) of A are not so arbitrary. They must be con-
structed by means of monotonic transformations of the membership grades A(z)
(see (A3)). Both the approximations of a set have to be sets, too (see (A2)). Fi-
nally, we see that the pair (f,g) =(id,id) fulfils (A1)-(A3) and corresponds to the
case of precise A. If A is imprecise (subjective), we do approximate it using a
pair differing from (id , id). However, we do not like to ’proliferate’ that impre-
cision by constructing imprecise lower and upper bounds for A. We accept that
the imprecision of each A(z) is more or less total: the only unquestionable lower
evaluation of each A(z) is A(z) > 0, possibly excluding the A(z)’s being equal to 1
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if they are assumed to be precise, or/and the only unquestionable upper evaluation
of each A(z) is A(z) < 1, possibly excluding the A(z)’s being equal to 0 if they
are assumed to be precise. This means that at least one of the approximations of
a VD-object represented by A has to be a set, i.e. has to be a ’simpler’ object,
which is described in (A4). The family of all pairs (f, g) fulfilling (A1)-(A4) will
be denoted by F, excluding the trivial pair (f,g) = (T, M) with

T :=1y and M := 1pm.

Clearly, the choice of a suitable pair (f, g) from F should be correlated with the
type of imprecision of A. For the moment, we keep from giving any examples of
pairs from F. The reason is that they will be easier to construct knowing a bit more
about, consequences of the postulates (A1)-(A4) (see Theorem 3.1 and Corollary
3.2).

Let f1, gs:GP — GP be defined in the following way:

f1(Y) := Liex(v) and gs(Y) == lsupp(v)

with
supp(Y) := {z : Y(z) > 0} for Y € GP.

Theorem 3.1. Let (f,g) € F and A,B € GP. The following implications and
equalities are satisfied:

(a) AC B = f(4) C f(B) & g(A) C g(B).

(b) f(AxB)= f(A)* f(B) and g(A * B) = g(A) % g(B) for each x € {N,U, x}.

(c) AePS= f(A)=g(A)=A, unless f=T or g= M.
)

(d) (f,g9) #(d,id) = (f=T L f=11) L (g=M L g=gs).

Proof. Part (a) follows from (A3) by putting y := z. Further, we see that (A3)
implies A(z) = B(y) = f(A)(z) = f(B)(y) & g(A)(x) = g(B)(y), which leads to
(b). (c) is a consequence of (A2) and (A3). Finally, (d) follows from (A1) and
(A4, m

Corollary 3.2. For each (f,g9) € F and A, B € GP the following properties hold

true:
(a) A=B= f(A) = f(B) & g(4) = g(B).

(b) f1(A) C f(A) and g(A) C gs(A), unless f=T org= M.

(c) ker(f(A)) = ker(A) and supp(g(A)) =supp(A), unless f =T org= M.
)

(d ( ) C 1ker(g(A) ) unless (f: g) = (ldald)
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Proof. Tmmediate consequences of Theorem 3.1 and (A1)-(A4). N

Worth noticing is that Theorem 3.1(d) implies a decomposition of F into five
subfamilies, namely:

F:={(id, id)}U{(f,9) : f = T}U{(f,9) = 1}U{(f,9) : g = M}U{(f,9) : g = gs}.

Using this decomposition, one can easily give many examples of pairs from F.
The following eight pairs seem to be particularly significant and useful:

(id,id),

(T,id), (f1,id),

(id,gs), (id,M),

(T'gs), (f1,M), (fL,gs).

So, each VD-object in M with maybe imprecisely determined membership func-

tion A € GP can be viewed as a pair (f(A),g(A)) with (f,g) € F. The following
particular cases of such pairs should be mentioned:

fuzzy sets ((f,g) =(id,id)),
twofold fuzzy sets ((f,g) #(id,id); see Corollary 3.2(d)),
partial sets ((f,9) = (T, gs), (f1, M), (f1, gs)).

Basic relations and operations are defined as follows (cf. [1], [7]):
(f(4),9(4)) € (f(B),g9(B)) & f(A) C f(B) & g(4) C g(B),  (inclusion)
(f(4),9(4)) = (f(B),g(B)) & f(A) = f(B) & g(4) = g(B),  (equality)
(f(A),9(A)) = (f(B),g(B)) := (f(A) ng),g(A) xg(B)) with z € {N,U, x},

(intersection, sum, cartesian product)

(F(A), g(A)) = (g(A), F(A)) with Y'(z) := 1 — Y (2). (complement)

*

In virtue of Theorem 3.1(a, b), we have

(£(4),9(A)) C (f(B),g(B)) for A C B,

(F(A),g(A)) = (f(B),g(B)) = (f(A = B),g(A* B)) for x € {N, U, x}.

Contrary to ultrafuzzy sets, the approximative approach to VD-objects with im-
precise membership functions allows one to treat VD-objects as fuzzy sets. Namely,
if a pair (f,g) € F is fixed, the fuzzy set-like notation obj(A) for a VD-object de-
scribed by an imprecise A € GP can be used, as if A would be precise, and the
following natural definitions can be then formulated:

[z €m obj(A) ]| := A(z), (membership)

obj(A4) Cy obj(B) := Vo € M: z €, obj(4) = = €, obj (B), (many-
valued inclusion)

obj(A) =m obj(B) := obj(A) Cm 0bj(B) & obj (B) Cm obj(A), (many-
valued equality)
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obj(A4) C obj(B) & A C B, (inclusion)
obj(A) = obj(B) & A = B, (equality)
obj(A) x obj(B) := obj(A x B) for x € {N,U, x}, (intersection, sum,

cartesian product)

where [[s [:= truth value of a sentence s, €,,:= many-valued membership predi-
cate, V,:= many-valued general quantifier, =,,:= implication and &,,:= conjunc-
tion in L. Obviously, obj(A) is a set iff A € PS ; informally, D=obj(1p) for
each set D C M. VD-objects with the above defined sum U, intersection N and
neutral elements obj(T') and obj(M) are isomorphic to (GP,U,N, T, M), and form
a bounded distributive lattice. In virtue of the above mentioned consequences of
Theorem 3.1(a, b), the definitions of (f(A4), g(A))x(f(B),g(B)) and obj(A)*obj(B)
are coincident for each (f,g) € F, whereas the definitions of obj(A) Cobj(B) and
obj(A) =obj(B) are generally stronger than those of (f(A),g(A)) C (f(B),g(B))
and (f(4),9(A)) = (f(B),g(B)). In this case, full coincidence holds if (f,g) € F is
such that f =id or g =id. Indeed, the implication connective in Theorem 3.1(a) and
Corollary 3.2(a) can be then replaced by the equivalence connective and (hence) we
get (F(A).(0) © (F(B).g(B) i A € B as well a5 (£(4),5(4)) = ((B): 9(5)
i =B.

We should ask if the fuzzy set-like treatment of VD-objects can be extended
to complementation and generalized operations on VD-objects. We easily see that
the fuzzy set-like definition of complementation

obj(A)' := obj(4")

is coincident with that of (f(A),g(A)) only if (g(A)', f(A)") = (f(A"),g(A")) for
each A € GP.

Theorem 3.3. Let (f,g) € F. We have f(A) = g(A") and g(A) = f(A") for each
A€ GP iff (f,q) is equal to (id,id) or (f1, gs) .

Proof. By routine transformations. W

So, the above defined complementation of a VD-object coincides with (f(A4), g(A))’
only if (f,g) is equal to (id,id) or (fl,gs).

Finally, we like to formulate a few remarks about generalized operations on

VD-objects with respect to the approximative approach. Let J denote a nonempty
set of indices, A € GP for each e € J, and (f, g) € F. As usual, we define

(ﬂ Ae> (@) = N/ Ae(w),
ecJ ecJ
(U Ae> (@) =\ Ac(a),

eedJ ecJ

N Acy(e)),

eedJ

(XeGJAe) (y)
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where € M and y : J — M. Let
*ceg0bj(Ae) 1= obj(*cesAe)
with x € {(, U, x} provided that
xecgh(Ae) 1= h(*ecgAe)

(h symbolizes any element of a pair (f,g) € F; cf. Theorem 3.1(b)). One easily no-
tices that the last condition is satisfied, for instance, by (f, g) =(id,id),(id,M),(T',id).

Variant 2.
In this variant, we shall assume that a VD-object in M is described by a pair
(F,G) such that F,G € GP and

F C lker(G)-

The pair (F,G) will be called a free representing pair; the family of all free
representing pairs will be denoted by K. So,

F C G and F(z) > 0= G(z) =1 for each z € M.

The VD-object represented by (F, G) will be denoted by obj(F, G). The follow-
ing two interpretations of (F,G) can be used.

Possibilistic interpretation. (F,G) can be understood as a twofold fuzzy set with
F and G being interpreted in the language of necessity and possibility degrees (cf.
I1.2(b) in Section 2). obj(F,G) is then a subdefinite set in M.

Approzimative interpretation. One can assume that F' = f(A) and G = g(A) for
some A € GP and for some transformations f,g : GP — GP. In other words,
F and G are lower and upper approximations of a membership function A. We
easily see that F' = G implies F,G € PS. So, if F = G, obj(F,G) is a set and its
characteristic function is precisely known, else obj(F,G) is a proper VD-object in
M and its membership function A is assumed to be always imprecise. Again, we
assume that the imprecision of A is more or less total: either no nontrivial bounds
for A(z) can be given (0 < A(z) < 1) or only one of them can be established
(0 < A(z) <aorb< A(x) <1 with a,b € [0,1] depending on z); cf. Variant 1.
This means that F'(z) = 0 or/and G(z) = 1 for each z €M, which is equivalent to
the condition F' C lyer()- So, this inclusion, usually connected only with twofold
fuzzy sets, appears to be more universal than one could expected it to be.

Let (F,G),(H,S) € K. The following definitions of basic relations and opera-
tions for free representing pairs can be introduced (cf. [1] and Variant 1):

C(H,S)© FCH&GCS,

=(H,S)& F=H&G=S,

x (H,S) := (F x« H,G % S) with x € {n,U, x},
"= (G, F").

(F,G

)

(F,G
(F,G
(F,G

~— ~— ~— ~—

)
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Generally,
*eGJ(Fea Ge) = (*EEJF67 *eEJGe)

for x € {,U, x}; as previously, J-a set of indices, (F.,G.) € K for each e € J.
We define

obj(F,G) C obj(H,S) & (F,G) C (H,S),

obj(F,G) = obj(H,S) & (F,G) = (H,S),

%ecg0bj(Fe, Ge) := obj(*cea Fe, *ecsGe) with x € {(), . x},
obj(F,G)" := obj(G", F").

One can easily check that (K,uU,n,,(7,T),(M,M)) forms an infinitely dis-
tributive de Morgan algebra.

The approximative approach to VD-objects seems to be a compromise solu-
tion of the problem of mathematical representation of VD-objects under immanent
impreciseness of any kind of generalized characteristic functions. Moreover, that
approach can be a convenient and realistic starting point for developing different
mathematical theories for VD-objects. For example, in [17-19], a general nonclas-
sical cardinality theory is constructed in this way.
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